Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 4, 838 - 846, 29.12.2023
https://doi.org/10.31015/jaefs.2023.4.14

Abstract

References

  • Al-Issawi, M., Rihan, H.Z., Woldie, W.A., Burchett, S., Fuller, M.P. (2013b) Exogenous application of molybdenum affects the expression of CBF14 and the development of frost tolerance in wheat. Plant Physiol Biochem, 63:77–81. https://doi:10.1016/j.plaphy.2012.11.010
  • Arora, R., Pitchay, D. S., & Bearce, B. C. (1998). Water‐stress‐induced heat tolerance in geranium leaf tissues: A possible linkage through stress proteins?. Physiologia Plantarum, 103(1), 24-34.Arshadullar, M., Zaidi, S. (2007). Role of total plant dry weight in the assesment of variation for salinity tolerance in Gossypium hirsutum. Balance, 110, 600.
  • Aslantaş, R., Karakurt, H., Karakurt, Y. (2010). The Cellular and Molecular Mechanisms on Resistance to Low Temperatures in Plants. Journal of Agricultural Faculty of Atatürk University, 41(2), 157-167.
  • Bae, Y., Lim, C. W., Lee, S. C. (2021). Differential functions of pepper stress-associated proteins in response to abiotic stresses. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.756068
  • Bambara, S., Ndakidemi, P. A. (2010). The potential roles of lime and molybdenum on the growth, nitrogen fixation and assimilation of metabolites in nodulated legume: A special reference to Phaseolus vulgaris L. African Journal of Biotechnology, 9(17), 2482-2489.
  • Bittner, F. (2014). Molybdenum metabolism in plants and crosstalk to iron. Frontiers in Plant Science, 5, 28.
  • Cao, X., Jiang, F., Wang, X., Zang, Y., Wu, Z. (2015). Comprehensive evaluation and screening for chillingtolerance in tomato lines at the seedling stage. Euphytica, 205, 569-584.
  • Chen, R., Guo, W., Yin, Y., Gong, Z.-H. (2014). A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.). International Journal of Molecular Sciences, 15(2):2413-30. https://www.mdpi.com/1422-0067/15/2/2413
  • Chen, T.H. (1994). Plant adaptation to low temperature stress. Canadian Journal of Plant Pathology, 16(3), 231-236.
  • Daşgan, H.Y., Kuşvuran, Ş., Abak, K., Sarı, N. (2010). Screening and saving of local vegege tarımsal araştırma enstitüsübles for their resistance to drought and salinity. UNDP Project Final Report.
  • Du, Y.Q., Wang, Y.H., Wei, W.X., Wang, Z.R. (1994). Effect of molybdenum fertilizer application on the nitrogen and molybdenum nutritions of wheat. Journal of Huazhong Agricultural University 13(4), 384–389.
  • Durrant, M.C., 2001. Controlled protonation of iron-molybdenum cofaktor by nitrogenase: a structural and theoretical analysis. Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, U. K.
  • Ferreira, A.C., Araujo, G.A., Cardoso, A.A., Fontes, P.C.R., Vieira, C., ve Araujo, G.A., 2002. Influence of seed molybdenum contents and its foliar application on the mineral composition of bean leaves and seeds. Revista Ceres, 49(284), 443-452.
  • Gök, M. (1993). Soya, üçgül, bakla ve fiğ bitkilerine ait değişik Rhizobium sp. suşlarının ekolojik yönden önemli bazı özelliklerinin laboratuvar koşullarında belirlenmesi. DOĞA Türk Tarım ve Ormancılık Dergisi, 17(4), 921-930.
  • Gözen, V., Kuşvuran, Ş. (2021). Düşük sıcaklık stresi. Sebzelerde stres toleransı ve ıslah stratejileri. Gece Kitaplığı.
  • Guo, W.-L., Chen, R.-G., Du, X.-H., Zhang, Z., Yin, Y.-X., Gong, Z.-H., Wang, G-Y. (2014). Reduced tolerance to abiotic stress in transgenic Arabidopsis overexpressing a Capsicum annuum multiprotein bridging factor 1. BMC Plant Biology, 14, 138. https://pubmed.ncbi.nlm.nih.gov/24885401/
  • Guy, C.L., Huber, J.L., Huber, S.C. (1992). Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiology, 100(1), 502-508.
  • Hasanuzzaman, M., Nahar, K., Fujita, M. (2013). Extreme temperature responses, oxidative stress and antioxidant defense in plants. Abiotic Stress-Plant Responses and Applications in Agriculture, 13, 169-205. https://www.intechopen.com/chapters/43317
  • Hassan, M. A., Xiang, C., Farooq, M., Muhammad, N., Yan, Z., Hui, X., Yuanyuan, K., Bruno, A.K., Lele, Z., Jincai, L. (2021). Cold stress in wheat: plant acclimation responses and management strategies. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.676884
  • Haktanır, K., Arcak, S. (1997). Toprak Biyolojisi (Toprak Ekosistemine Giriş). Ankara Üniversitesi Ziraat Fakültesi Yayınları No: 1486, Ankara.
  • Horvath, I., Glatz, A., Varvasovszki, V., Torok, Z., Pali, T., Balogh, G., Kovacs, E., Nadasdi, L., Benko, S., Joo, F., Vigh, L. (1998). Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a ‘fluidity gene’. Proceedings of the National Academy of Sciences, 95(7), 3513-8. https://www.pnas.org/doi/abs/10.1073/pnas.95.7.3513
  • Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393.
  • Imran, M. A., Ali, A., Ashfaq, M., Hassan, S., Culas, R., Ma, C. (2019). Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton. Land Use Policy, 88, 104113.
  • Ismael, M. A., Elyamine, A. M., Zhao, Y. Y., Moussa, M. G., Rana, M. S., Afzal, J., Imran, M.,Zhao, X.H., Hu, C. X. (2018). Can selenium and molybdenum restrain cadmium toxicity to pollen grains in Brassica napus?. International Journal Of Molecular Sciences, 19(8), 2163.
  • Kaiser, B.N., Gridley, K.L., Brady, J.N., Phillips, T., Tyerman, S.D. (2005). The role of molybdenum in agricultural plant production. Annals of Botany, 96(5), 745–754. https://doi.org/10.1093/aob/mci226
  • Kang, W.-H., Sim, Y. M., Koo, N., Nam, J.-Y., Lee, J., Kim, N., Jang, H., Kim, Y-M., Yeom, S-I. (2020). Transcriptome profiling of abiotic responses to heat, cold, salt, and osmotic stress of Capsicum annuum L. Scientific Data, 7, 17. https://doi.org/10.6084/m9.figshare.11440659
  • Koksal, N., Alkan-Torun, A., Külahlıoğlu, I., Ertargın, E., Karalar, E. (2016). Ion uptake of marigold under saline growth conditions. SpringerPlus, 5, 139.
  • Kumar, R., Singh, P.C.R., Singh, S. (2018). A review report: low temperature stress for crop production. International Journal of Pure and Applied Bioscience, 6(2), 575-598. https://doi.org/10.18782/2320-7051.3031
  • Li, W., Wang, Z., Mi, G., Han, X., Zhang, F. (2001). Molybdenum deficiency in winter wheat seedlings as enhanced by freezing temperature. Journal of Plant Nutrition, 24(8), 1195–1203. https://doi.org/10.1081/pln100106975
  • Lim, C.W., Baek, W., Lee, S.C. (2018a). Roles of pepper bZIP protein CaDILZ1 and its interacting partner RING-type E3 ligase CaDSR1 in modulation of drought tolerance. Plant Journal, 96 452–467. https://doi.org/10.1111/tpj.14046
  • Lim C. W., Hong E., Bae Y., Lee S. C. (2018b). The pepper dehydration-responsive homeobox 1, CaDRHB1, plays a positive role in the dehydration response. Environmental and Experimental Botany, 147, 104–115. https://doi.org/10.1016/j.envexpbot.2017.11.015
  • Lim, C.W., Jeong, S., Lee, S.C. (2020). Differential expression of MEKK subfamily genes in Capsicum annuum L. in response to abscisic acid and drought stress. Plant Signaling & Behavior, 15(12):1822019. https://doi: 10.1080/15592324.2020.1822019
  • Liu, H., Hu, C., Sun, X., Tan, Q., Nie, Z., Hu, X. (2010). Interactive effects of molybdenum and phosphorus fertilizer on photosynthetic characteristic of seedings and grain yield of Brassica napus. Plant and Soil, 326, 345–353. https://doi:10.1007/s11104-009-0014-1
  • Lorenz, O. A., Maynard, D. N. (1988). Knott’s handbook for vegetable growers (No. BOOK). John Wiley & Sons Ltd. 456 p.
  • Lukatkin, A.S., Brazaityte, A., Bobinas, C., Duchovskis, P. (2012). Chilling injury in chilling-sensitive plants: a review. Agriculture, 9(2), 111-124.
  • Manasa S. L., Panigrahy, M., Panigrahi, K. C., Rout, G. R. (2022). Overview of cold stress regulation in plants. The Botanical Review 88(6314). https://doi.org/10.1007/s12229-021-09267-x
  • Mendel, RR, Haensch, R. (2002). Molybdoenzymes and molybdenum cofactor in plants. Journal of Experimental Botany, 53, 1689–1698.
  • Mendel, R. R., Kruse, T. (2012). Cell biology of molybdenum in plants and humans. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(9), 1568-1579.
  • Müftüoğlu, N. M., Çıkılı, Y., Türkmen, C., Akçura, M. (2021). The Effects of different doses of molybdenum applications on gum bean(Cyamopsis tetragonoloba L.) plant yield and quality. COMÜ Journal of Agriculture Faculty, 9(2), 309-315.
  • Ocharo, E. N., Korir, N. K., & Gweyi-Onyango, J. (2017). Green pepper growth and yield response to the integration of mulching materials and row plant spacing. Journal of Agriculture and Crops, 3(9), 72-77.
  • Orvar, B.L., Sangwan, V., Omann, F., Dhindsa, R.S.(2000). Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. The Plant Journal, 23(6), 785-94. https://doi.org/10.1046/j.1365-313x.2000.00845.x
  • Park, C., Lim, C., W., Lee, S.C. (2016). The pepper CaOSR1 protein regulates the osmotic stress response via abscisic acid signaling. Frontiers in Plant Science, 24(7), 890. https://doi: 10.3389/fpls.2016.00890
  • Peşkircioğlu, M., Özaydin, K.A., Özpinar, H., Nadaroğlu, Y., Dokuyucu, Ö., Cankurtaran, G.A., Ünal, S., Şimşek, O. (2016). Mapping the plant hardiness and heat zone at Turkey scale by geographic information system. Journal of Field Crops Central Research Institute, 25(1), 11-25. https://doi.org/10.21566/tbmaed.85397
  • Rana, M., Bhantana, P., Sun, X. C., Imran, M., Shaaban, M., Moussa, M., Hu, C. X. (2020a). Molybdenum as an essential element for crops: an overview. International Journal of Scientific Research & Growth, 24, 18535.
  • Rihan, H. Z., Al-Issawi, M., Al Shamari, M., Woldie, W. A., Kiernan, M., Fuller, M. P. (2014). The effect of molybdenum on the molecular control of cold tolerance in cauliflower (Brassica oleracea var. botrytis) artificial seeds. Plant Cell, Tissue and Organ Culture (PCTOC), 118, 215-228.
  • Sanghera, G. S., Wani, S. H., Hussain, W., Singh, N. B. (2011). Engineering cold stress tolerance in crop plants. Current genomics, 12(1), 30.
  • Saleem, M., Fariduddin, Q., Janda, T. (2021). Multifaceted role of salicylic acid in combating cold stress in plants: A review. Journal of Plant Growth Regulation, 40, 464-485.
  • Sharaf-Eldin, M. A., Etman, A. A., Yassin, A. M., Elsayed, S., Scholz, M., Yaseen, Z. M. (2022). Mitigation of chilling stress by ozone pretreatment and acclimation of sweet pepper grown under unheated greenhouse conditions. Horticulturae, 8(12), 1189. https://doi.org/10.3390/horticulturae8121189
  • Steel, R.G.D., Torrie, J.H., Dickey, D.A. (1997). Principles and Procedures of Statistics: a Biometrical Approach. McGraw-Hill, New York.
  • Steponkus, P.L. (1984). Role of the plasma membrane in freezing injury and cold acclimation. Annual Review of Plant Physiology, 35:543–584.
  • Steponkus, P.L., Uemura, M., Webb, M.S. (1993). A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus P L, editor. Advances in Low-Temperature Biology Volume. 2. London: JAI Press, pp. 211–312.
  • Sun, X., Hu, C., Tan, Q. (2006). Effects of molybdenum on antioxidative defense system and membrane lipid peroxidation in winter wheat under low temperature stress. Journal of Plant Physiology and Molecular Biology, 32(2):175.
  • Sun, X., Hu, C., Tan, Q., Liu, J., Liu, H. (2009). Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress. Annals of Botany, 104(2), 345-356. http://doi.org/10.1093/aob/mcp133
  • Tepe, A., Gözen, V., Kabaş, A., Topçu, V., Çınar, O. (2022). The Performances of some tomato pure lines under cold stress in the vegetative and generative stage. Horticultural Studies, 39(2), 56-62. http://doi.org/10.16882/HortiS.1122901
  • Van Laere, K., França, S.C., Vansteenkiste, H., Van Huylenbroeck, J., Steppe, K., Van Labeke, J.B. (2011). Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii. Acta Physiologiae Plantarum, 33, 1149–1156.
  • Valluru, R., Thiry, A., Wilkinson, S., Davies, W., Reynolds, M. (2014). Phenotypic selection for wheat spike-ethylene. In Proceedings of the 4th International Workshop of the Wheat Yield Consortium (Ciudad Obregon) (pp. 109-113).
  • Wu, Z., Cheng, J., Hu, F., Qin, C., Xu, X., Hu, K. (2020). The SnRK2 family in pepper (Capsicum annuum L.): genome-wide identification and expression analyses during fruit development and under abiotic stress. Genes Genomics, 42, 1117–1130. https://doi.org/10.1007/s13258-020-00968-y
  • Yaneva, I., Mack, G., Vunkova-Radeva, R., Tischner, R. (1996).Changes in nitrate reductase activity and the protectiveeffect of molybdenum during cold stress in winter wheat grown on acid soil. Journal of Plant Physiology, 149(1/2), 211–216.
  • Yu, M., Hu, C.X., Wang, Y.H. (2006). Effects of molybdenum on the ıntermediates of chlorophyll biosynthesis in winter wheat cultivars under low temperature. Agricultural Sciences In China, 2, 113–116. https://doi.org/10.1016/S1671-2927(06)60109-0
  • Zakhurul, I., Vernichenko, I.V., Obukhovskaya, L.V., Osipova, L.V. (2000). Influence of nitrogen, molybdenum, and zinc on the drought resistance of spring wheat Russian Agricultural Sciences, 4, 1–5.
  • Zhang, M., Hu, C., Sun, X., Zhao, X., Tan, Q., Zhang, Y., Li, N. (2014). Molybdenum affects photosynthesis and ionic homeostasis of Chinese cabbage under salinity stress. Communications in Soil Science and Plant Analysis, 45(20), 2660-2672.
  • Zimmer, W., Mendel, R. (1999). Molybdenum metabolism in plants. Plant Biology, 1(02), 160-168.
  • Zhang, M., Hu, C., Sun, X., Zhao, X., Tan, Q., Zhang, Y., Li, N. (2014). Molybdenum affects photosynthesis and ionic homeostasis of Chinese cabbage under salinity stress. Communications in Soil Science and Plant Analysis, 45(20), 2660-2672. https://doi.org/10.1080/00103624.2014.941855

Effect of molybdenum application in pepper (Capsicum annuum L.) under cold stress conditions

Year 2023, Volume: 7 Issue: 4, 838 - 846, 29.12.2023
https://doi.org/10.31015/jaefs.2023.4.14

Abstract

Cold stress (low temperature stress) is one of the abiotic stress factors. It causes many morphological and physiological problems in plants. One of the applications to eliminate and alleviate these negative effects is molybdenum application. The aim of this study was to determine the effect of molybdenum application on cold stress in commercial variety Mazamort pepper. In the experiment, control, 25 ppm molybdenum concentration, 72 hours cold stress and 25 ppm molybdenum +72 hours cold stress applications were included. Pots of 2 L were used to grow the plants and the growing medium was a mixture of peat and perlite in a ratio of 2:1 by volume. Climatic chamber conditions were set to 24±1°C during the day and 18±1°C at night with 16/8 h light/dark photoperiodicity for control conditions and 24±1°C during the day and 5±1°C at night with photoperiodicity for cold stress conditions. The experiment was planned according to the random plots factorial design with 3 replications and 6 plants in each replicate. At the end of the study, plant height, stem diameter, number of leaves, plant fresh and dry weight, SPAD, wet basis moisture content, leaf proportional water content and ion leakage parameters were analysed. The highest plant height of Mazamort pepper variety was determined in 25 ppm molybdenum+72 hours cold stress application (44.51 cm). Application of 25 ppm molybdenum was effective in alleviating the negative effect of cold stress on plant stem diameter, plant fresh-dry weight and turgor potential. Moisture content wet basis was lowest in 25 ppm molybdenum +72 hours cold stress application. SPAD value in pepper plants decreased under cold stress conditions. It was observed that 25 ppm molybdenum application was ineffective and the decrease increased under cold stress conditions. Ion leakage in Mazamort pepper variety was highest under 72 hours cold stress and 25 ppm molybdenum +72 hours cold stress conditions. Under cold stress conditions, 25 ppm molybdenum application was ineffective. Molybdenum application under cold stress conditions was found to have positive effects on some parameters in general. In future studies, we believe that the application of different molybdenum concentrations and different cold stress periods will reveal the effects of molybdenum more clearly.

References

  • Al-Issawi, M., Rihan, H.Z., Woldie, W.A., Burchett, S., Fuller, M.P. (2013b) Exogenous application of molybdenum affects the expression of CBF14 and the development of frost tolerance in wheat. Plant Physiol Biochem, 63:77–81. https://doi:10.1016/j.plaphy.2012.11.010
  • Arora, R., Pitchay, D. S., & Bearce, B. C. (1998). Water‐stress‐induced heat tolerance in geranium leaf tissues: A possible linkage through stress proteins?. Physiologia Plantarum, 103(1), 24-34.Arshadullar, M., Zaidi, S. (2007). Role of total plant dry weight in the assesment of variation for salinity tolerance in Gossypium hirsutum. Balance, 110, 600.
  • Aslantaş, R., Karakurt, H., Karakurt, Y. (2010). The Cellular and Molecular Mechanisms on Resistance to Low Temperatures in Plants. Journal of Agricultural Faculty of Atatürk University, 41(2), 157-167.
  • Bae, Y., Lim, C. W., Lee, S. C. (2021). Differential functions of pepper stress-associated proteins in response to abiotic stresses. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.756068
  • Bambara, S., Ndakidemi, P. A. (2010). The potential roles of lime and molybdenum on the growth, nitrogen fixation and assimilation of metabolites in nodulated legume: A special reference to Phaseolus vulgaris L. African Journal of Biotechnology, 9(17), 2482-2489.
  • Bittner, F. (2014). Molybdenum metabolism in plants and crosstalk to iron. Frontiers in Plant Science, 5, 28.
  • Cao, X., Jiang, F., Wang, X., Zang, Y., Wu, Z. (2015). Comprehensive evaluation and screening for chillingtolerance in tomato lines at the seedling stage. Euphytica, 205, 569-584.
  • Chen, R., Guo, W., Yin, Y., Gong, Z.-H. (2014). A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.). International Journal of Molecular Sciences, 15(2):2413-30. https://www.mdpi.com/1422-0067/15/2/2413
  • Chen, T.H. (1994). Plant adaptation to low temperature stress. Canadian Journal of Plant Pathology, 16(3), 231-236.
  • Daşgan, H.Y., Kuşvuran, Ş., Abak, K., Sarı, N. (2010). Screening and saving of local vegege tarımsal araştırma enstitüsübles for their resistance to drought and salinity. UNDP Project Final Report.
  • Du, Y.Q., Wang, Y.H., Wei, W.X., Wang, Z.R. (1994). Effect of molybdenum fertilizer application on the nitrogen and molybdenum nutritions of wheat. Journal of Huazhong Agricultural University 13(4), 384–389.
  • Durrant, M.C., 2001. Controlled protonation of iron-molybdenum cofaktor by nitrogenase: a structural and theoretical analysis. Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, U. K.
  • Ferreira, A.C., Araujo, G.A., Cardoso, A.A., Fontes, P.C.R., Vieira, C., ve Araujo, G.A., 2002. Influence of seed molybdenum contents and its foliar application on the mineral composition of bean leaves and seeds. Revista Ceres, 49(284), 443-452.
  • Gök, M. (1993). Soya, üçgül, bakla ve fiğ bitkilerine ait değişik Rhizobium sp. suşlarının ekolojik yönden önemli bazı özelliklerinin laboratuvar koşullarında belirlenmesi. DOĞA Türk Tarım ve Ormancılık Dergisi, 17(4), 921-930.
  • Gözen, V., Kuşvuran, Ş. (2021). Düşük sıcaklık stresi. Sebzelerde stres toleransı ve ıslah stratejileri. Gece Kitaplığı.
  • Guo, W.-L., Chen, R.-G., Du, X.-H., Zhang, Z., Yin, Y.-X., Gong, Z.-H., Wang, G-Y. (2014). Reduced tolerance to abiotic stress in transgenic Arabidopsis overexpressing a Capsicum annuum multiprotein bridging factor 1. BMC Plant Biology, 14, 138. https://pubmed.ncbi.nlm.nih.gov/24885401/
  • Guy, C.L., Huber, J.L., Huber, S.C. (1992). Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiology, 100(1), 502-508.
  • Hasanuzzaman, M., Nahar, K., Fujita, M. (2013). Extreme temperature responses, oxidative stress and antioxidant defense in plants. Abiotic Stress-Plant Responses and Applications in Agriculture, 13, 169-205. https://www.intechopen.com/chapters/43317
  • Hassan, M. A., Xiang, C., Farooq, M., Muhammad, N., Yan, Z., Hui, X., Yuanyuan, K., Bruno, A.K., Lele, Z., Jincai, L. (2021). Cold stress in wheat: plant acclimation responses and management strategies. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.676884
  • Haktanır, K., Arcak, S. (1997). Toprak Biyolojisi (Toprak Ekosistemine Giriş). Ankara Üniversitesi Ziraat Fakültesi Yayınları No: 1486, Ankara.
  • Horvath, I., Glatz, A., Varvasovszki, V., Torok, Z., Pali, T., Balogh, G., Kovacs, E., Nadasdi, L., Benko, S., Joo, F., Vigh, L. (1998). Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a ‘fluidity gene’. Proceedings of the National Academy of Sciences, 95(7), 3513-8. https://www.pnas.org/doi/abs/10.1073/pnas.95.7.3513
  • Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393.
  • Imran, M. A., Ali, A., Ashfaq, M., Hassan, S., Culas, R., Ma, C. (2019). Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton. Land Use Policy, 88, 104113.
  • Ismael, M. A., Elyamine, A. M., Zhao, Y. Y., Moussa, M. G., Rana, M. S., Afzal, J., Imran, M.,Zhao, X.H., Hu, C. X. (2018). Can selenium and molybdenum restrain cadmium toxicity to pollen grains in Brassica napus?. International Journal Of Molecular Sciences, 19(8), 2163.
  • Kaiser, B.N., Gridley, K.L., Brady, J.N., Phillips, T., Tyerman, S.D. (2005). The role of molybdenum in agricultural plant production. Annals of Botany, 96(5), 745–754. https://doi.org/10.1093/aob/mci226
  • Kang, W.-H., Sim, Y. M., Koo, N., Nam, J.-Y., Lee, J., Kim, N., Jang, H., Kim, Y-M., Yeom, S-I. (2020). Transcriptome profiling of abiotic responses to heat, cold, salt, and osmotic stress of Capsicum annuum L. Scientific Data, 7, 17. https://doi.org/10.6084/m9.figshare.11440659
  • Koksal, N., Alkan-Torun, A., Külahlıoğlu, I., Ertargın, E., Karalar, E. (2016). Ion uptake of marigold under saline growth conditions. SpringerPlus, 5, 139.
  • Kumar, R., Singh, P.C.R., Singh, S. (2018). A review report: low temperature stress for crop production. International Journal of Pure and Applied Bioscience, 6(2), 575-598. https://doi.org/10.18782/2320-7051.3031
  • Li, W., Wang, Z., Mi, G., Han, X., Zhang, F. (2001). Molybdenum deficiency in winter wheat seedlings as enhanced by freezing temperature. Journal of Plant Nutrition, 24(8), 1195–1203. https://doi.org/10.1081/pln100106975
  • Lim, C.W., Baek, W., Lee, S.C. (2018a). Roles of pepper bZIP protein CaDILZ1 and its interacting partner RING-type E3 ligase CaDSR1 in modulation of drought tolerance. Plant Journal, 96 452–467. https://doi.org/10.1111/tpj.14046
  • Lim C. W., Hong E., Bae Y., Lee S. C. (2018b). The pepper dehydration-responsive homeobox 1, CaDRHB1, plays a positive role in the dehydration response. Environmental and Experimental Botany, 147, 104–115. https://doi.org/10.1016/j.envexpbot.2017.11.015
  • Lim, C.W., Jeong, S., Lee, S.C. (2020). Differential expression of MEKK subfamily genes in Capsicum annuum L. in response to abscisic acid and drought stress. Plant Signaling & Behavior, 15(12):1822019. https://doi: 10.1080/15592324.2020.1822019
  • Liu, H., Hu, C., Sun, X., Tan, Q., Nie, Z., Hu, X. (2010). Interactive effects of molybdenum and phosphorus fertilizer on photosynthetic characteristic of seedings and grain yield of Brassica napus. Plant and Soil, 326, 345–353. https://doi:10.1007/s11104-009-0014-1
  • Lorenz, O. A., Maynard, D. N. (1988). Knott’s handbook for vegetable growers (No. BOOK). John Wiley & Sons Ltd. 456 p.
  • Lukatkin, A.S., Brazaityte, A., Bobinas, C., Duchovskis, P. (2012). Chilling injury in chilling-sensitive plants: a review. Agriculture, 9(2), 111-124.
  • Manasa S. L., Panigrahy, M., Panigrahi, K. C., Rout, G. R. (2022). Overview of cold stress regulation in plants. The Botanical Review 88(6314). https://doi.org/10.1007/s12229-021-09267-x
  • Mendel, RR, Haensch, R. (2002). Molybdoenzymes and molybdenum cofactor in plants. Journal of Experimental Botany, 53, 1689–1698.
  • Mendel, R. R., Kruse, T. (2012). Cell biology of molybdenum in plants and humans. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(9), 1568-1579.
  • Müftüoğlu, N. M., Çıkılı, Y., Türkmen, C., Akçura, M. (2021). The Effects of different doses of molybdenum applications on gum bean(Cyamopsis tetragonoloba L.) plant yield and quality. COMÜ Journal of Agriculture Faculty, 9(2), 309-315.
  • Ocharo, E. N., Korir, N. K., & Gweyi-Onyango, J. (2017). Green pepper growth and yield response to the integration of mulching materials and row plant spacing. Journal of Agriculture and Crops, 3(9), 72-77.
  • Orvar, B.L., Sangwan, V., Omann, F., Dhindsa, R.S.(2000). Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. The Plant Journal, 23(6), 785-94. https://doi.org/10.1046/j.1365-313x.2000.00845.x
  • Park, C., Lim, C., W., Lee, S.C. (2016). The pepper CaOSR1 protein regulates the osmotic stress response via abscisic acid signaling. Frontiers in Plant Science, 24(7), 890. https://doi: 10.3389/fpls.2016.00890
  • Peşkircioğlu, M., Özaydin, K.A., Özpinar, H., Nadaroğlu, Y., Dokuyucu, Ö., Cankurtaran, G.A., Ünal, S., Şimşek, O. (2016). Mapping the plant hardiness and heat zone at Turkey scale by geographic information system. Journal of Field Crops Central Research Institute, 25(1), 11-25. https://doi.org/10.21566/tbmaed.85397
  • Rana, M., Bhantana, P., Sun, X. C., Imran, M., Shaaban, M., Moussa, M., Hu, C. X. (2020a). Molybdenum as an essential element for crops: an overview. International Journal of Scientific Research & Growth, 24, 18535.
  • Rihan, H. Z., Al-Issawi, M., Al Shamari, M., Woldie, W. A., Kiernan, M., Fuller, M. P. (2014). The effect of molybdenum on the molecular control of cold tolerance in cauliflower (Brassica oleracea var. botrytis) artificial seeds. Plant Cell, Tissue and Organ Culture (PCTOC), 118, 215-228.
  • Sanghera, G. S., Wani, S. H., Hussain, W., Singh, N. B. (2011). Engineering cold stress tolerance in crop plants. Current genomics, 12(1), 30.
  • Saleem, M., Fariduddin, Q., Janda, T. (2021). Multifaceted role of salicylic acid in combating cold stress in plants: A review. Journal of Plant Growth Regulation, 40, 464-485.
  • Sharaf-Eldin, M. A., Etman, A. A., Yassin, A. M., Elsayed, S., Scholz, M., Yaseen, Z. M. (2022). Mitigation of chilling stress by ozone pretreatment and acclimation of sweet pepper grown under unheated greenhouse conditions. Horticulturae, 8(12), 1189. https://doi.org/10.3390/horticulturae8121189
  • Steel, R.G.D., Torrie, J.H., Dickey, D.A. (1997). Principles and Procedures of Statistics: a Biometrical Approach. McGraw-Hill, New York.
  • Steponkus, P.L. (1984). Role of the plasma membrane in freezing injury and cold acclimation. Annual Review of Plant Physiology, 35:543–584.
  • Steponkus, P.L., Uemura, M., Webb, M.S. (1993). A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus P L, editor. Advances in Low-Temperature Biology Volume. 2. London: JAI Press, pp. 211–312.
  • Sun, X., Hu, C., Tan, Q. (2006). Effects of molybdenum on antioxidative defense system and membrane lipid peroxidation in winter wheat under low temperature stress. Journal of Plant Physiology and Molecular Biology, 32(2):175.
  • Sun, X., Hu, C., Tan, Q., Liu, J., Liu, H. (2009). Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress. Annals of Botany, 104(2), 345-356. http://doi.org/10.1093/aob/mcp133
  • Tepe, A., Gözen, V., Kabaş, A., Topçu, V., Çınar, O. (2022). The Performances of some tomato pure lines under cold stress in the vegetative and generative stage. Horticultural Studies, 39(2), 56-62. http://doi.org/10.16882/HortiS.1122901
  • Van Laere, K., França, S.C., Vansteenkiste, H., Van Huylenbroeck, J., Steppe, K., Van Labeke, J.B. (2011). Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii. Acta Physiologiae Plantarum, 33, 1149–1156.
  • Valluru, R., Thiry, A., Wilkinson, S., Davies, W., Reynolds, M. (2014). Phenotypic selection for wheat spike-ethylene. In Proceedings of the 4th International Workshop of the Wheat Yield Consortium (Ciudad Obregon) (pp. 109-113).
  • Wu, Z., Cheng, J., Hu, F., Qin, C., Xu, X., Hu, K. (2020). The SnRK2 family in pepper (Capsicum annuum L.): genome-wide identification and expression analyses during fruit development and under abiotic stress. Genes Genomics, 42, 1117–1130. https://doi.org/10.1007/s13258-020-00968-y
  • Yaneva, I., Mack, G., Vunkova-Radeva, R., Tischner, R. (1996).Changes in nitrate reductase activity and the protectiveeffect of molybdenum during cold stress in winter wheat grown on acid soil. Journal of Plant Physiology, 149(1/2), 211–216.
  • Yu, M., Hu, C.X., Wang, Y.H. (2006). Effects of molybdenum on the ıntermediates of chlorophyll biosynthesis in winter wheat cultivars under low temperature. Agricultural Sciences In China, 2, 113–116. https://doi.org/10.1016/S1671-2927(06)60109-0
  • Zakhurul, I., Vernichenko, I.V., Obukhovskaya, L.V., Osipova, L.V. (2000). Influence of nitrogen, molybdenum, and zinc on the drought resistance of spring wheat Russian Agricultural Sciences, 4, 1–5.
  • Zhang, M., Hu, C., Sun, X., Zhao, X., Tan, Q., Zhang, Y., Li, N. (2014). Molybdenum affects photosynthesis and ionic homeostasis of Chinese cabbage under salinity stress. Communications in Soil Science and Plant Analysis, 45(20), 2660-2672.
  • Zimmer, W., Mendel, R. (1999). Molybdenum metabolism in plants. Plant Biology, 1(02), 160-168.
  • Zhang, M., Hu, C., Sun, X., Zhao, X., Tan, Q., Zhang, Y., Li, N. (2014). Molybdenum affects photosynthesis and ionic homeostasis of Chinese cabbage under salinity stress. Communications in Soil Science and Plant Analysis, 45(20), 2660-2672. https://doi.org/10.1080/00103624.2014.941855
There are 63 citations in total.

Details

Primary Language English
Subjects Vegetable Growing and Treatment, Green-House Growing and Treatment
Journal Section Research Articles
Authors

Sultan Dere 0000-0001-5928-1060

Publication Date December 29, 2023
Submission Date August 29, 2023
Acceptance Date November 1, 2023
Published in Issue Year 2023 Volume: 7 Issue: 4

Cite

APA Dere, S. (2023). Effect of molybdenum application in pepper (Capsicum annuum L.) under cold stress conditions. International Journal of Agriculture Environment and Food Sciences, 7(4), 838-846. https://doi.org/10.31015/jaefs.2023.4.14


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27