Research Article
BibTex RIS Cite

Investigation of generative high temperature tolerances of some cotton (Gossypium hirsutum L.) varieties

Year 2023, Volume: 7 Issue: 2, 284 - 291, 29.06.2023
https://doi.org/10.31015/jaefs.2023.2.5

Abstract

The potential of cotton genotypes to form buds, flowers and bolls is not sufficient to achieve cotton seed yield targets. Despite global warming buds, flowers and bolls that mature in cotton plants must be successfully transformed into products. However, this is related to the generative tolerance of the genotype to high temperature. In study aims to scan the negative effects of high temperature stress on the generative development on cotton varieties registered in Turkey in the last 10 years. The experiment was established in the GAP International Agricultural Research and Training Center trial field in 2020, with 4 blocks according to the Augmented design. Six standards (Tamcot Spnhix, SJU86, AGC208, ST468, ST474, Carmen) and 88 cotton varieties registered in Turkey National Variety List were used as trial material. In this study, high temperature pollen vitality stress index (HTPVSI) and high temperature shedding stress index (HTSSI) properties were investigated. According to the results of the experiments we conducted, it was determined that the HTPVSI values ranged between 0.17-1.26, the HTPVSI averages of the standards were 1.17, and the HTPVSI averages of the genotypes were 0.99. It has been determined that HTSSI values vary between 0.30-1.71. It was determined that the mean HTSSI values of the standards were 0.89 and the genotypes were 1.00. It was determined that there was a wide variation among the genotypes screened for generatively high temperature stress. Using HTSSI and HTPVSI features is recommended as a selection criterion since it is an important trait for screening genotypes in terms of tolerance or sensitivity to generative high temperature stress in cotton plants. In our study, the results were not similar to each other in terms of HTPVSI and HTSSI traits, due to the low share of flower shedding after applying HTSP (High Temperature Shock Practice: 96 hours of uninterrupted exposure to high temperature during generative periods) in the shedding rate. When the examined HTSSI and HTPVSI traits were examined together, no cotton genotypes were found to be generatively tolerant. In terms of sensitivity of genotypes to high temperature, 18 cotton genotypes were found in the medium tolerant group and 25 cotton genotypes were found in the sensitive group.

Supporting Institution

Dicle University Scientific Research Projects Coordination Unit and General Directorate of Agricultural Research and Policies

Project Number

ZİRAAT.20.007 and TAGEM/TBAD/A/20/A7/P5/1536.

Thanks

This study was produced from the Ph.D. thesis titled " Determination of DNA Markers Associated with High Temperature Stress Tolerant / Strength in Cotton (G. hirsutum L.)" conducted by Yusuf Güzel DEMİRAY in the Department of Field Crops, Institute of Science and Technology, Dicle University. It was supported by Dicle University Scientific Research Projects Coordination Unit with project number ZİRAAT.20.007 and by the General Directorate of Agricultural Research and Policies with project number TAGEM/TBAD/A/20/A7/P5/1536. We thank the Scientific Research Coordination Unit and the General Directorate of Agricultural Research and Policies for their support.

References

  • Aladizgeh F.M., Najeeb U., Hamzelou S., Pascovici D., Amirkhani A., Tan D.K.Y., Mirzaei M., Paul A. Haynes P.A. and Atwell1 B.J. (2021). Pollen development in cotton (Gossypium hirsutum L.) is highly sensitive to heat exposure during the tetrad stage. Jul;44(7):2150-2166. https://doi.org/10.1111/pce.13908
  • Alas E. (2022). Investigations on high temperature stress tolerance of Diyarbakır local eggplant genotypes. Ege University Institute of Science, Department of Horticulture, Doctoral Thesis, İzmir, 307p.
  • Anonim, (2022). Bitkisel Üretim Genel Müdürlüğü Tarla ve Bahçe Bitkileri Daire Başkanlığı Ürün Masalları- Pamuk Bülteni, Ocak 2022, sayı, 19 s:4. (in Turkish).
  • Aytaç, S., Başbağ, S., Arslanoğlu, F., Ekinci, R., Ayan, A.K. (2020). Lif Bitkileri Üretiminde Mevcut Durum ve Gelecek, Türkiye Ziraat Mühendisliği IX. Teknik Kongresi, 13-17 Ocak 2020, Ankara, TMMOB Ziraat Mühendisleri Odası, Bildiri Kitabı-1, ISBN-978-605-01-1321-1, Ankara Üniversitesi Basın Yayın Müdürlüğü, S: 463-491. (in Turkish).
  • Barrow J.R. (1983). Comparisons Among Pollen Viability Measurement Methods in Cotton, USDA-ARS, in cooperation with the New Mexico Agric. Exp. Sm., Las Cruces, NM 88003. Received 30 Aug. 1982. Research geneticist, USDA-ARS, Cotton Breeding, Las Cruces, NM 88003, crop science, vol. 23, July-august 1983, https://doi.org/10.2135/cropsci1983.0011183X002300040031x
  • Bibi A, Oosterhuis D, Gonias E. (2008). Photosynthesis, the quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. J. Cotton Sci. 12: 150-159.
  • Demiray, Y.G., Ekinci, R., and Yaşar, M. (2019). Characterization of F6 Generation Cotton Genotypes Developed by Double Cross Hybrid Method. International Agricultural Congress of Muş Plain, Proceedıng Book Sayfa: 89-94. ISBN: 978-605-51370-69. 24-27. September 2019 Muş, Türkiye.
  • Dhatt, A. S. and Kaur, M. (2017). Genotypic response to heat stress tolerance in brinjal (Solanum melongena L.), Vegetable Science, 44(2), 8-11.
  • Ekinci R, Başbag S, Karademir E, Karademir Ç. (2012). Determination of Heat Tolerance Levels of Some Cotton Varieties and Lines Exist in Genetic Stock within Turkey, TÜBİTAK TOVAG Project p156, Project No: 109O339.
  • Firon, N., Peet, M.M., Pharr, D.M., Zamski, E., Rosenfeld, K., Althan, L. and Pressman, E. (2006). Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions, Scientia Horticulture, 109, 212-217.
  • Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5), 897-912.
  • Foolad, M.R., (2005). Breeding for abiotic stress tolerances in tomato, In: Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches (eds. M. Ashraf and P.J.C. Harris), New York: The Haworth Press Inc, 613–684.
  • Hatfield JL, Boote KJ, Kimball BA, Wolf DW, Ort D, Izaurralde RC, Thomson AM, Morgan JA, Polley HW, Fay PA, Mader T, Hahn G.L. (2008) Agriculture. In: The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC, USA, p 362.
  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D. (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370.
  • ITC (2011). Cotton and climate change impacts and options to mitigate and adapt. Technical Paper. International Trade Centre (ITC), Geneva: Doc. No. MAR-11-200. E. pp. 32.
  • Kakani VG, Reddy KR, Koti S, Wallace TP, Prasad PV, Reddy VR, Zhao, D. (2005) Differences in invitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot 96:59–67.
  • Karademir, E. (2012). Screening cotton varieties (G. hirsutum L.) for heat tolerance under field conditions. Afr. J. Agric. Res. 7: 6335-6342.
  • Khan, N. U. (2013). Diallel analysis of cotton leaf curl virus (CLCuV) disease, earliness, yield and fiber traits under CLCuV infestation in upland cotton. Australian journal of crop science, 7(12), 1955-1966.
  • Khanna-Chopra, R., and Viswanathan C., (1999). Evaluation of heat stress tolerance in irrigated environment of T-aestivum and related species. I. Stability in yield and yield components. Euphytica 106:169-180
  • Li, Z. K., Chen, B., Li, X. X., Wang, J. P., Zhang, Y., Wang, X. F., ... & Ma, Z. Y. (2019). A newly identified cluster of glutathione S‐transferase genes provides Verticillium wilt resistance in cotton. The Plant Journal, 98(2), 213-227.
  • Loka DA, Oosterhuis D.M. (2016). Effect of high night temperatures during anthesis on cotton (G. hirsutum L.) pistil and leaf physiology and biochemistry. Aust. J. Crop Sci. 10(5): 741-748.
  • Luo Q. (2011) Temperature thresholds and crop production: A review. Clim Chang 109:583–598
  • Ma Z, He S, Wang X, et al. (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet. 2018; 50(6):803–13. https://doi.org/10.1038/s41588-018-0119-7
  • Maheswari, M., Yadav, S.K., Shanker, A.K., Kumar, M.A. and Venkateswarlu, B. (2012). Overview of plant stresses: mechanisms, adaptations and research pursuit. In: Crop Stress and Its Management: Perspectives and Strategies (Eds. Venkateswarlu, A.K., Shanker, C. Shanker and M. Maheswari), 1–18. Dordrecht, The Netherlands: Springer.
  • McCarty JC, Wu J, Jenkins J.N. (2008) Genetic association of cotton yield with its component traits in derived primitive accessions crossed by elite upland cultivars using the conditional ADAA genetic model. Euphytica. 2008;161(3):337–52. https://doi.org/10.1007/s10681-007-9562-8
  • Nasim W, Belhouchette H, Tariq M, Fahad S, Hammad HM, Mubeen M, Munis MF, Chaudhary HJ, Khan I, Mahmood F, Abbas T, Rasul F, Nadeem M, Bajwa AA, Ullah N, Alghabari F, Saud S, Mubarak H, Ahmad R. (2016) Correlation studies on nitrogen for sunflower crop across the agroclimatic variability. Environ Sci Pollut Res 23:3658–3670.
  • Norton, J.D. (1966). Testing of plum pollen viability with tetrazolium salts. Proc. Amer. Soc. Hort. Sci., 89: 132-134
  • Oosterhuis D.M. (2009) Summaries of Arkansas cotton research. Arkansas Agricultural Experiment Station, University of Arkansas Division of Agriculture, Fayetteville. P: 225.
  • Pettigrew W. (2008). The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Sci. 48: 278-285.
  • Rawson H. M. (1992) Plant responses to temperature under conditions of elevated CO2. Aust J Bot 40 (5):473–490.
  • Reddy KR, Davidonis GH, Johnson AS, Vinyard B.T. (1999) Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agron J 91:851–858.
  • Reddy KR, Hodges HF, McKinion J.M. (1997). Modeling temperature effects on cotton internode and leaf growth. Crop Sci. 37: 503-509.
  • Reddy, K.R., Hodges, H.F., and McKinion, J.M. (1995). Carbondioxide and temperature effects on Pima cotton development. Agron. J. 87(5):820-826.
  • Reddy, K.R., Hodges, H.F., McKinion, J.M., and Wall, G.A. (1992). Temperature effect on Pima cotton growth and development. Agron. J. 84:237-243.
  • Roger G.P. (1985). Augmented Designs for Preliminary Yield Trials (Revised) Oregon State University, Corvallis, USA, RACHIS Vol. 4, No:1 Jan 1985 p:27-32.
  • Sato, S., Peet, M.M. and Thomas, J.F. (2002). Determining critical pre and post anthesis periods and physiological processes in Lycopersicon esculentum Mill, exposed to moderately elevated temperatures, Journal of Experimental Botany, 53(371), 1187-1195.
  • Singh RP, Prasad PV, Sunita K, Giri S, Reddy K.R. (2007). Influence of high temperature and breeding for heat tolerance in cotton: A review. Adv. Agron. 93: 313-385.
  • Song G., Wang M., Zeng B., Zhang J., Jiang C., Hu O., Geng G., Tang C. (2015). Anther response to high temperature stress during development and pollen thermotolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton. Springer-Verlag Berlin Heidelberg 5 November 2014 / Accepted: 3 February 2015. https://doi.org/10.1007/s00425-015-2259-7
  • TUIK (2022). Türkiye İstatistik Kurumu, https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (in Turkish)
  • Wahid A, Gelani S, Ashraf M, Foolad M.R. (2007). Heat tolerance in plants: an overview. Environ. Exp. Bot. 61: 199-223.
  • Wang M, Tu L, Lin M, et al. (2017) Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat gen. 2017;49(4):579–87. https://doi.org/10.1038/ng.3807
  • Wullschleger SD, Oosterhuis, D.M. (1990). Photosynthetic carbon production and use by developing cotton leaves and bolls. Crop Sci 30:1259–1264
  • Yaşar, M. (2023). Yield and fiber quality traits of cotton (Gossypium hirsutum L.) cultivars analyzed by biplot method. Journal of King Saud University-Science, 35(4), 102632.
  • Yaşar, M. (2022). Evaluation of Some New Cotton Genotypes Against Verticillium Disease (Verticillium dahliae Kled.)”. ISPEC Journal of Agricultural Sciences, 6(1), 110–117.
  • Yaşar, M., Başbağ, S., Ekinci, R. (2019). Determination effects of topping at different times on yield and yield components in cotton. Harran Journal of Agricultural and Food Sciences, 23(1), 52-59. https://doi.org/10.29050/harranziraat.422916
  • Yfoulis A, Fasoulas A. (1978). Role of minimum and maximum environmental temperature on maturation period of the cotton boll. Agron J 70:421–425.
  • Zhao D, Reddy KR, Kakani VG, Koti S, Gao W. (2005). Physiological causes of cotton fruit abscission under conditions of high temperature and enhanced ultraviolet-B radiation. Physiology Plant 124:189–199.

Generatif Olarak Yüksek Sıcaklığa Karşı Bazı Pamuk (G.hirsutum L.) Çeşitlerin Tolerantlıklarının İncelenmesi

Year 2023, Volume: 7 Issue: 2, 284 - 291, 29.06.2023
https://doi.org/10.31015/jaefs.2023.2.5

Abstract

Pamuk genotiplerinin tomurcuk, çiçek ve koza oluşturma potansiyeli, pamuk kütlü verim hedeflerine ulaşmak için yeterli değildir. Küresel ısınmaya rağmen pamuk bitkisinde olgunlaşan tarak, çiçek ve kozaların başarılı bir şekilde ürüne dönüşmesi için genotipin yüksek sıcaklığa generatif olarak toleranslılığıyla ilişkilidir. Bu çalışmanın amacı, yüksek sıcaklık stresinin pamuk bitkisinin generatif gelişime olan zararlı etkilerinin ülkemizde son 10 yılda tescil edilen pamuk çeşitlerinde taranmasıdır. Deneme, 2020 yılında GAP Uluslararası Tarımsal Araştırma ve Eğitim Merkezi Müdürlüğü deneme alanında, Augmented deneme desenine göre 4 bloklu olarak kurulmuştur. Altı adet standart (Tamcot Spnhix, SJU86, AGC208, STV468, ST474, Carmen) pamuk genotipi ile milli çeşit listesinde kayıtlı 88 adet pamuk çeşidi deneme materyali olarak kullanılmıştır. Bu çalışmada, yüksek sıcaklık polen canlılık stres indeksi (YSPCSI) ile yüksek sıcaklık silkme stres indeks (YSSSI) özellikleri incelenmiştir. Yürütmüş olduğumuz deneme sonuçlarına göre, YSPCSI değerlerinin 0.17-1.26 arasında değişim gösterdiği, standartların YSPCSI ortalamalarının 1.17, genotiplerin YSPCSI ortalamalarının ise 0.99 olduğu saptanmıştır. Yüksek sıcaklık silkme stres indeks (YSSSI) değerlerinin 0.30-1.71 arasında değişim gösterdiği; standartların ortalama YSSSI değerlerinin 0.89, genotiplerin ise 1.00 olduğu saptanmıştır. Generatif olarak yüksek sıcaklık stresi için taranan pamuk genotipler arasında geniş bir varyasyon olduğu belirlenmiştir. YSSSI ve YSPCSI özellikleri kullanılarak pamuk bitkisinde generatif olarak yüksek sıcaklık stresine karşı tolerantlık veya hassasiyetlik konusunda genotiplerin taranması için önemli bir özellik olduğundan seçim kriteri olarak kullanılması tavsiye edilmektedir. Çalışmamızda, uygulanan YSŞU (generatif dönemlerinde 96 saat kesintisiz yüksek sıcaklığa maruz kalması) sonrası oluşan çiçek dökülmesinin, silkme oranı içerisindeki payının düşük olmasından kaynaklı, YSPCSI ve YSSSI özellikleri bakımından sonuçlar birbiri ile benzerlik göstermemiştir. Araştırmaya konu olan YSSSI ve YSPCSI özellikleri beraber irdelendiğinde, generatif olarak, tolerant gruba giren herhangi bir pamuk genotipine rastlanmamıştır. Generatif olarak, orta tolerant gruba 18 adet, hassas gruba ise 25 adet pamuk genotipinin girdiği saptanmıştır.

Project Number

ZİRAAT.20.007 and TAGEM/TBAD/A/20/A7/P5/1536.

References

  • Aladizgeh F.M., Najeeb U., Hamzelou S., Pascovici D., Amirkhani A., Tan D.K.Y., Mirzaei M., Paul A. Haynes P.A. and Atwell1 B.J. (2021). Pollen development in cotton (Gossypium hirsutum L.) is highly sensitive to heat exposure during the tetrad stage. Jul;44(7):2150-2166. https://doi.org/10.1111/pce.13908
  • Alas E. (2022). Investigations on high temperature stress tolerance of Diyarbakır local eggplant genotypes. Ege University Institute of Science, Department of Horticulture, Doctoral Thesis, İzmir, 307p.
  • Anonim, (2022). Bitkisel Üretim Genel Müdürlüğü Tarla ve Bahçe Bitkileri Daire Başkanlığı Ürün Masalları- Pamuk Bülteni, Ocak 2022, sayı, 19 s:4. (in Turkish).
  • Aytaç, S., Başbağ, S., Arslanoğlu, F., Ekinci, R., Ayan, A.K. (2020). Lif Bitkileri Üretiminde Mevcut Durum ve Gelecek, Türkiye Ziraat Mühendisliği IX. Teknik Kongresi, 13-17 Ocak 2020, Ankara, TMMOB Ziraat Mühendisleri Odası, Bildiri Kitabı-1, ISBN-978-605-01-1321-1, Ankara Üniversitesi Basın Yayın Müdürlüğü, S: 463-491. (in Turkish).
  • Barrow J.R. (1983). Comparisons Among Pollen Viability Measurement Methods in Cotton, USDA-ARS, in cooperation with the New Mexico Agric. Exp. Sm., Las Cruces, NM 88003. Received 30 Aug. 1982. Research geneticist, USDA-ARS, Cotton Breeding, Las Cruces, NM 88003, crop science, vol. 23, July-august 1983, https://doi.org/10.2135/cropsci1983.0011183X002300040031x
  • Bibi A, Oosterhuis D, Gonias E. (2008). Photosynthesis, the quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. J. Cotton Sci. 12: 150-159.
  • Demiray, Y.G., Ekinci, R., and Yaşar, M. (2019). Characterization of F6 Generation Cotton Genotypes Developed by Double Cross Hybrid Method. International Agricultural Congress of Muş Plain, Proceedıng Book Sayfa: 89-94. ISBN: 978-605-51370-69. 24-27. September 2019 Muş, Türkiye.
  • Dhatt, A. S. and Kaur, M. (2017). Genotypic response to heat stress tolerance in brinjal (Solanum melongena L.), Vegetable Science, 44(2), 8-11.
  • Ekinci R, Başbag S, Karademir E, Karademir Ç. (2012). Determination of Heat Tolerance Levels of Some Cotton Varieties and Lines Exist in Genetic Stock within Turkey, TÜBİTAK TOVAG Project p156, Project No: 109O339.
  • Firon, N., Peet, M.M., Pharr, D.M., Zamski, E., Rosenfeld, K., Althan, L. and Pressman, E. (2006). Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions, Scientia Horticulture, 109, 212-217.
  • Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5), 897-912.
  • Foolad, M.R., (2005). Breeding for abiotic stress tolerances in tomato, In: Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches (eds. M. Ashraf and P.J.C. Harris), New York: The Haworth Press Inc, 613–684.
  • Hatfield JL, Boote KJ, Kimball BA, Wolf DW, Ort D, Izaurralde RC, Thomson AM, Morgan JA, Polley HW, Fay PA, Mader T, Hahn G.L. (2008) Agriculture. In: The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC, USA, p 362.
  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D. (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370.
  • ITC (2011). Cotton and climate change impacts and options to mitigate and adapt. Technical Paper. International Trade Centre (ITC), Geneva: Doc. No. MAR-11-200. E. pp. 32.
  • Kakani VG, Reddy KR, Koti S, Wallace TP, Prasad PV, Reddy VR, Zhao, D. (2005) Differences in invitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot 96:59–67.
  • Karademir, E. (2012). Screening cotton varieties (G. hirsutum L.) for heat tolerance under field conditions. Afr. J. Agric. Res. 7: 6335-6342.
  • Khan, N. U. (2013). Diallel analysis of cotton leaf curl virus (CLCuV) disease, earliness, yield and fiber traits under CLCuV infestation in upland cotton. Australian journal of crop science, 7(12), 1955-1966.
  • Khanna-Chopra, R., and Viswanathan C., (1999). Evaluation of heat stress tolerance in irrigated environment of T-aestivum and related species. I. Stability in yield and yield components. Euphytica 106:169-180
  • Li, Z. K., Chen, B., Li, X. X., Wang, J. P., Zhang, Y., Wang, X. F., ... & Ma, Z. Y. (2019). A newly identified cluster of glutathione S‐transferase genes provides Verticillium wilt resistance in cotton. The Plant Journal, 98(2), 213-227.
  • Loka DA, Oosterhuis D.M. (2016). Effect of high night temperatures during anthesis on cotton (G. hirsutum L.) pistil and leaf physiology and biochemistry. Aust. J. Crop Sci. 10(5): 741-748.
  • Luo Q. (2011) Temperature thresholds and crop production: A review. Clim Chang 109:583–598
  • Ma Z, He S, Wang X, et al. (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet. 2018; 50(6):803–13. https://doi.org/10.1038/s41588-018-0119-7
  • Maheswari, M., Yadav, S.K., Shanker, A.K., Kumar, M.A. and Venkateswarlu, B. (2012). Overview of plant stresses: mechanisms, adaptations and research pursuit. In: Crop Stress and Its Management: Perspectives and Strategies (Eds. Venkateswarlu, A.K., Shanker, C. Shanker and M. Maheswari), 1–18. Dordrecht, The Netherlands: Springer.
  • McCarty JC, Wu J, Jenkins J.N. (2008) Genetic association of cotton yield with its component traits in derived primitive accessions crossed by elite upland cultivars using the conditional ADAA genetic model. Euphytica. 2008;161(3):337–52. https://doi.org/10.1007/s10681-007-9562-8
  • Nasim W, Belhouchette H, Tariq M, Fahad S, Hammad HM, Mubeen M, Munis MF, Chaudhary HJ, Khan I, Mahmood F, Abbas T, Rasul F, Nadeem M, Bajwa AA, Ullah N, Alghabari F, Saud S, Mubarak H, Ahmad R. (2016) Correlation studies on nitrogen for sunflower crop across the agroclimatic variability. Environ Sci Pollut Res 23:3658–3670.
  • Norton, J.D. (1966). Testing of plum pollen viability with tetrazolium salts. Proc. Amer. Soc. Hort. Sci., 89: 132-134
  • Oosterhuis D.M. (2009) Summaries of Arkansas cotton research. Arkansas Agricultural Experiment Station, University of Arkansas Division of Agriculture, Fayetteville. P: 225.
  • Pettigrew W. (2008). The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Sci. 48: 278-285.
  • Rawson H. M. (1992) Plant responses to temperature under conditions of elevated CO2. Aust J Bot 40 (5):473–490.
  • Reddy KR, Davidonis GH, Johnson AS, Vinyard B.T. (1999) Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agron J 91:851–858.
  • Reddy KR, Hodges HF, McKinion J.M. (1997). Modeling temperature effects on cotton internode and leaf growth. Crop Sci. 37: 503-509.
  • Reddy, K.R., Hodges, H.F., and McKinion, J.M. (1995). Carbondioxide and temperature effects on Pima cotton development. Agron. J. 87(5):820-826.
  • Reddy, K.R., Hodges, H.F., McKinion, J.M., and Wall, G.A. (1992). Temperature effect on Pima cotton growth and development. Agron. J. 84:237-243.
  • Roger G.P. (1985). Augmented Designs for Preliminary Yield Trials (Revised) Oregon State University, Corvallis, USA, RACHIS Vol. 4, No:1 Jan 1985 p:27-32.
  • Sato, S., Peet, M.M. and Thomas, J.F. (2002). Determining critical pre and post anthesis periods and physiological processes in Lycopersicon esculentum Mill, exposed to moderately elevated temperatures, Journal of Experimental Botany, 53(371), 1187-1195.
  • Singh RP, Prasad PV, Sunita K, Giri S, Reddy K.R. (2007). Influence of high temperature and breeding for heat tolerance in cotton: A review. Adv. Agron. 93: 313-385.
  • Song G., Wang M., Zeng B., Zhang J., Jiang C., Hu O., Geng G., Tang C. (2015). Anther response to high temperature stress during development and pollen thermotolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton. Springer-Verlag Berlin Heidelberg 5 November 2014 / Accepted: 3 February 2015. https://doi.org/10.1007/s00425-015-2259-7
  • TUIK (2022). Türkiye İstatistik Kurumu, https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (in Turkish)
  • Wahid A, Gelani S, Ashraf M, Foolad M.R. (2007). Heat tolerance in plants: an overview. Environ. Exp. Bot. 61: 199-223.
  • Wang M, Tu L, Lin M, et al. (2017) Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat gen. 2017;49(4):579–87. https://doi.org/10.1038/ng.3807
  • Wullschleger SD, Oosterhuis, D.M. (1990). Photosynthetic carbon production and use by developing cotton leaves and bolls. Crop Sci 30:1259–1264
  • Yaşar, M. (2023). Yield and fiber quality traits of cotton (Gossypium hirsutum L.) cultivars analyzed by biplot method. Journal of King Saud University-Science, 35(4), 102632.
  • Yaşar, M. (2022). Evaluation of Some New Cotton Genotypes Against Verticillium Disease (Verticillium dahliae Kled.)”. ISPEC Journal of Agricultural Sciences, 6(1), 110–117.
  • Yaşar, M., Başbağ, S., Ekinci, R. (2019). Determination effects of topping at different times on yield and yield components in cotton. Harran Journal of Agricultural and Food Sciences, 23(1), 52-59. https://doi.org/10.29050/harranziraat.422916
  • Yfoulis A, Fasoulas A. (1978). Role of minimum and maximum environmental temperature on maturation period of the cotton boll. Agron J 70:421–425.
  • Zhao D, Reddy KR, Kakani VG, Koti S, Gao W. (2005). Physiological causes of cotton fruit abscission under conditions of high temperature and enhanced ultraviolet-B radiation. Physiology Plant 124:189–199.
There are 47 citations in total.

Details

Primary Language English
Subjects Botany, Industrial Crops
Journal Section Research Articles
Authors

Yusuf Güzel Demiray 0000-0002-4113-5855

Remzi Ekinci 0000-0003-4165-6631

Adem Bardak 0000-0002-5715-302X

Project Number ZİRAAT.20.007 and TAGEM/TBAD/A/20/A7/P5/1536.
Publication Date June 29, 2023
Submission Date April 26, 2023
Acceptance Date June 4, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Demiray, Y. G., Ekinci, R., & Bardak, A. (2023). Investigation of generative high temperature tolerances of some cotton (Gossypium hirsutum L.) varieties. International Journal of Agriculture Environment and Food Sciences, 7(2), 284-291. https://doi.org/10.31015/jaefs.2023.2.5


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27