Research Article
BibTex RIS Cite

Comparison on flower, fruit and seed characteristics of tetraploid and diploid watermelons (Citrullus lanatus Thunb. Matsum. and Nakai)

Year 2022, Volume: 6 Issue: 4, 704 - 710, 30.12.2022
https://doi.org/10.31015/jaefs.2022.4.26

Abstract

In this study, the characteristics of tetraploid and diploid watermelon’s flowers, fruits, and seeds were examined, and their differences were investigated. As plant material, tetraploid ST101 and ST82; diploid WL92, WL124, WL134, WL216, WL259-B and WL235 were used. Flower (pollen viability, pollen germination, number of anthers and number of pollen per anther and flower); fruit (weight, length, diameter, rind thickness and TSS) and seed (weight of 1000 seed, length, width, thickness, full seed number, seed yield, embryo/seed ratio, germination and emergence) parameters were investigated. In terms of pollen parameters, diploid watermelon has a higher value than tetraploid watermelon. According to research results, average pollen germination was found to be in diploid watermelons at 74.48% and tetraploid watermelons at 71.62%. Pollen viability was determined highest in WL 235 (95.53%). In fruit parameters, tetraploid watermelons had higher values, but fruit length decreased (diploid 19.32 cm; tetraploid 15.33 cm) significantly. Considering the average values of tetraploid watermelons, a significant decrease occurred in terms of seed germination, full seed number, seed yield and embryo/seed ratio (57.22%, 225.48 seed, 6.33 g/fruit, 57.51% respectively in diploids; 37.31%, 57.67 seed, 4.90 g/fruit, 46.42% in tetraploid), and no difference observed in other seed parameters.

Supporting Institution

Cukurova University, Unit of Scientific Researc Projects

Project Number

FLY-2018-10957

Thanks

Authors are thankful to Cukurova University, Unit of Scientific Researc Projects (Project no: FLY-2018-10957). Authors also thank to Antalya Tarım Productive, Consultant and Marketing Co. and Ismail SİMSEK for their collaboration and providing grafted seedlings used in this work.

References

  • Andrus, C. F. (1971). Production of Seedless Watermelons, 1424. US Department of Agriculture. URL: https://play.google.com/books/reader?id=qjKpyMSzPJQC&pg=GBS.PP6&hl=tr&lr=&printsec=frontcover
  • Arumuganathan, K., Earle, E. D. (1991). Estimation of Nuclear DNA Content of Plants by Flow Cytometry. Plant Molecular Biology Reporter, 9(3): 229-241. https://doi.org/10.1007/BF02672073
  • Blakeslee, A. F., Avery, A. G. (1937). Methods of Inducing Doubling of Chromosomes in Plants: by Treatment With Colchicine. Journal of Heredity, 28 (12): 393-411. https://doi.org/10.1093/oxfordjournals.jhered.a104294
  • Chopra, V. L., Swamınathan, M. S. (1960). Induction of Polyploidy in Watermelon. Proceedings of the Indian Academy of Sciences-Section B. Springer India, 51(2), p. 57-65. https://doi.org/10.1007/BF03050500
  • Compton, M. E., Gray, D. J. (1991). Shoot Organogenesis on Cotyledons of Watermelon. Horticultural Science, 26: 772.
  • Compton, M .E., Gray, D .J . (1994). Adventitious Shoot Organogenesis and Plant Regeneration from Cotyledons of Tetraploid Watermelon. HortScience, 29: 211-213. https://doi.org/10.21273/HORTSCI.29.3.211
  • Compton, M. E., Gray, D. J., Elmstrom, G. W. (1996). Identification of Tetraploid Regenerants from Cotyledons of Diploid Watermelon Cultured in vitro. Euphytica, 87(3): 165-172. https://doi.org/10.1007/BF00023744
  • Dolezel, J. (1998). Flow Cytometry, its Application and Potential for Plant Breeding. Current Topics in Plant Cytogenetics Related to Plant Improvement (Ed.): T. Lelley. Universitätsverlag, Vienna, 80-90.
  • Elçi, Ş. (1982). Observations and Research Methods in Cytogenetics. Fırat University Faculty of Arts and Sciences Publications, Biology:3, Malatya. 159.
  • Eti, S. (1991). Determination of Pollen Viability and Germination Capability of Some Fruit Species and Cultivars by Different in vitro Tests. J. Agric. Fac. Cukurova. Univ. 6:69–80.
  • Fahleson, J., Dixelius, J., Sundberg, E., Glimelius, K. (1988). Correlation Between Flow Cytometric Determination of Nuclear DNA Content and Chromosome Number in Somatic Hybrids within Brassicaceae. Plant Cell Reports, 7(1): 74-77. https://doi.org/10.1007/BF00272983
  • Freeman, J. H., Olson, S. M. and Kabelka, E. A. (2008). Pollen Viability of Selected Diploid Watermelon Pollenizer Cultivars. HortScience, 43(1), 274-275.
  • Godfree, R. C., Marshall, D. J., Young, A. G., Miller, C. H., Mathews, S. (2017). Empirical Evidence of Fixed and Homeostatic Patterns of Polyploid Advantage in a Keystone Grass Exposed to Drought and Heat Stress. Royal Society Open Science, 4(11): 170934. https://doi.org/10.1098/rsos.170934
  • Gok, P., Yetisir, H., Solmaz, I., Sari, N., Eti, S. (2005), September. Pollen Viability and Germination Rates of 45 Watermelon Genotypes. In III International Symposium on Cucurbits 731, pp. 99-102. Doi: 10.17660/ActaHortic.2007.731.13
  • Grange, S. L., Leskovar, D. I., Pike, L. M., Cobb, B. G. (2000). Excess Moisture and Seedcoat Nicking İnfluence Germination of Triploid Watermelon. HortScience, 35(7): 1355-1356. https://doi.org/10.21273/HORTSCI.35.7.1355
  • Grange, S., Leskovar, D. I., Pike, L. M., Cobb, B. G. (2003). Seedcoat Structure and Oxygen-Enhanced Environments Affect Germination of Triploid Watermelon. Journal of the American Society for Horticultural Science, 128(2): 253-259. https://doi.org/10.21273/JASHS.128.2.0253
  • Hassan, J., Miyajima, I., Ozaki, Y., Mizunoe, Y., Sakai, K., Zaland, W. (2020). Tetraploid Induction by Colchicine Treatment and Crossing with a Diploid Reveals Less-Seeded Fruit Production in Pointed Gourd (Trichosanthes dioica Roxb.). Plants, 9(3): 370. https://doi.org/10.3390/plants9030370
  • Henderson, W. R. (1977). Effect of Cultivar, Polyploidy and Reciprocal Hybridization on Characters İmportant in Breeding Triploid Seedless Watermelon Hybrids. Journal of The American Society For Horticultural Science, 102(3): 293-297.
  • Hussein, S. (2017). The Effects of Different Rootstocks on Seed Yield and Quality in Seedless Watermelon Seed Production in Greenhouse. Çukurova University Institute of Science, Department of Horticulture, Master Thesis, Adana,65 s.
  • Inan, S. (2007). Obtaining Tetraploid Plants from Watermelon (Citrullus Lanatus (Thunb.) Matsum and Nakai) by in vivo and in vitro Methods. Çukurova University, Institute of Science, Department of Horticulture, Master Thesis, Adana, 80 p.
  • ISTA (International Rules for Seed Testing), Full Issue. (2018). i–19-8 (298) https://doi.org/10.15258/istarules.
  • Jaskani, M.J., Khan, I.A. 2000. Characterization of Interploid Hybrids of Kinnow Mandarin. In Proceedings of International Society of Citriculture, 1: 165-166.
  • Jaskani, M. J., Kwon, S. W., Koh, G. C., Huh, Y. C., Ko, B. R. (2004). Induction and Characterization of Tetraploid Watermelon. Horticulture Envıronment and Bıotechnology, 45(2): 60-65.
  • Jaskani, M. J., Kwon, S. W., Kim, D. H. (2005). Comparative Study on Vegetative, Reproductive and Qualitative Traits of Seven Diploid and Tetraploid Watermelon Lines. Euphytica, 145(3): 259-268. https://doi.org/10.1007/s10681-005-1644-x
  • Jaskani, M. J., Kwon, S. W., Kin, D. H. (2005). Flow Cytometry of DNA Contents of Colchicine Treated Watermelon as a Ploidy Screening Method at MI Stage. Pakistan Journal of Botany, 37(3): 685.
  • Jaskani, M. J., Kwon, S. W., Kim, D. H., Abbas, H. (2006). Seed Treatments and Orientation Affects Germination and Seedling Emergence in Tetraploid Watermelon. Pakistan Journal of Botany, 38(1): 89.
  • Karabıyık, Ş., M.A. Sarıdaş, S. Eti, and S. Paydaş Kargı. (2017). The Effects of Boron and Calcium Applications on Pollen Characteristics and Distorted Fruit Formation in Sweet ann Strawberry Varieties. Bahçe 46(1):271–279.
  • Kihara, H. (1951). Triploid Watermelons. Proc. Amer. Soc. Hort. Sci.,58: 217-230.
  • Koh, G. C. (2002). Tetraploid Production of Moodeungsan Watermelon. Journal-Korean Socıety for Hortıcultural Scıence, 43(6): 671-676.
  • Kombo, M. D., (2017). Rootstock Effects on Seed Yield and Quality in Watermelon. Cukurova University Institute of Natural and Applied Sciences Deparment of Horticulture PhD Thesis, 97 p.
  • Krug, M.G.Z., Stipp, L.C.L., Rodriguez, A. P. M., Mendes, B.M.J. (2005). In vitro Organogenesis in Watermelon Cotyledons. Pesquisa Agropecuaria Brasileira, 40(9): 861-865.
  • La Porta, N., Roselli, G. (1991). Relationship Between Pollen Germination in vitro and Fluorochromatic Reaction in Cherry Clone F12/1 (Prunus avium L.) and Some of its Mutants. Journal of horticultural science, 66(2): 171-175. https://doi.org/10.1080/00221589.1991.11516141
  • Li, L., He, Y., Lu, K. (2002). Chemical Induction Mutation in Yellow Peel Watermelon (Citrullus Lanatus) and Its Application to Tetraploid Watermelon Breeding. Chine Vegetables, 3: 8-11.
  • Lower, R. L., Johnson, K. W. (1969). Observations on Sterility of İnduced Autotetraploid Watermelons. Proc Amer Soc Hort Sci., 94:367-369
  • Nepi, M., Pacini, E. (1993). Pollination, Pollen Viability and Pistil Receptivity in Cucurbita pepo. Annals of Botany, 72(6):527-536. https://doi.org/10.1006/anbo.1993.1141
  • Norrmann, G. A., Quarín, C. L., Keeler, K. H. (1997). Evolutionary İmplications of Meiotic Chromosome Behavior, Reproductive Biology, and Hybridization in 6x and 9x Cytotypes of Andropogon Gerardii (Poaceae). American Journal of Botany, 84(2): 201-207. https://doi.org/10.2307/2446081
  • Norton, J.D. (1966). Testing of Plum Pollen Viability with Tetrazolium Salts. Proc. J. Am. Soc. Hortic. 89:132–134.
  • Rhodes, B., Zhang, X. 2000. Hybrid Seed Production in Watermelon. Journal of new seeds, 1(3-4): 69-88. https://doi.org/10.1300/J153v01n03_03
  • Sari, N., Abak, K., Pitrat, M. (1999). Comparison of Ploidy Level Screening Methods in Watermelon: Citrullus Lanatus (Thunb.) Matsum. and Nakai. Scientia Horticulturae, 82(3-4): 265-277. https://doi.org/10.1016/S0304-4238(99)00077-1
  • Shivanna, K.R. and Rangaswamy, N.S. (1992). Pollen Biology. Springer-Verlag Berlin Heidelberg, 119 sayfa.
  • Soltis, D. E., Misra, B. B., Shan, S., Chen, S., Soltis, P. S. (2016). Polyploidy and The Proteome. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1864 (8): 896-907. https://doi.org/10.1016/j.bbapap.2016.03.010
  • Suying, T., Xiuqiang, H., Jiwei, L., Wenge, L. (1993). Raising The Frequency of İnducing Tetraploid Watermelon by Treating of Colchicine. In International Symposium on Cultivar Improvement of Horticultural Crops. Part 1: Vegetable Crops 402: 18-22. Doi: 10.17660/ActaHortic.1995.402.2
  • Sensoy, A. S., Ercan, N., Ayar, F., Temirkaynak, M. (2003). Determination of Some Morphological Characteristics and Viability of Pollens in Some Vegetable Species in Cucurbitaceae Family. Journal of Akdeniz University Faculty of Agriculture, 16(1): 1-6.
  • Simşek, I., Göcmen, M., Sarı, N. (2013). Determination of Morphological and Cytological Differences in Diploid and Tetraploid Watermelon Plants., 30(1): 1-14. ISSN : 2149-2182
  • Zhang, X. (2010). Tetraploid Watermelon Producing Small Fruits. U.S. Patent No 7,652,193. https://patents.google.com/patent/US7652193B2/en
  • Zhang, N., Bao, Y., Xie, Z., Huang, X., Sun, Y., Feng, G., Chen, W. (2019). Efficient Characterization of Tetraploid Watermelon. Plants, 8(10): 419. https://doi.org/10.3390/plants8100419
Year 2022, Volume: 6 Issue: 4, 704 - 710, 30.12.2022
https://doi.org/10.31015/jaefs.2022.4.26

Abstract

Project Number

FLY-2018-10957

References

  • Andrus, C. F. (1971). Production of Seedless Watermelons, 1424. US Department of Agriculture. URL: https://play.google.com/books/reader?id=qjKpyMSzPJQC&pg=GBS.PP6&hl=tr&lr=&printsec=frontcover
  • Arumuganathan, K., Earle, E. D. (1991). Estimation of Nuclear DNA Content of Plants by Flow Cytometry. Plant Molecular Biology Reporter, 9(3): 229-241. https://doi.org/10.1007/BF02672073
  • Blakeslee, A. F., Avery, A. G. (1937). Methods of Inducing Doubling of Chromosomes in Plants: by Treatment With Colchicine. Journal of Heredity, 28 (12): 393-411. https://doi.org/10.1093/oxfordjournals.jhered.a104294
  • Chopra, V. L., Swamınathan, M. S. (1960). Induction of Polyploidy in Watermelon. Proceedings of the Indian Academy of Sciences-Section B. Springer India, 51(2), p. 57-65. https://doi.org/10.1007/BF03050500
  • Compton, M. E., Gray, D. J. (1991). Shoot Organogenesis on Cotyledons of Watermelon. Horticultural Science, 26: 772.
  • Compton, M .E., Gray, D .J . (1994). Adventitious Shoot Organogenesis and Plant Regeneration from Cotyledons of Tetraploid Watermelon. HortScience, 29: 211-213. https://doi.org/10.21273/HORTSCI.29.3.211
  • Compton, M. E., Gray, D. J., Elmstrom, G. W. (1996). Identification of Tetraploid Regenerants from Cotyledons of Diploid Watermelon Cultured in vitro. Euphytica, 87(3): 165-172. https://doi.org/10.1007/BF00023744
  • Dolezel, J. (1998). Flow Cytometry, its Application and Potential for Plant Breeding. Current Topics in Plant Cytogenetics Related to Plant Improvement (Ed.): T. Lelley. Universitätsverlag, Vienna, 80-90.
  • Elçi, Ş. (1982). Observations and Research Methods in Cytogenetics. Fırat University Faculty of Arts and Sciences Publications, Biology:3, Malatya. 159.
  • Eti, S. (1991). Determination of Pollen Viability and Germination Capability of Some Fruit Species and Cultivars by Different in vitro Tests. J. Agric. Fac. Cukurova. Univ. 6:69–80.
  • Fahleson, J., Dixelius, J., Sundberg, E., Glimelius, K. (1988). Correlation Between Flow Cytometric Determination of Nuclear DNA Content and Chromosome Number in Somatic Hybrids within Brassicaceae. Plant Cell Reports, 7(1): 74-77. https://doi.org/10.1007/BF00272983
  • Freeman, J. H., Olson, S. M. and Kabelka, E. A. (2008). Pollen Viability of Selected Diploid Watermelon Pollenizer Cultivars. HortScience, 43(1), 274-275.
  • Godfree, R. C., Marshall, D. J., Young, A. G., Miller, C. H., Mathews, S. (2017). Empirical Evidence of Fixed and Homeostatic Patterns of Polyploid Advantage in a Keystone Grass Exposed to Drought and Heat Stress. Royal Society Open Science, 4(11): 170934. https://doi.org/10.1098/rsos.170934
  • Gok, P., Yetisir, H., Solmaz, I., Sari, N., Eti, S. (2005), September. Pollen Viability and Germination Rates of 45 Watermelon Genotypes. In III International Symposium on Cucurbits 731, pp. 99-102. Doi: 10.17660/ActaHortic.2007.731.13
  • Grange, S. L., Leskovar, D. I., Pike, L. M., Cobb, B. G. (2000). Excess Moisture and Seedcoat Nicking İnfluence Germination of Triploid Watermelon. HortScience, 35(7): 1355-1356. https://doi.org/10.21273/HORTSCI.35.7.1355
  • Grange, S., Leskovar, D. I., Pike, L. M., Cobb, B. G. (2003). Seedcoat Structure and Oxygen-Enhanced Environments Affect Germination of Triploid Watermelon. Journal of the American Society for Horticultural Science, 128(2): 253-259. https://doi.org/10.21273/JASHS.128.2.0253
  • Hassan, J., Miyajima, I., Ozaki, Y., Mizunoe, Y., Sakai, K., Zaland, W. (2020). Tetraploid Induction by Colchicine Treatment and Crossing with a Diploid Reveals Less-Seeded Fruit Production in Pointed Gourd (Trichosanthes dioica Roxb.). Plants, 9(3): 370. https://doi.org/10.3390/plants9030370
  • Henderson, W. R. (1977). Effect of Cultivar, Polyploidy and Reciprocal Hybridization on Characters İmportant in Breeding Triploid Seedless Watermelon Hybrids. Journal of The American Society For Horticultural Science, 102(3): 293-297.
  • Hussein, S. (2017). The Effects of Different Rootstocks on Seed Yield and Quality in Seedless Watermelon Seed Production in Greenhouse. Çukurova University Institute of Science, Department of Horticulture, Master Thesis, Adana,65 s.
  • Inan, S. (2007). Obtaining Tetraploid Plants from Watermelon (Citrullus Lanatus (Thunb.) Matsum and Nakai) by in vivo and in vitro Methods. Çukurova University, Institute of Science, Department of Horticulture, Master Thesis, Adana, 80 p.
  • ISTA (International Rules for Seed Testing), Full Issue. (2018). i–19-8 (298) https://doi.org/10.15258/istarules.
  • Jaskani, M.J., Khan, I.A. 2000. Characterization of Interploid Hybrids of Kinnow Mandarin. In Proceedings of International Society of Citriculture, 1: 165-166.
  • Jaskani, M. J., Kwon, S. W., Koh, G. C., Huh, Y. C., Ko, B. R. (2004). Induction and Characterization of Tetraploid Watermelon. Horticulture Envıronment and Bıotechnology, 45(2): 60-65.
  • Jaskani, M. J., Kwon, S. W., Kim, D. H. (2005). Comparative Study on Vegetative, Reproductive and Qualitative Traits of Seven Diploid and Tetraploid Watermelon Lines. Euphytica, 145(3): 259-268. https://doi.org/10.1007/s10681-005-1644-x
  • Jaskani, M. J., Kwon, S. W., Kin, D. H. (2005). Flow Cytometry of DNA Contents of Colchicine Treated Watermelon as a Ploidy Screening Method at MI Stage. Pakistan Journal of Botany, 37(3): 685.
  • Jaskani, M. J., Kwon, S. W., Kim, D. H., Abbas, H. (2006). Seed Treatments and Orientation Affects Germination and Seedling Emergence in Tetraploid Watermelon. Pakistan Journal of Botany, 38(1): 89.
  • Karabıyık, Ş., M.A. Sarıdaş, S. Eti, and S. Paydaş Kargı. (2017). The Effects of Boron and Calcium Applications on Pollen Characteristics and Distorted Fruit Formation in Sweet ann Strawberry Varieties. Bahçe 46(1):271–279.
  • Kihara, H. (1951). Triploid Watermelons. Proc. Amer. Soc. Hort. Sci.,58: 217-230.
  • Koh, G. C. (2002). Tetraploid Production of Moodeungsan Watermelon. Journal-Korean Socıety for Hortıcultural Scıence, 43(6): 671-676.
  • Kombo, M. D., (2017). Rootstock Effects on Seed Yield and Quality in Watermelon. Cukurova University Institute of Natural and Applied Sciences Deparment of Horticulture PhD Thesis, 97 p.
  • Krug, M.G.Z., Stipp, L.C.L., Rodriguez, A. P. M., Mendes, B.M.J. (2005). In vitro Organogenesis in Watermelon Cotyledons. Pesquisa Agropecuaria Brasileira, 40(9): 861-865.
  • La Porta, N., Roselli, G. (1991). Relationship Between Pollen Germination in vitro and Fluorochromatic Reaction in Cherry Clone F12/1 (Prunus avium L.) and Some of its Mutants. Journal of horticultural science, 66(2): 171-175. https://doi.org/10.1080/00221589.1991.11516141
  • Li, L., He, Y., Lu, K. (2002). Chemical Induction Mutation in Yellow Peel Watermelon (Citrullus Lanatus) and Its Application to Tetraploid Watermelon Breeding. Chine Vegetables, 3: 8-11.
  • Lower, R. L., Johnson, K. W. (1969). Observations on Sterility of İnduced Autotetraploid Watermelons. Proc Amer Soc Hort Sci., 94:367-369
  • Nepi, M., Pacini, E. (1993). Pollination, Pollen Viability and Pistil Receptivity in Cucurbita pepo. Annals of Botany, 72(6):527-536. https://doi.org/10.1006/anbo.1993.1141
  • Norrmann, G. A., Quarín, C. L., Keeler, K. H. (1997). Evolutionary İmplications of Meiotic Chromosome Behavior, Reproductive Biology, and Hybridization in 6x and 9x Cytotypes of Andropogon Gerardii (Poaceae). American Journal of Botany, 84(2): 201-207. https://doi.org/10.2307/2446081
  • Norton, J.D. (1966). Testing of Plum Pollen Viability with Tetrazolium Salts. Proc. J. Am. Soc. Hortic. 89:132–134.
  • Rhodes, B., Zhang, X. 2000. Hybrid Seed Production in Watermelon. Journal of new seeds, 1(3-4): 69-88. https://doi.org/10.1300/J153v01n03_03
  • Sari, N., Abak, K., Pitrat, M. (1999). Comparison of Ploidy Level Screening Methods in Watermelon: Citrullus Lanatus (Thunb.) Matsum. and Nakai. Scientia Horticulturae, 82(3-4): 265-277. https://doi.org/10.1016/S0304-4238(99)00077-1
  • Shivanna, K.R. and Rangaswamy, N.S. (1992). Pollen Biology. Springer-Verlag Berlin Heidelberg, 119 sayfa.
  • Soltis, D. E., Misra, B. B., Shan, S., Chen, S., Soltis, P. S. (2016). Polyploidy and The Proteome. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1864 (8): 896-907. https://doi.org/10.1016/j.bbapap.2016.03.010
  • Suying, T., Xiuqiang, H., Jiwei, L., Wenge, L. (1993). Raising The Frequency of İnducing Tetraploid Watermelon by Treating of Colchicine. In International Symposium on Cultivar Improvement of Horticultural Crops. Part 1: Vegetable Crops 402: 18-22. Doi: 10.17660/ActaHortic.1995.402.2
  • Sensoy, A. S., Ercan, N., Ayar, F., Temirkaynak, M. (2003). Determination of Some Morphological Characteristics and Viability of Pollens in Some Vegetable Species in Cucurbitaceae Family. Journal of Akdeniz University Faculty of Agriculture, 16(1): 1-6.
  • Simşek, I., Göcmen, M., Sarı, N. (2013). Determination of Morphological and Cytological Differences in Diploid and Tetraploid Watermelon Plants., 30(1): 1-14. ISSN : 2149-2182
  • Zhang, X. (2010). Tetraploid Watermelon Producing Small Fruits. U.S. Patent No 7,652,193. https://patents.google.com/patent/US7652193B2/en
  • Zhang, N., Bao, Y., Xie, Z., Huang, X., Sun, Y., Feng, G., Chen, W. (2019). Efficient Characterization of Tetraploid Watermelon. Plants, 8(10): 419. https://doi.org/10.3390/plants8100419
There are 46 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Research Articles
Authors

Pınar Adıgüzel 0000-0001-7971-2518

İlknur Solmaz 0000-0003-2996-0286

Şenay Karabıyık This is me 0000-0001-8579-6228

Nebahat Sarı 0000-0001-7112-4279

Project Number FLY-2018-10957
Publication Date December 30, 2022
Submission Date November 1, 2022
Acceptance Date December 15, 2022
Published in Issue Year 2022 Volume: 6 Issue: 4

Cite

APA Adıgüzel, P., Solmaz, İ., Karabıyık, Ş., Sarı, N. (2022). Comparison on flower, fruit and seed characteristics of tetraploid and diploid watermelons (Citrullus lanatus Thunb. Matsum. and Nakai). International Journal of Agriculture Environment and Food Sciences, 6(4), 704-710. https://doi.org/10.31015/jaefs.2022.4.26


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27