Research Article
BibTex RIS Cite

Farklı Çözücülerle Hazırlanan Bazı Meyve Ekstraktlarının Antioksidan Potansiyeli

Year 2021, Volume: 11 Issue: 2, 1127 - 1139, 01.06.2021
https://doi.org/10.21597/jist.753868

Abstract

Bu çalışmada çilek, ahududu, vişne ve kızılcıktan ekstraksiyon çözücüsü olarak metanol, etanol, %80’lik metanol ve %80’lik etanol kullanılarak fenolik ekstraktlar elde edilmiştir. Herbir meyve ekstraktının toplam fenolik madde miktarı ve farklı konsantrasyonlarda (0.5, 1, 2 and 3 mg ml-1) antioksidan aktiviteleri (demir iyonları indirgeme gücü, linoleik asit emülsiyonunda antioksidan aktivite ve DPPH radikallerini yakalama gücü) belirlenmiştir. Tüm ekstraktların antioksidan aktiviteleri konsantrasyon arttıkça artmıştır. Toplam fenolik madde miktarı ile ekstraktların antioksidan aktiviteleri arasında bir korelasyon bulunmaktadır. Toplam fenolik madde miktarına ve antioksidan aktivite analiz sonuçlarına göre çilek ekstraktları diğer meyve ekstraktlarına kıyasla daha yüksek antioksidan aktiviteye sahip olmuştur (p<0.05). Ahududu ekstraktının demir indirgeme gücü en düşük olup, aynı çözücü için vişne ekstraktında kızılcık ekstraktından daha yüksek indirgeme gücü saptanmıştır. Linoleik asit emülsiyonunda meyve ekstraklarının tüm konsantrasyonlarında sulu etanol ekstraktları daha yüksek antioksidan aktiviteye sahip olmuştur. Çilek ekstraktları dışında, ahududu %80 metanol ekstraktı en yüksek DPPH radikal yakalama gücüne sahip olup, onu kızılcık ve vişne ekstraktları takip etmiştir.

Thanks

Araştırmadaki yardımlarından dolayı Aydan Erkol'a teşekkürlerimizi sunarız.

References

  • Antolovich M, Prenzler P, Robards K, Ryan D, 2000. Sample preparation in the determination of phenolic compounds in fruits. Analyst, 125: 989–1009.
  • Bobinaite R, Viškelis P, Venskutonis PR, 2012. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chemistry, 132: 1495–1501.
  • Çekiç Ç, Özgen M, 2010. Comparison of antioxidant capacity and phytochemical properties of wild and cultivated red raspberries (Rubus idaeus L.). Journal of Food Composition and Analysis, 23: 540–544.
  • Celep E, Aydin A, Yesilada E, 2012. A comparative study on the in vitro antioxidant potentials of three edible fruits: Cornelian cherry, Japanese persimmon and cherry laurel. Food and Chemical Toxicology, 50: 3329–3335.
  • Cerezo AB, Cuevas E, Winterhalter P, Garcia-Parrilla MC, Troncoso AM, 2010. Isolation, identification, and antioxidant activity of anthocyanin compounds in Camarosa strawberry. Food Chemistry, 123: 574–582.
  • Chaves VC, Calvete E, Reginatto FH, 2017. Quality properties and antioxidant activity of seven strawberry (Fragaria x ananassa duch) cultivars. Scientia Horticulturae, 225: 293–298.
  • Chen L, Xin X, Zhang H, Yuan Q, 2013a. Phytochemical properties and antioxidant capacities of commercial raspberry varieties. Journal of Functional Foods, 5: 508–515.
  • Chen N, Zhao M, Sun W, 2013b. Effect of protein oxidation on the in vitro digestibility of soy protein isolate. Food Chemistry, 5: 508–515.
  • Damar I, Ekşi A, 2012. Antioxidant capacity and anthocyanin profile of sour cherry (Prunus cerasus L.) juice. Food Chemistry, 135: 2910–2914.
  • De Souza VR, Pereira PAP, Da Silva TLT, De Oliveira Lima LC, Pio R, Queiroz F, 2014. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156: 362–368.
  • Dragišic Maksimovic JJ, Milivojević JM, Poledica MM, Nikolić MD, Maksimović VM, 2013. Profiling antioxidant activity of two primocane fruiting red raspberry cultivars (Autumn bliss and Polka). Journal of Food Composition and Analysis, 31: 173–179.
  • Ferretti G, Bacchetti T, Belleggia A, Neri D, 2010. Cherry antioxidants: From farm to table. Molecules, 15: 6993–7005.
  • Günal-Köroğlu D, Turan S, Kiralan M, Ramadan MF, 2019. Oxidative stabilisation of sunflower oil enriched with olive mill wastewater and olive pomace phenolics-rich extracts with soy lecithin. Rivista Italiana Sostanze Grasse, 96 (4): 241–250.
  • Günal D, Turan S, 2018. Effects of olive wastewater and pomace extracts, lecithin, and ascorbyl palmitate on the oxidative stability of refined sunflower oil. Journal of Food Processing and Preservation, 42 (9): e13705.
  • Häkkinen S, Heinonen M, Kärenlampi S, Mykkänen H, Ruuskanen J, Törrönen R, 1999. Screening of selected flavonoids and phenolic acids in 19 berries. Food Research International, 32 (5): 345–353.
  • Hassanpour H, Yousef H, Jafar H, Mohammad A, 2011. Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Scientia Horticulturae, 129: 459–463.
  • Homoki JR, Nemes A, Fazekas E, Gyémánt G, Balogh P, Gál F, Al-Asri J, Mortier J, Wolber G, Babinszky L, Remenyik J, 2016. Anthocyanin composition, antioxidant efficiency, and α-amylase inhibitor activity of different Hungarian sour cherry varieties (Prunus cerasus L.). Food Chemistry, 194: 222–229.
  • Huang WY, Zhang HC, Liu WX, Li CY, 2012. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. Journal of Zhejiang University: Science B, 13 (2): 94–102.
  • Iqbal S, Haleem S, Akhtar M, Zia-ul-Haq M, Akbar J, 2008. Efficiency of pomegranate peel extracts in stabilization of sunflower oil under accelerated conditions. Food Research International, 41 (2): 194–200.
  • Khoo GM, Clausen MR, Pedersen BH, Larsen E, 2011. Bioactivity and total phenolic content of 34 sour cherry cultivars. Journal of Food Composition and Analysis, 24: 772–776.
  • Khoo HE, Azlan A, Tang ST, Lim SM, 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and Nutrition Research, 61 (1): 1361779.
  • Kim DO, Ho JH, Young JK, Hyun SY, Lee CY, 2005. Sweet and sour cherry phenolics and their protective effects on neuronal cells. Journal of Agricultural and Food Chemistry, 53: 9921–9927.
  • Kopjar M, Orsolic M, Pilizota V, 2014. Anthocyanins, phenols, and antioxidant activity of sour cherry puree extracts and their stability during storage. International Journal of Food Properties, 17: 1393–1405.
  • Mandave PC, Pawar PK, Ranjekar PK, Mantri N, Kuvalekar AA, 2014. Comprehensive evaluation of in vitro antioxidant activity, total phenols and chemical profiles of two commercially important strawberry varieties. Scientia Horticulturae, 172: 124–134.
  • Márquez-López A, Ayala-Flores F, Macías-Pureco S, Chávez-Parga MDC, Valencia Flores DC, Maya-Yescas R, González-Hernández JC, 2020. Extract of ellagitannins starting with Strawberries (Fragaria sp.) and Blackberries (Rubus sp.). Food Science and Technology, 40 (2): 430–439.
  • Mendes L, De Freitas V, Baptista P, Carvalho M, 2011. Comparative antihemolytic and radical scavenging activities of strawberry tree (Arbutus unedo L.) leaf and fruit. Food and Chemical Toxicology, 49: 2285–2291.
  • Moldovan B, Filip A, Clichici S, Suharoschi R, Bolfa P, David L, 2016. Antioxidant activity of Cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. Journal of Functional Foods, 26: 77–87.
  • Mullen W, McGinn J, Lean MEJ, MacLean MR, Gardner P, Duthie GG, Yokota T, Crozier A, 2002. Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50: 5191–5196.
  • Naczk M, Shahidi F, 2004. Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054: 95–111.
  • Pantelidis GE, Vasilakakis M, Manganaris GA, Diamantidis G, 2007. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chemistry, 102: 777–783.
  • Piccolella S, Fiorentino A, Pacifico S, D’Abrosca B, Uzzo P, Monaco P, 2008. Antioxidant properties of sour cherries (Prunus cerasus L): Role of colorless phytochemicals from the methanolic extract of ripe fruits. Journal of Agricultural and Food Chemistry, 56: 1928–1935.
  • Popović BM, Štajner D, Slavko K, Sandra B, 2012. Antioxidant capacity of cornelian cherry (Cornus mas L.) - Comparison between permanganate reducing antioxidant capacity and other antioxidant methods. Food Chemistry, 134: 734–741.
  • Singleton VL, Orthofer R, Lamuela-Raventós RM, 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299: 152–178.
  • Toydemir G, Capanoglu E, Gomez Roldan MV, De Vos RCH, Boyacioglu D, Hall RD, Beekwilder J, 2013. Industrial processing effects on phenolic compounds in sour cherry (Prunus cerasus L.) fruit. Food Research International, 53: 218–225.
  • Tural S, Koca I, 2008. Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Scientia Horticulturae, 116: 362–366.
  • Wojdyło A, Nowicka P, Laskowski P, Oszmiański J, 2014. Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. Journal of Agricultural and Food Chemistry, 62: 12332–12345.
  • Yilmaz KU, Ercisli S, Zengin Y, Sengul M, Kafkas EY, 2009. Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chemistry, 114: 408–412.

Antioxidant Potential of Some Fruit Extracts Prepared with Different Solvents

Year 2021, Volume: 11 Issue: 2, 1127 - 1139, 01.06.2021
https://doi.org/10.21597/jist.753868

Abstract

In this study, phenolic extracts of strawberry, red raspberry, sour cherry, and cornelian cherry were obtained using methanol, ethanol, 80% methanol, and 80% ethanol as extraction solvents. Total phenolic content and antioxidant activities (ferric reducing power, antioxidant activity in linoleic acid emulsion, and DPPH radical scavenging activity) were determined for each fruit extracts at different concentrations (0.5, 1, 2 and 3 mg mL-1). Antioxidant activities of all extracts were increased with increased concentration (P<0.05). There was a correlation between total phenol content and antioxidant activity of the extracts. According to total phenolic content and antioxidant activity analyses, strawberry extracts had significantly higher antioxidant activity compared to other fruit extracts (P<0.05). Reducing power of raspberry ethanol extract was the lowest and sour cherry had higher reducing power than cornelian cherry for the same solvent. Aqueous ethanol extracts had higher antioxidant activity in linoleic acid emulsion among fruit extracts at all concentrations. Except for strawberry extracts, 80% methanol extract of red raspberry had the highest DPPH radical scavenging activity at all the concentration tested, followed by cornelian cherry and sour cherry extracts.

References

  • Antolovich M, Prenzler P, Robards K, Ryan D, 2000. Sample preparation in the determination of phenolic compounds in fruits. Analyst, 125: 989–1009.
  • Bobinaite R, Viškelis P, Venskutonis PR, 2012. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chemistry, 132: 1495–1501.
  • Çekiç Ç, Özgen M, 2010. Comparison of antioxidant capacity and phytochemical properties of wild and cultivated red raspberries (Rubus idaeus L.). Journal of Food Composition and Analysis, 23: 540–544.
  • Celep E, Aydin A, Yesilada E, 2012. A comparative study on the in vitro antioxidant potentials of three edible fruits: Cornelian cherry, Japanese persimmon and cherry laurel. Food and Chemical Toxicology, 50: 3329–3335.
  • Cerezo AB, Cuevas E, Winterhalter P, Garcia-Parrilla MC, Troncoso AM, 2010. Isolation, identification, and antioxidant activity of anthocyanin compounds in Camarosa strawberry. Food Chemistry, 123: 574–582.
  • Chaves VC, Calvete E, Reginatto FH, 2017. Quality properties and antioxidant activity of seven strawberry (Fragaria x ananassa duch) cultivars. Scientia Horticulturae, 225: 293–298.
  • Chen L, Xin X, Zhang H, Yuan Q, 2013a. Phytochemical properties and antioxidant capacities of commercial raspberry varieties. Journal of Functional Foods, 5: 508–515.
  • Chen N, Zhao M, Sun W, 2013b. Effect of protein oxidation on the in vitro digestibility of soy protein isolate. Food Chemistry, 5: 508–515.
  • Damar I, Ekşi A, 2012. Antioxidant capacity and anthocyanin profile of sour cherry (Prunus cerasus L.) juice. Food Chemistry, 135: 2910–2914.
  • De Souza VR, Pereira PAP, Da Silva TLT, De Oliveira Lima LC, Pio R, Queiroz F, 2014. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156: 362–368.
  • Dragišic Maksimovic JJ, Milivojević JM, Poledica MM, Nikolić MD, Maksimović VM, 2013. Profiling antioxidant activity of two primocane fruiting red raspberry cultivars (Autumn bliss and Polka). Journal of Food Composition and Analysis, 31: 173–179.
  • Ferretti G, Bacchetti T, Belleggia A, Neri D, 2010. Cherry antioxidants: From farm to table. Molecules, 15: 6993–7005.
  • Günal-Köroğlu D, Turan S, Kiralan M, Ramadan MF, 2019. Oxidative stabilisation of sunflower oil enriched with olive mill wastewater and olive pomace phenolics-rich extracts with soy lecithin. Rivista Italiana Sostanze Grasse, 96 (4): 241–250.
  • Günal D, Turan S, 2018. Effects of olive wastewater and pomace extracts, lecithin, and ascorbyl palmitate on the oxidative stability of refined sunflower oil. Journal of Food Processing and Preservation, 42 (9): e13705.
  • Häkkinen S, Heinonen M, Kärenlampi S, Mykkänen H, Ruuskanen J, Törrönen R, 1999. Screening of selected flavonoids and phenolic acids in 19 berries. Food Research International, 32 (5): 345–353.
  • Hassanpour H, Yousef H, Jafar H, Mohammad A, 2011. Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Scientia Horticulturae, 129: 459–463.
  • Homoki JR, Nemes A, Fazekas E, Gyémánt G, Balogh P, Gál F, Al-Asri J, Mortier J, Wolber G, Babinszky L, Remenyik J, 2016. Anthocyanin composition, antioxidant efficiency, and α-amylase inhibitor activity of different Hungarian sour cherry varieties (Prunus cerasus L.). Food Chemistry, 194: 222–229.
  • Huang WY, Zhang HC, Liu WX, Li CY, 2012. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. Journal of Zhejiang University: Science B, 13 (2): 94–102.
  • Iqbal S, Haleem S, Akhtar M, Zia-ul-Haq M, Akbar J, 2008. Efficiency of pomegranate peel extracts in stabilization of sunflower oil under accelerated conditions. Food Research International, 41 (2): 194–200.
  • Khoo GM, Clausen MR, Pedersen BH, Larsen E, 2011. Bioactivity and total phenolic content of 34 sour cherry cultivars. Journal of Food Composition and Analysis, 24: 772–776.
  • Khoo HE, Azlan A, Tang ST, Lim SM, 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and Nutrition Research, 61 (1): 1361779.
  • Kim DO, Ho JH, Young JK, Hyun SY, Lee CY, 2005. Sweet and sour cherry phenolics and their protective effects on neuronal cells. Journal of Agricultural and Food Chemistry, 53: 9921–9927.
  • Kopjar M, Orsolic M, Pilizota V, 2014. Anthocyanins, phenols, and antioxidant activity of sour cherry puree extracts and their stability during storage. International Journal of Food Properties, 17: 1393–1405.
  • Mandave PC, Pawar PK, Ranjekar PK, Mantri N, Kuvalekar AA, 2014. Comprehensive evaluation of in vitro antioxidant activity, total phenols and chemical profiles of two commercially important strawberry varieties. Scientia Horticulturae, 172: 124–134.
  • Márquez-López A, Ayala-Flores F, Macías-Pureco S, Chávez-Parga MDC, Valencia Flores DC, Maya-Yescas R, González-Hernández JC, 2020. Extract of ellagitannins starting with Strawberries (Fragaria sp.) and Blackberries (Rubus sp.). Food Science and Technology, 40 (2): 430–439.
  • Mendes L, De Freitas V, Baptista P, Carvalho M, 2011. Comparative antihemolytic and radical scavenging activities of strawberry tree (Arbutus unedo L.) leaf and fruit. Food and Chemical Toxicology, 49: 2285–2291.
  • Moldovan B, Filip A, Clichici S, Suharoschi R, Bolfa P, David L, 2016. Antioxidant activity of Cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. Journal of Functional Foods, 26: 77–87.
  • Mullen W, McGinn J, Lean MEJ, MacLean MR, Gardner P, Duthie GG, Yokota T, Crozier A, 2002. Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50: 5191–5196.
  • Naczk M, Shahidi F, 2004. Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054: 95–111.
  • Pantelidis GE, Vasilakakis M, Manganaris GA, Diamantidis G, 2007. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chemistry, 102: 777–783.
  • Piccolella S, Fiorentino A, Pacifico S, D’Abrosca B, Uzzo P, Monaco P, 2008. Antioxidant properties of sour cherries (Prunus cerasus L): Role of colorless phytochemicals from the methanolic extract of ripe fruits. Journal of Agricultural and Food Chemistry, 56: 1928–1935.
  • Popović BM, Štajner D, Slavko K, Sandra B, 2012. Antioxidant capacity of cornelian cherry (Cornus mas L.) - Comparison between permanganate reducing antioxidant capacity and other antioxidant methods. Food Chemistry, 134: 734–741.
  • Singleton VL, Orthofer R, Lamuela-Raventós RM, 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299: 152–178.
  • Toydemir G, Capanoglu E, Gomez Roldan MV, De Vos RCH, Boyacioglu D, Hall RD, Beekwilder J, 2013. Industrial processing effects on phenolic compounds in sour cherry (Prunus cerasus L.) fruit. Food Research International, 53: 218–225.
  • Tural S, Koca I, 2008. Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Scientia Horticulturae, 116: 362–366.
  • Wojdyło A, Nowicka P, Laskowski P, Oszmiański J, 2014. Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. Journal of Agricultural and Food Chemistry, 62: 12332–12345.
  • Yilmaz KU, Ercisli S, Zengin Y, Sengul M, Kafkas EY, 2009. Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chemistry, 114: 408–412.
There are 37 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Gıda Mühendisliği / Food Engineering
Authors

Deniz Günal Köroğlu 0000-0002-8642-9160

Gezzemhan Süyünç This is me 0000-0002-3759-7221

Rabia Yıldırım This is me 0000-0001-6514-1590

Semra Turan 0000-0002-1005-3590

Publication Date June 1, 2021
Submission Date June 22, 2020
Acceptance Date December 27, 2020
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Günal Köroğlu, D., Süyünç, G., Yıldırım, R., Turan, S. (2021). Antioxidant Potential of Some Fruit Extracts Prepared with Different Solvents. Journal of the Institute of Science and Technology, 11(2), 1127-1139. https://doi.org/10.21597/jist.753868
AMA Günal Köroğlu D, Süyünç G, Yıldırım R, Turan S. Antioxidant Potential of Some Fruit Extracts Prepared with Different Solvents. J. Inst. Sci. and Tech. June 2021;11(2):1127-1139. doi:10.21597/jist.753868
Chicago Günal Köroğlu, Deniz, Gezzemhan Süyünç, Rabia Yıldırım, and Semra Turan. “Antioxidant Potential of Some Fruit Extracts Prepared With Different Solvents”. Journal of the Institute of Science and Technology 11, no. 2 (June 2021): 1127-39. https://doi.org/10.21597/jist.753868.
EndNote Günal Köroğlu D, Süyünç G, Yıldırım R, Turan S (June 1, 2021) Antioxidant Potential of Some Fruit Extracts Prepared with Different Solvents. Journal of the Institute of Science and Technology 11 2 1127–1139.
IEEE D. Günal Köroğlu, G. Süyünç, R. Yıldırım, and S. Turan, “Antioxidant Potential of Some Fruit Extracts Prepared with Different Solvents”, J. Inst. Sci. and Tech., vol. 11, no. 2, pp. 1127–1139, 2021, doi: 10.21597/jist.753868.
ISNAD Günal Köroğlu, Deniz et al. “Antioxidant Potential of Some Fruit Extracts Prepared With Different Solvents”. Journal of the Institute of Science and Technology 11/2 (June 2021), 1127-1139. https://doi.org/10.21597/jist.753868.
JAMA Günal Köroğlu D, Süyünç G, Yıldırım R, Turan S. Antioxidant Potential of Some Fruit Extracts Prepared with Different Solvents. J. Inst. Sci. and Tech. 2021;11:1127–1139.
MLA Günal Köroğlu, Deniz et al. “Antioxidant Potential of Some Fruit Extracts Prepared With Different Solvents”. Journal of the Institute of Science and Technology, vol. 11, no. 2, 2021, pp. 1127-39, doi:10.21597/jist.753868.
Vancouver Günal Köroğlu D, Süyünç G, Yıldırım R, Turan S. Antioxidant Potential of Some Fruit Extracts Prepared with Different Solvents. J. Inst. Sci. and Tech. 2021;11(2):1127-39.