Research Article
BibTex RIS Cite

Total phenolics and total flavonoids in Ginkgo biloba leaves of the plant optimization of the extraction conditions

Year 2025, Volume: 9 Issue: 1, 41 - 49, 17.03.2025
https://doi.org/10.31015/2025.1.6

Abstract

Due to the negative health effects of artificial antioxidants, consumer interest in natural products has increased in recent years. The importance of natural antioxidants derived from plant sources is gradually increasing in research on the use of antioxidants as preservatives to prevent oxidative deterioration of foods. Free radicals cause degradation reactions in foods. They also cause important problems such as cancer, progeria, and heart disease in living organisms. Eating foods high in antioxidants has an important impact on slowing and stopping health problems. Phenols and flavonoids, known for their antioxidant activity, are found in many medicinal plants and provide various biochemical benefits to living organisms. Many different methods are used to obtain natural antioxidants. Current research is moving in the direction of further developing these methods. In this study, the antioxidant content of Ginkgo biloba leaves was investigated. A highly efficient ultrasound-assisted extraction method with short extraction time and minimal solvent consumption was developed for the extraction of Ginkgo biloba leaves. Experimental conditions for extraction yield: ethanol concentration 25-100%, solid/solvent ratio 100 mg 30-70 ml-1 sample, extraction time 15-60 minutes, temperature 30-70 ˚C. The result of the experimental study: ethanol concentration: 75%, extraction time: 45 minutes, temperature: 50 ˚C found for the best extraction efficiency. Optimization results for the amount of phenolic substance: extraction time: 31.22 min, extraction temperature: 54.12 °C, ethanol concentration: 57.94%. Optimization results for the amount of flavonoid substance: extraction time: 47.88 min, extraction temperature: 36.34 ˚C, ethanol concentration: 69.51%.

References

  • Bhattacharjee, T.; Sen, S.; Chakraborty, R.; Maurya, P.K.; Chattopadhyay, A. Cultivation of Medicinal Plants: Special Reference to Important Medicinal Plants of India. In Herbal Medicine in India; Springer Singapore: Singapore, 2020; pp. 101–115.
  • Hedayat, K.M.; Lapraz, J.-C.; Schuff, B. Medicinal plants in clinical practice. In The Theory of Endobiogeny; Elsevier: Amsterdam, Netherlands, 2020; pp. 57–60.
  • Raji, R.N.; Vysakh, A.; Suma, D.; Preetha, M.K.; Latha, M.S. Phytochemicals from Traditional Medicinal Plants. In Phytochemicals from Medicinal Plants; Apple Academic Press: Palm Bay, FL, USA, 2019; pp. 3–32.
  • Srivastava, J.P.; Lambert, J.; Vietmeyer, N. Medicinal plants; World Bank Technical Papers; The World Bank: Washington, DC, USA, 1996; ISBN 978-0-8213-3613-7.
  • Wallace, R.J. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 2004, 63, 621–629.
  • Reghu, R.; Sahadevan, P.; Sugathan, S. Antimicrobial Agents from Plants. In Bioresources and Bioprocess in Biotechnology; Springer Singapore: Singapore, 2017; pp. 271–290.
  • Fazal, H.; Ahmad, N.; Ullah, I.; Inayat, H.; Khan, L.; Abbasi, B.H. Antibacterial potential in Parthenium hysterophorus, Stevia rebaudiana, and Ginkgo biloba. Pakistan J. Bot. 2011, 43, 1307–1313.
  • Singh, B.; Kaur, P.; Singh, R.D.; Ahuja, P.S. Biology and chemistry of Ginkgo biloba. Fitoterapia 2008, 79, 401–418.
  • Záhradníková, L.; Schmidt, Š.; Sekretár, S.; Janáč, L. Determination of the antioxidant activity of Ginkgo biloba leaves extract. J. Food Nutr. Res. 2007, 46, 15–19.
  • Ronowicz, J.; Kupcewicz, B.; Budzisz, E. Chemometric analysis of antioxidant properties of herbal products containing Ginkgo biloba extract. Open Life Sci. 2013, 8.
  • Atzori, C.; Bruno, A.; Chichino, G.; Bombardelli, E.; Scaglia, M.; Ghione, M. Activity of bilobalide, a sesquiterpene from Ginkgo biloba, on Pneumocystis carinii. Antimicrob. Agents Chemother. 1993, 37, 1492–1496.
  • Silva, A.M.; Silva, S.C.; Soares, J.P.; Martins-Gomes, C.; Teixeira, J.P.; Leal, F.; Gaivão, I. Ginkgo biloba L. Leaf Extract Protects HepG2 Cells Against Paraquat-Induced Oxidative DNA Damage. Plants 2019, 8, 556.
  • Li, M.; Li, B.; Xia, Z.M.; Tian, Y.; Zhang, D.; Rui, W.J.; Xiao, F.J. Anticancer Effects of Five Biflavonoids from Ginkgo biloba L. Male Flowers In Vitro. Molecules 2019, 24, 1496.
  • Perry, E.K.; Pickering, A.T.; Wang, W.W.; Houghton, P.J.; Perry, N.S.L. Medicinal Plants and Alzheimer’s Disease: from Ethnobotany to Phytotherapy. J. Pharm. Pharmacol. 1999, 51, 527–534.
  • Kleijnen, J.; Knipschild, P. Ginkgo biloba. Lancet 1992, 340, 1136–1139.
  • Xie, L.; Hettiarachchy, N.S.; Jane, M.E.; Johnson, M.G. Antimicrobial activity of Ginkgo biloba leaf extract on Listeria monocytogenes. J. Food Sci. 2003, 68, 268–270.
  • Diamond, B.J.; Shiflett, S.C.; Feiwel, N.; Matheis, R.J.; Noskin, O.; Richards, J.A.; Schoenberger, N.E. Ginkgo biloba extract: Mechanisms and clinical indications. Arch. Phys. Med. Rehabil. 2000, 81, 668–678.
  • Diamond, B.J.; Shiflett, S.C.; Feiwel, N.; Matheis, R.J.; Noskin, O.; Richards, J.A.; Schoenberger, N.E. Ginkgo biloba extract: Mechanisms and clinical indications. Arch. Phys. Med. Rehabil. 2000, 81, 668–678.
  • Bezerra M.A. Santelli R.E. Oliveira E.P. Villar L.S. Escaleira L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta 76. 2008. 965-977.
  • Y.Y. Chen. H.Y. Luo. A.P. Gao. M. Zhu. Extraction of Polysaccharides from Mango (Mangifera indica Linn.) Seed by Response Surface Methodology and Identification of their Structural Characteristics, Food Analytical Methods 5. 2012. 800-806.
  • X.L. Liu. T. H. Mu. H.N. Sun. M. Zhang. Optimization of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology, Food Chemistry 141. 2013. 3034-3041.
  • S.H. Wu. G.L. Gong. Y.Y. Wang. F. Li. et al, Response surface optimization of enzyme-assisted extraction polysaccharides from Dictyophora indusiate, International Journal of Biological Macromolecules 61. 2013. 63-68.
  • M. B. Lan. J. Guo. H.L. Zhao. H.H. Yuan. Optimization of the Extraction of the Magnolia officinalis Polysaccharides Using Response Surface Methodology, Asian Journal of Chemistry 24. 2012. 2290-2294.
  • Y.K. Hong. W.J. Liu. T. Li. S.Y. She. Optimization of extraction of Eucommia ulmoides polysaccharides by response surface methodology, Carbohydrate Polymers 92. 2013. 1761-1766.
  • J. Prakash Maran. S. Manikandan. K. Thirugnanasambandham. C. Vigna Nivetha. R. Dinesh. Box–Behnken design-based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide, Carbohydrate Polymers 92. 2013. 604-611.
  • T. Zhu. H.J. Heo. K.H. Row. Central Composite Design for Optimized Extraction of Polysaccharides from Undaria pinnatifida, Chemical Research in Chinese Universities 28. 2012. 620-623.
  • Özyurt. M. (2005). Aldehid. peroksijen ve perasetik asit ile klor verici ajan içermeyen ve alet dezenfektanı olarak önerilen diğer dezenfektanlar. Genel kullanım alanları ve antimikrobiyal etkinlikleri. 4.Ulusal sterilizasyon dezenfeksiyon kongresi. Kongre Kitabı. Editörler: Günaydın. M. S.
  • Petrović, M, Jovanović, M, Lević, S, Nedović, V, Mitić-Ćulafić, D, Semren, T. Ž, and Veljović, S. (2022). Valorization potential of Plantago major L. solid waste remaining after industrial tincture production: Insight into the chemical composition and bioactive properties. Waste and Biomass Valorization, 13(3), 1639-1651.
  • Lopes, J. D. S, de Lima, A. B. S, da Cruz Cangussu, R. R, da Silva, M. V, Ferrão, S. P. B, and Santos, L. S. (2022). Application of spectroscopic techniques and chemometric methods to differentiate between true cinnamon and false cinnamon. Food Chemistry, 368, 130746.
  • Prakash Maran, J., Mekala, V., Manikandan, S., 2013. Modeling and optimization of ultrasound-assisted extraction of polysaccharide from Cucurbita moschata. Carbohydr. Polym. 92, 2018–2026.
  • G. E. P. Box. J. S. Hunter. "Multi-Factor Experimental Designs for Exploring Response Surfaces." Ann. Math. Statist. 28 (1) 195 - 241, March, 1957.
  • Samavati, V. (2013). Central composite rotatable design for investigation of microwaveassisted extraction of okra pod hydrocolloid. International Journal of Biological Macromolecules, 61, 142–149.
  • Prakash Maran, J., Sivakumar, V., Sridhar, R., Prince Immanuel, V., 2013. Development of model for mechanical properties of tapioca starch based edible films. Ind. Crop. Prod. 42, 159–168.
  • Palo Alto. CA.. (1998). Dialog. Information. Services. Piers Imports (US Ports) Database 573.
Year 2025, Volume: 9 Issue: 1, 41 - 49, 17.03.2025
https://doi.org/10.31015/2025.1.6

Abstract

References

  • Bhattacharjee, T.; Sen, S.; Chakraborty, R.; Maurya, P.K.; Chattopadhyay, A. Cultivation of Medicinal Plants: Special Reference to Important Medicinal Plants of India. In Herbal Medicine in India; Springer Singapore: Singapore, 2020; pp. 101–115.
  • Hedayat, K.M.; Lapraz, J.-C.; Schuff, B. Medicinal plants in clinical practice. In The Theory of Endobiogeny; Elsevier: Amsterdam, Netherlands, 2020; pp. 57–60.
  • Raji, R.N.; Vysakh, A.; Suma, D.; Preetha, M.K.; Latha, M.S. Phytochemicals from Traditional Medicinal Plants. In Phytochemicals from Medicinal Plants; Apple Academic Press: Palm Bay, FL, USA, 2019; pp. 3–32.
  • Srivastava, J.P.; Lambert, J.; Vietmeyer, N. Medicinal plants; World Bank Technical Papers; The World Bank: Washington, DC, USA, 1996; ISBN 978-0-8213-3613-7.
  • Wallace, R.J. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 2004, 63, 621–629.
  • Reghu, R.; Sahadevan, P.; Sugathan, S. Antimicrobial Agents from Plants. In Bioresources and Bioprocess in Biotechnology; Springer Singapore: Singapore, 2017; pp. 271–290.
  • Fazal, H.; Ahmad, N.; Ullah, I.; Inayat, H.; Khan, L.; Abbasi, B.H. Antibacterial potential in Parthenium hysterophorus, Stevia rebaudiana, and Ginkgo biloba. Pakistan J. Bot. 2011, 43, 1307–1313.
  • Singh, B.; Kaur, P.; Singh, R.D.; Ahuja, P.S. Biology and chemistry of Ginkgo biloba. Fitoterapia 2008, 79, 401–418.
  • Záhradníková, L.; Schmidt, Š.; Sekretár, S.; Janáč, L. Determination of the antioxidant activity of Ginkgo biloba leaves extract. J. Food Nutr. Res. 2007, 46, 15–19.
  • Ronowicz, J.; Kupcewicz, B.; Budzisz, E. Chemometric analysis of antioxidant properties of herbal products containing Ginkgo biloba extract. Open Life Sci. 2013, 8.
  • Atzori, C.; Bruno, A.; Chichino, G.; Bombardelli, E.; Scaglia, M.; Ghione, M. Activity of bilobalide, a sesquiterpene from Ginkgo biloba, on Pneumocystis carinii. Antimicrob. Agents Chemother. 1993, 37, 1492–1496.
  • Silva, A.M.; Silva, S.C.; Soares, J.P.; Martins-Gomes, C.; Teixeira, J.P.; Leal, F.; Gaivão, I. Ginkgo biloba L. Leaf Extract Protects HepG2 Cells Against Paraquat-Induced Oxidative DNA Damage. Plants 2019, 8, 556.
  • Li, M.; Li, B.; Xia, Z.M.; Tian, Y.; Zhang, D.; Rui, W.J.; Xiao, F.J. Anticancer Effects of Five Biflavonoids from Ginkgo biloba L. Male Flowers In Vitro. Molecules 2019, 24, 1496.
  • Perry, E.K.; Pickering, A.T.; Wang, W.W.; Houghton, P.J.; Perry, N.S.L. Medicinal Plants and Alzheimer’s Disease: from Ethnobotany to Phytotherapy. J. Pharm. Pharmacol. 1999, 51, 527–534.
  • Kleijnen, J.; Knipschild, P. Ginkgo biloba. Lancet 1992, 340, 1136–1139.
  • Xie, L.; Hettiarachchy, N.S.; Jane, M.E.; Johnson, M.G. Antimicrobial activity of Ginkgo biloba leaf extract on Listeria monocytogenes. J. Food Sci. 2003, 68, 268–270.
  • Diamond, B.J.; Shiflett, S.C.; Feiwel, N.; Matheis, R.J.; Noskin, O.; Richards, J.A.; Schoenberger, N.E. Ginkgo biloba extract: Mechanisms and clinical indications. Arch. Phys. Med. Rehabil. 2000, 81, 668–678.
  • Diamond, B.J.; Shiflett, S.C.; Feiwel, N.; Matheis, R.J.; Noskin, O.; Richards, J.A.; Schoenberger, N.E. Ginkgo biloba extract: Mechanisms and clinical indications. Arch. Phys. Med. Rehabil. 2000, 81, 668–678.
  • Bezerra M.A. Santelli R.E. Oliveira E.P. Villar L.S. Escaleira L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta 76. 2008. 965-977.
  • Y.Y. Chen. H.Y. Luo. A.P. Gao. M. Zhu. Extraction of Polysaccharides from Mango (Mangifera indica Linn.) Seed by Response Surface Methodology and Identification of their Structural Characteristics, Food Analytical Methods 5. 2012. 800-806.
  • X.L. Liu. T. H. Mu. H.N. Sun. M. Zhang. Optimization of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology, Food Chemistry 141. 2013. 3034-3041.
  • S.H. Wu. G.L. Gong. Y.Y. Wang. F. Li. et al, Response surface optimization of enzyme-assisted extraction polysaccharides from Dictyophora indusiate, International Journal of Biological Macromolecules 61. 2013. 63-68.
  • M. B. Lan. J. Guo. H.L. Zhao. H.H. Yuan. Optimization of the Extraction of the Magnolia officinalis Polysaccharides Using Response Surface Methodology, Asian Journal of Chemistry 24. 2012. 2290-2294.
  • Y.K. Hong. W.J. Liu. T. Li. S.Y. She. Optimization of extraction of Eucommia ulmoides polysaccharides by response surface methodology, Carbohydrate Polymers 92. 2013. 1761-1766.
  • J. Prakash Maran. S. Manikandan. K. Thirugnanasambandham. C. Vigna Nivetha. R. Dinesh. Box–Behnken design-based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide, Carbohydrate Polymers 92. 2013. 604-611.
  • T. Zhu. H.J. Heo. K.H. Row. Central Composite Design for Optimized Extraction of Polysaccharides from Undaria pinnatifida, Chemical Research in Chinese Universities 28. 2012. 620-623.
  • Özyurt. M. (2005). Aldehid. peroksijen ve perasetik asit ile klor verici ajan içermeyen ve alet dezenfektanı olarak önerilen diğer dezenfektanlar. Genel kullanım alanları ve antimikrobiyal etkinlikleri. 4.Ulusal sterilizasyon dezenfeksiyon kongresi. Kongre Kitabı. Editörler: Günaydın. M. S.
  • Petrović, M, Jovanović, M, Lević, S, Nedović, V, Mitić-Ćulafić, D, Semren, T. Ž, and Veljović, S. (2022). Valorization potential of Plantago major L. solid waste remaining after industrial tincture production: Insight into the chemical composition and bioactive properties. Waste and Biomass Valorization, 13(3), 1639-1651.
  • Lopes, J. D. S, de Lima, A. B. S, da Cruz Cangussu, R. R, da Silva, M. V, Ferrão, S. P. B, and Santos, L. S. (2022). Application of spectroscopic techniques and chemometric methods to differentiate between true cinnamon and false cinnamon. Food Chemistry, 368, 130746.
  • Prakash Maran, J., Mekala, V., Manikandan, S., 2013. Modeling and optimization of ultrasound-assisted extraction of polysaccharide from Cucurbita moschata. Carbohydr. Polym. 92, 2018–2026.
  • G. E. P. Box. J. S. Hunter. "Multi-Factor Experimental Designs for Exploring Response Surfaces." Ann. Math. Statist. 28 (1) 195 - 241, March, 1957.
  • Samavati, V. (2013). Central composite rotatable design for investigation of microwaveassisted extraction of okra pod hydrocolloid. International Journal of Biological Macromolecules, 61, 142–149.
  • Prakash Maran, J., Sivakumar, V., Sridhar, R., Prince Immanuel, V., 2013. Development of model for mechanical properties of tapioca starch based edible films. Ind. Crop. Prod. 42, 159–168.
  • Palo Alto. CA.. (1998). Dialog. Information. Services. Piers Imports (US Ports) Database 573.
There are 34 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Articles
Authors

Mesut Yılmaz Karahan 0000-0003-1729-161X

İbrahim Bulduk 0000-0001-6172-7738

Publication Date March 17, 2025
Submission Date November 6, 2024
Acceptance Date February 28, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Karahan, M. Y., & Bulduk, İ. (2025). Total phenolics and total flavonoids in Ginkgo biloba leaves of the plant optimization of the extraction conditions. International Journal of Agriculture Environment and Food Sciences, 9(1), 41-49. https://doi.org/10.31015/2025.1.6


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27