Research Article
BibTex RIS Cite

DAİRESEL BOŞLUKLU KİRİŞLERDE EĞİLME VE YANAL BURULMALI BURKULMA DAVRANIŞININ İNCELENMESİ

Year 2020, Volume: 8 Issue: 3, 869 - 882, 24.09.2020
https://doi.org/10.21923/jesd.705441

Abstract

Dairesel boşluklu kirişin eğilme ve elastik yanal burulmalı burkulma davranışını incelemek amacıyla Avrupa profilleri ve çelik kalitesi kullanılarak üç boyutlu sonlu eleman analizi gerçekleştirilmiştir. Literatürden bir deneysel çalışma sonlu eleman modelinin doğrulaması için seçilmiştir. Doğrulanmış sayısal model kullanılarak; delik çapı, delikler arası mesafe ve çeşitli tiplerde rijitlik levhası kullanımı gibi bazı geometrik özelliklerin kirişin eğilme ve elastic burkulma davranışını üzerindeki etkisini incelemek amacıyla parametrik çalışma yürütülmüştür. Sonlu eleman modeline malzeme ve geometrinin doğrusal olmayan davranışı dahil edilmiştir. Çalışmanın diğer bölümünde ise, yanal burulmalı burkulma teorik hesabı brüt ve net kesit özellikleri ile incelenmiştir. Sonuçlar, AISC360-16 ve TSDC-2016 tasarım rehberlerinde verilen hesaplama yönteminin net en-kesit özellikleri ile Avrupa profilleri ve çelik kalitesi için daha doğru sonuç verdiğini göstermiştir.

References

  • ADINA 8.9, 2013. System Offers a Program for Comprehensive Finite Element Analyses of Structures. ADINA R & D, Inc.
  • AISC-31. 2017. AISC Design Guide 31. Castellated and Cellular Beam Design. American Institute of Steel Construction. Chicago: American Institute of Steel Construction (AISC).
  • Akgönen, A. İ., Yorgun, C., Vatansever, C., 2015. Cyclic Behavior of Extended End-Plate Connections. Steel and Composite Structures, 19(5), 1185-1201.
  • Akgöz, B., Civalek, B., 2017. A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation. Composite Structures,176, 1028-1038.
  • ANSI/AISC 360-16, 2016. Specification for Structural Steel Buildings. American Institute of Steel Construction.
  • ANSYS, 2019. Engineering Simulation & 3D Design Software.ANSYS, 2019. Engineering Simulation & 3D Design Software.
  • Arcelormittal, 2020a. Cellular Beams https://constructalia.arcelormittal.com/files/5_4_1_Cellular_web--d7fedb749a4408ea2603fdd411761428.pdf, accessed on July 2020
  • Arcelormittal, 2020b. Cellular Beams. http://sections.arcelormittal.com/fileadmin/redaction/4-Library/1-Sales_programme_Brochures/ACB/ACB_EN.pdf, accessed on January 2020
  • AS4100, 1998. Australian steel standard. AS4100, 1998. Australian steel standard.
  • Avcar M., 2014a. Elastic Buckling of Steel Columns under Axial Compression. American Journal of Civil Engineering, 2(3), 102-108.
  • Avcar M., 2014b. Free Vibration Analysis of Beams Considering Different Geometric Characteristics and Boundary Conditions. International Journal of Mechanics and Applications, 4 (3), 94-100.
  • Beer, F. P., Johnston, E. R., DeWolf, J. T., Mazurek D. F. (2014). Mechanics of materials, 6th SI-Turkish Edition.
  • Bradley, T. P., 2003. Stability of Castellated Beams. Msc. Thesis. Blacksburg, Virginia, United States of America.
  • BS5950, 2000. British Standard Institution. London.BS5950, 2000. British Standard Institution. London.
  • Civalek, O., Kiracıoglu, O., 2010, Free vibration analysis of Timoshenko beams by DSC method. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:1890–1898.
  • Ellobody, E., 2012. Nonlinear Analysis of Cellular Steel Beams Under Combined Buckling Modes. Thin-Walled Structures, 52, 66-79. doi:10.1016/j.tws.2011.12.009.
  • El-Sawy, K. M., Sweedan, A. M., Martini, M. I., 2014. Moment Gradient Factor of Cellular Steel Beams under Inelastic Flexure. Journal of Constructional Steel Research, 98, 20–34. doi:10.1016/j.jcsr.2014.02.007
  • EN 1993-1-1, 2005. Eurocode 3: Design of steel structures. The European Union.
  • Erdal, F., Saka, M. P., 2013. Ultimate Load Carrying Capacity of Optimally Designed Steel Cellular Beams. Journal of Constructional Steel Research, 80, Pages 355-368. doi:10.1016/j.jcsr.2012.10.007
  • Jiang, D., Xiao, C., Chen, T., Zhang, Y., 2019. Study on the Seismic Performance of Box-Plate Steel Structure with Openings Modular Unit. Materials, 12(24), 4142.
  • Kwani, S., Wijaya, P. K., 2017. Lateral Torsional Buckling of Castellated Beams Analyzed Using the Collapse Analysis. Journal of Constructional Steel Research, 171, 813-820. doi:10.1016/j.proeng.2017.01.370
  • Martini, H., Mohammad, M. I., 2011. Elasto-Plastic Lateral Torsional Buckling of Steel Beams with Perforated Web. Msc. Thesis. United Arab Emirates University.
  • Pachideh, G., Gholhaki, M., Daryan, A., 2019. Analyzing the Damage Index of Steel Plate Shear Walls Using Pushover Analysis. Structures, 20, 437-451.
  • Pachpor, P., Gupta, L., Deshpande, N., 2015. Analysis and Design of Cellular Beam and Its Verification. IERI Procedia, 7, 120-127. doi:10.1016/j.ieri.2014.08.019
  • Roy, K., Lim, J., 2019. Numerical Investigation into the Buckling Behaviour of Face-To-Face Built-Up Cold-Formed Stainless Steel Channel Sections under Axial Compression. Structures, 20, 42-73.
  • Roy, K., Ting, T., Lau, H., Lim, J., 2018. Effect of Thickness on The Behaviour of Axially Loaded Back-to-Back Cold-Formed Steel Built-up Channel Sections - Experimental and Numerical Investigation. Structures, 16, 327-346.
  • Sharcnet, 2017. "Solid187":https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/ans_elem/Hlp_E_SOLID187.html
  • Sweedan A.M.I., 2011. Elastic Lateral Stability of I-Shaped Cellular Steel Beams. Journal of Constructional Steel Research, 67, 182-194. doi:10.1016/j.jcsr.2010.08.009
  • Taheri, E., Firouzianhaji, A., Usef, N., Mehrabi, P., Ronagh, H., Samali, B., 2019. Investigation of a Method for Strengthening Perforated Cold-Formed Steel Profiles Undercompression Loads. Applied Science, 9(23), 5085.
  • Timoshenko, S., Gere, J., 1961, Theory of Elastic Stability (2nd b.). New York: McGraw-Hill.
  • Tsavdaridis, K. D., D'Mello, C., 2011. Web Buckling Study of The Behaviour and Strength of Perforated Steel Beams With Different Novel Web Opening Shapes. Journal of Constructional Steel Research, 67, 1605-1620. doi:10.1016/j.jcsr.2011.04.004
  • Tsavdaridis, K. D., Galiatsatos, G., 2015. Assessment of Cellular Beams with Transverse Stiffeners and Closely Spaced Web Openings. Thin-Walled Structures, 94, 636-650. doi:10.1016/j.tws.2015.05.005
  • TSDC-2016., 2016. Regulation Regarding the Design, Calculation and Construction Basis of Steel Structures, Turkey: Minister of Environment and Urban Planning, Ankara.
  • Yin, Z., Zhang, H., Yang, W., 2019. Study on Seismic Performance and Damage Analysis of Steel Plate Shear Wall With Partially Encased Composite (Pec) Columns. Applied Science, 9(5), 907.

INVESTIGATION OF FLEXURAL AND ELASTIC BUCKLING BEHAVIOR OF CELLULAR BEAMS

Year 2020, Volume: 8 Issue: 3, 869 - 882, 24.09.2020
https://doi.org/10.21923/jesd.705441

Abstract

3D Finite Element Analysis (FEA) was performed to determine flexural and elastic lateral-torsional buckling behavior of cellular beam by using European steel shape and quality. An experimental study from literature was chosen for verification of the Finite Element Model (FEM). Parametric studies were carried out with a verified numerical model to investigate the effect of some geometrical properties of the cellular beam such as hole diameter, hole spacing, and various types of rigidity plates on elastic buckling and flexural capacity of the beam. Geometric and material nonlinear behavior were included in FEM. In the other part of the study, the theoretical calculation method of Lateral Torsional Buckling (LTB) with gross section and with net section properties was also investigated. The study showed that the LTB calculation method given by AISC360-16 and TSDC-2016 design guides provided more accurate result with net cross-section for European steel shapes and quality.

References

  • ADINA 8.9, 2013. System Offers a Program for Comprehensive Finite Element Analyses of Structures. ADINA R & D, Inc.
  • AISC-31. 2017. AISC Design Guide 31. Castellated and Cellular Beam Design. American Institute of Steel Construction. Chicago: American Institute of Steel Construction (AISC).
  • Akgönen, A. İ., Yorgun, C., Vatansever, C., 2015. Cyclic Behavior of Extended End-Plate Connections. Steel and Composite Structures, 19(5), 1185-1201.
  • Akgöz, B., Civalek, B., 2017. A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation. Composite Structures,176, 1028-1038.
  • ANSI/AISC 360-16, 2016. Specification for Structural Steel Buildings. American Institute of Steel Construction.
  • ANSYS, 2019. Engineering Simulation & 3D Design Software.ANSYS, 2019. Engineering Simulation & 3D Design Software.
  • Arcelormittal, 2020a. Cellular Beams https://constructalia.arcelormittal.com/files/5_4_1_Cellular_web--d7fedb749a4408ea2603fdd411761428.pdf, accessed on July 2020
  • Arcelormittal, 2020b. Cellular Beams. http://sections.arcelormittal.com/fileadmin/redaction/4-Library/1-Sales_programme_Brochures/ACB/ACB_EN.pdf, accessed on January 2020
  • AS4100, 1998. Australian steel standard. AS4100, 1998. Australian steel standard.
  • Avcar M., 2014a. Elastic Buckling of Steel Columns under Axial Compression. American Journal of Civil Engineering, 2(3), 102-108.
  • Avcar M., 2014b. Free Vibration Analysis of Beams Considering Different Geometric Characteristics and Boundary Conditions. International Journal of Mechanics and Applications, 4 (3), 94-100.
  • Beer, F. P., Johnston, E. R., DeWolf, J. T., Mazurek D. F. (2014). Mechanics of materials, 6th SI-Turkish Edition.
  • Bradley, T. P., 2003. Stability of Castellated Beams. Msc. Thesis. Blacksburg, Virginia, United States of America.
  • BS5950, 2000. British Standard Institution. London.BS5950, 2000. British Standard Institution. London.
  • Civalek, O., Kiracıoglu, O., 2010, Free vibration analysis of Timoshenko beams by DSC method. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:1890–1898.
  • Ellobody, E., 2012. Nonlinear Analysis of Cellular Steel Beams Under Combined Buckling Modes. Thin-Walled Structures, 52, 66-79. doi:10.1016/j.tws.2011.12.009.
  • El-Sawy, K. M., Sweedan, A. M., Martini, M. I., 2014. Moment Gradient Factor of Cellular Steel Beams under Inelastic Flexure. Journal of Constructional Steel Research, 98, 20–34. doi:10.1016/j.jcsr.2014.02.007
  • EN 1993-1-1, 2005. Eurocode 3: Design of steel structures. The European Union.
  • Erdal, F., Saka, M. P., 2013. Ultimate Load Carrying Capacity of Optimally Designed Steel Cellular Beams. Journal of Constructional Steel Research, 80, Pages 355-368. doi:10.1016/j.jcsr.2012.10.007
  • Jiang, D., Xiao, C., Chen, T., Zhang, Y., 2019. Study on the Seismic Performance of Box-Plate Steel Structure with Openings Modular Unit. Materials, 12(24), 4142.
  • Kwani, S., Wijaya, P. K., 2017. Lateral Torsional Buckling of Castellated Beams Analyzed Using the Collapse Analysis. Journal of Constructional Steel Research, 171, 813-820. doi:10.1016/j.proeng.2017.01.370
  • Martini, H., Mohammad, M. I., 2011. Elasto-Plastic Lateral Torsional Buckling of Steel Beams with Perforated Web. Msc. Thesis. United Arab Emirates University.
  • Pachideh, G., Gholhaki, M., Daryan, A., 2019. Analyzing the Damage Index of Steel Plate Shear Walls Using Pushover Analysis. Structures, 20, 437-451.
  • Pachpor, P., Gupta, L., Deshpande, N., 2015. Analysis and Design of Cellular Beam and Its Verification. IERI Procedia, 7, 120-127. doi:10.1016/j.ieri.2014.08.019
  • Roy, K., Lim, J., 2019. Numerical Investigation into the Buckling Behaviour of Face-To-Face Built-Up Cold-Formed Stainless Steel Channel Sections under Axial Compression. Structures, 20, 42-73.
  • Roy, K., Ting, T., Lau, H., Lim, J., 2018. Effect of Thickness on The Behaviour of Axially Loaded Back-to-Back Cold-Formed Steel Built-up Channel Sections - Experimental and Numerical Investigation. Structures, 16, 327-346.
  • Sharcnet, 2017. "Solid187":https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/ans_elem/Hlp_E_SOLID187.html
  • Sweedan A.M.I., 2011. Elastic Lateral Stability of I-Shaped Cellular Steel Beams. Journal of Constructional Steel Research, 67, 182-194. doi:10.1016/j.jcsr.2010.08.009
  • Taheri, E., Firouzianhaji, A., Usef, N., Mehrabi, P., Ronagh, H., Samali, B., 2019. Investigation of a Method for Strengthening Perforated Cold-Formed Steel Profiles Undercompression Loads. Applied Science, 9(23), 5085.
  • Timoshenko, S., Gere, J., 1961, Theory of Elastic Stability (2nd b.). New York: McGraw-Hill.
  • Tsavdaridis, K. D., D'Mello, C., 2011. Web Buckling Study of The Behaviour and Strength of Perforated Steel Beams With Different Novel Web Opening Shapes. Journal of Constructional Steel Research, 67, 1605-1620. doi:10.1016/j.jcsr.2011.04.004
  • Tsavdaridis, K. D., Galiatsatos, G., 2015. Assessment of Cellular Beams with Transverse Stiffeners and Closely Spaced Web Openings. Thin-Walled Structures, 94, 636-650. doi:10.1016/j.tws.2015.05.005
  • TSDC-2016., 2016. Regulation Regarding the Design, Calculation and Construction Basis of Steel Structures, Turkey: Minister of Environment and Urban Planning, Ankara.
  • Yin, Z., Zhang, H., Yang, W., 2019. Study on Seismic Performance and Damage Analysis of Steel Plate Shear Wall With Partially Encased Composite (Pec) Columns. Applied Science, 9(5), 907.
There are 34 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Alirıza İlker Akgönen 0000-0001-7384-8764

Barış Güneş 0000-0003-1747-001X

Dia Eddin Nassani 0000-0002-4196-8822

Publication Date September 24, 2020
Submission Date March 18, 2020
Acceptance Date August 5, 2020
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

APA Akgönen, A. İ., Güneş, B., & Nassani, D. E. (2020). INVESTIGATION OF FLEXURAL AND ELASTIC BUCKLING BEHAVIOR OF CELLULAR BEAMS. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(3), 869-882. https://doi.org/10.21923/jesd.705441