Research Article
BibTex RIS Cite

THE CONTACT MECHANIC FOR FUNCTIONALLY GRADED LAYER RESTING ON HALF PLANE

Year 2019, , 639 - 646, 15.09.2019
https://doi.org/10.21923/jesd.533618

Abstract

In this study, a contact
mechanic of a functionally graded (FG) layer resting on a half plane and
pressed with distributed load from the top was considered according to theory
of elasticity. The problem is solved under the assumptions that all surfaces are
frictionless, the effect of gravity forces is neglected. The problem is reduced
a system of integral equation in which the contact pressure are unknown
functions by using integral transform technique and applying boundary
conditions on equilibrium equations, constitutive equations and
strain-displacement equations. The numerical solution of the integral equation
was carried out with Gauss-Jacobi integration formulation taking into account
the equilibrium condition and contact lengths and stresses have been found. In
addition, in this study, the effect of the Application width of distributed
load and the functional change of material properties on the stress
distribution will be investigated. 

References

  • Abanoz, M., Yaylacı, M., Birinci, A., 2019. Contact problems between a functionally graded layer and a rigid support. Journal of Structural Engineering & Applied Mechanics, 2 (1), 25-35.
  • Adıyaman, G., Birinci, A., Öner, E., Yaylacı, M., 2016. A receding contact problem between a functionally graded layer and two homogeneous quarter planes. Acta Mechanica, 227, 1753–1766.
  • Adıyaman, G., Öner, E., Birinci, A., 2017. Continuous and discontinuous contact problem of a functionally graded layer resting on a rigid foundation. Acta Mechanica, 228, 303–317.
  • Avcar, M., Mohammed, WKM., (2017). Winkler zemin ve fonksiyonel derecelendirilmiş malzeme özelliklerinin kirişin frekans parametrelerine etkilerinin incelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 5,(3), 573-580.
  • Çömez, İ., 2009. Rijit Dairesel Bir Pançla Bastırılan Elastik Tabaka ve Yarım Düzlemin Sürtünmeli Değme Problemi. Doktora Tezi. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, Türkiye, 128s.
  • Çömez, İ., El-Borgi, S., Kahya, V., Erdöl, R., 2016. Receding contact problem for two layer functionally graded media ındented by a rigid punch. Acta Mechanica, 227, 2493-2504.
  • Çömez, İ., El-Borgi, S., 2017. Contact problem of a graded layer supported by two rigid punches. Archives of Mechanics, 11, 1-11.
  • Çömez, İ., Güler, M.A., 2017. The contact problem of a rigid punch sliding over a functionally graded bilayer, Acta Mechanica, 228, 2237–2249.
  • El-Borgi, S., Abdelmoula, R., Keer L., 2006. A receding contact problem between a functionally graded layer and a homogeneous substrate. International Journal of Solids and Structures, 43, 658-674.
  • El-Borgi, S., Usman, S., Güler, M.A., 2014. A frictional receding contact plane problem between a functionally graded layer and a homogeneous substrate. International Journal of Solids and Structures, 51, 4462-4476.
  • Erdoğan, F., Gupta, G.D., 1972. On the numerical solution of singular integral equations. Quarterly Journal Of Applied Mathematics, 29, 525-534.
  • Erdogan, F., Gupta, G.D., Cook, T.S., 1973. Numerical solution of singular ıntegral equations, in methods of analysis and solution of crack problems, Noordhoff, Groningen.
  • Ke, L., Wang, Y., 2006. Two-Dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties. International Journal of Solids and Structures, 43, 5779-5798.
  • Koizumi, M., 1993. Functionally gradient materials the concept of FGM, Ceramic Transactions, 34, 3-10.
  • Krenk, S., 1975. On quadrate formulas for singular ıntegral-equations of 1st and 2nd kind. Quarterly of Applied Mathematics, 33, (3), 225-232.
  • Turan, M., Adiyaman, G., Kahya, V., Birinci, A., 2016. Axisymmetric analysis of a functionally graded layerresting on elastic substrate. Structural Engineering and Mechanics, 58, 423-442.
  • Yamanouchi, M., Koizumi, M., Hirai, T., Shiota I., Proceedings of the First International Symposium on Functionally Gradient Materials, Japan, 1990.

YARIM DÜZLEM ÜZERİNE OTURAN FONKSİYONEL DERECELENDİRİLMİŞ TABAKANIN DEĞME MEKANİĞİ

Year 2019, , 639 - 646, 15.09.2019
https://doi.org/10.21923/jesd.533618

Abstract

Bu
çalışmada, yarım düzlem üzerine oturan ve üstten yayılı yükler ile bastırılan
fonksiyonel derecelendirilmiş (FD) bir tabakanın eksenel simetrik değme
mekaniği elastisite teorisine göre ele alınmıştır. Değme yüzeyleri sürtünmesiz
olup, kütle kuvvetlerinin etkisi ihmal edilmiştir. Denge denklemlerine, bünye
denklemlerine ve şekil değiştirme-yer değiştirme bağıntılarına sınır şartları
uygulanıp problemde integral dönüşüm teknikleri kullanılarak değme
gerilmelerinin bilinmeyen olduğu integral denklemine indirgenmiştir. İntegral
denklemin sayısal çözümü, denge şartı da dikkate alınarak, Gauss-Jacobi
integrasyon formülasyonuyla gerçekleştirilmiş, değme uzunlukları ve değme
gerilmeleri bulunmuştur. Ayrıca çalışmada, yayılı yükün uygulama genişliği ve
malzeme özelliklerinin fonksiyonel değişiminin tabakada oluşacak gerilme
dağılışlarına etkisi incelenmiştir.  
 

References

  • Abanoz, M., Yaylacı, M., Birinci, A., 2019. Contact problems between a functionally graded layer and a rigid support. Journal of Structural Engineering & Applied Mechanics, 2 (1), 25-35.
  • Adıyaman, G., Birinci, A., Öner, E., Yaylacı, M., 2016. A receding contact problem between a functionally graded layer and two homogeneous quarter planes. Acta Mechanica, 227, 1753–1766.
  • Adıyaman, G., Öner, E., Birinci, A., 2017. Continuous and discontinuous contact problem of a functionally graded layer resting on a rigid foundation. Acta Mechanica, 228, 303–317.
  • Avcar, M., Mohammed, WKM., (2017). Winkler zemin ve fonksiyonel derecelendirilmiş malzeme özelliklerinin kirişin frekans parametrelerine etkilerinin incelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 5,(3), 573-580.
  • Çömez, İ., 2009. Rijit Dairesel Bir Pançla Bastırılan Elastik Tabaka ve Yarım Düzlemin Sürtünmeli Değme Problemi. Doktora Tezi. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, Türkiye, 128s.
  • Çömez, İ., El-Borgi, S., Kahya, V., Erdöl, R., 2016. Receding contact problem for two layer functionally graded media ındented by a rigid punch. Acta Mechanica, 227, 2493-2504.
  • Çömez, İ., El-Borgi, S., 2017. Contact problem of a graded layer supported by two rigid punches. Archives of Mechanics, 11, 1-11.
  • Çömez, İ., Güler, M.A., 2017. The contact problem of a rigid punch sliding over a functionally graded bilayer, Acta Mechanica, 228, 2237–2249.
  • El-Borgi, S., Abdelmoula, R., Keer L., 2006. A receding contact problem between a functionally graded layer and a homogeneous substrate. International Journal of Solids and Structures, 43, 658-674.
  • El-Borgi, S., Usman, S., Güler, M.A., 2014. A frictional receding contact plane problem between a functionally graded layer and a homogeneous substrate. International Journal of Solids and Structures, 51, 4462-4476.
  • Erdoğan, F., Gupta, G.D., 1972. On the numerical solution of singular integral equations. Quarterly Journal Of Applied Mathematics, 29, 525-534.
  • Erdogan, F., Gupta, G.D., Cook, T.S., 1973. Numerical solution of singular ıntegral equations, in methods of analysis and solution of crack problems, Noordhoff, Groningen.
  • Ke, L., Wang, Y., 2006. Two-Dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties. International Journal of Solids and Structures, 43, 5779-5798.
  • Koizumi, M., 1993. Functionally gradient materials the concept of FGM, Ceramic Transactions, 34, 3-10.
  • Krenk, S., 1975. On quadrate formulas for singular ıntegral-equations of 1st and 2nd kind. Quarterly of Applied Mathematics, 33, (3), 225-232.
  • Turan, M., Adiyaman, G., Kahya, V., Birinci, A., 2016. Axisymmetric analysis of a functionally graded layerresting on elastic substrate. Structural Engineering and Mechanics, 58, 423-442.
  • Yamanouchi, M., Koizumi, M., Hirai, T., Shiota I., Proceedings of the First International Symposium on Functionally Gradient Materials, Japan, 1990.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Araştırma Articlessi \ Research Articles
Authors

Müjgen Yaylı This is me 0000-0002-2017-218X

Murat Yaylacı 0000-0003-0407-1685

Ahmet Birinci 0000-0002-5913-7699

Publication Date September 15, 2019
Submission Date February 28, 2019
Acceptance Date April 19, 2019
Published in Issue Year 2019

Cite

APA Yaylı, M., Yaylacı, M., & Birinci, A. (2019). YARIM DÜZLEM ÜZERİNE OTURAN FONKSİYONEL DERECELENDİRİLMİŞ TABAKANIN DEĞME MEKANİĞİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(3), 639-646. https://doi.org/10.21923/jesd.533618