Research Article
BibTex RIS Cite

Limitations in Tunnel Portal Design: An Evaluation Using Numerical Models and Line Surveys

Year 2024, Volume: 48 Issue: 1, 1 - 18, 26.06.2024
https://doi.org/10.24232/jmd.1385219

Abstract

In this study, the engineering geology and the geotechnical design studies of the Aslankayası Tunnel Project are explained. Owing to the low overburden thickness, the tunnel in question, which is located near a slope face, will be exposed to asymmetrical loading after commencement of excavation. The asymmetrical loadings will especially affect the right tube, in the direction of increasing kilometer markings. Furthermore, the thickness between the right tube’s right wall and the slope face in this section has decreased down to 6 m. Moreover, as the tunnel is passing under a 1st degree protected archeological area. Some of the site investigation studies, such as geotechnical drilling and site laboratory works, could not be performed. The excavation support system of the tunnel was determined using empirical studies and numerical models with the help of line surveys, local sampling, and internationally accepted rock mass classification studies (RMR, Q, GSI). These studies were performed on rock mass outcrops. Rock mass engineering properties were determined through the utilization of empirical equations that incorporate data derived from site investigation studies and laboratory test results as input. By using geotechnical properties obtained from line surveys and engineering geology studies, a numerical model was generated. The numerical model results corroborated the asymmetrical loading predictions obtained from line surveys and engineering geology studies. The main aim of this study is to emphasize the importance of interpretation of the geological units and their post excavation behaviors on the excavation stability.

References

  • Amadei, B. and Stephansson O., (1997), Rock Stress and Its Measurement, Chapman & Hall, London, UK, DOI:10.1007/978-94-011-5346-1
  • Barton, N. Lien, R. Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support, Rock Mechanics, 6, 189-239 https://doi.org/10.1007/BF01239496
  • Barton, N. (2002), Some new Q-value correlations to assist in site characterization and tunnel design, International Journal of Rock Mechanics and Mining Sciences, v.39, pp.185–216 https://doi. org/10.1016/S1365-1609(02)00011-4
  • Bieniawski, Z.T. (1989), Engineering rock mass classification, John Wiley Sons, New York
  • Cai, M. Kaiser, P.K. Tasaka, Y. Minamic, M. (2007). Determination of residual strength parameters of jointed rock masses using the GSI system, International Journal of Rock Mechanics and Mining Sciences, 2007;44:247–65. https://doi. org/10.1016/j.ijrmms.2006.07.005
  • Carter, TG. (1992). Prediction and uncertainties in geological engineering and rock mass characterization assessments. Procedeings of 4th. international rock mechanics and rock engineering conference., Torino. Paper 1.
  • Cording, E.J. and Deere D.U. (1972). Rock tunnel supports and field measurements. Proc. North American rapid excav. tunneling conf., Chicago, (eds. K.S. Lane and L.A. Garfield) 1, 601- 622. New York: Society of Mining Engineers, American Institue of Mineral Metall Petroliumm Engineers
  • Das, R., Singh, P.K., Kainthola, A., Panthee, S., Singh, T.N., (2017). Numerical analysis of surface subsidence in asymmetric parallel highway tunnels, Journal of Rock Mechanics and Geotechnical Engineering 9, https://doi.org/10.1016/j. jrmge.2016.11.009
  • Guo, S., Wang, B., Zhang, P., Wang, S., Guo, S., Hou, X., (2017). Influence analysis and relationship evolution between construction parameters and ground settlements induced by shield tunneling under soil-rock mixed-face conditions, Tunnelling and Underground Space Technology 134, 105020, https://doi.org/10.1016/j. tust.2023.105020
  • Grimstad, E. and Barton, N. (1993). Updating the Q-System for NMT. Proc. int. symp. on sprayed concrete - modern use of wet mix sprayed concrete for underground support, Fagernes. 46- Oslo: Norwegian Concrete Association
  • Hoek, E. and Brown, E.T. (1980). Underground Excavations in Rock. London Institution of Mining and Metallurgy, London, 527 p.
  • Hoek, E. Brown, E.T. (1997). Practical estimates of rock mass strength, International Journal of Rock Mechanics and Mining Sciences, v.34(8), pp1165–1186 https://doi.org/10.1016/S1365- 1609(97)80069-X
  • Hoek, E. Diederichs M.S. (2005). Empirical Estimation of Rock Mass Modulus, International Journal Of Rock Mechanics and Mining Sciences, v.43
  • Hu, Z., Shen, J., Wang, Y., Guo, T., Liu, Z., Gao, X., Cracking characteristics and mechanism of entrance section in asymmetrically-load tunnel with bedded rock mass: A case study of a highway tunnel in southwest China, doi.org/10.1016/j. engfailanal.2021.105221
  • Hudson, J. A. and Harrison, J. P. (1997). Engineering rock Mechanics: An introduction to the principles. Published by Elsevier Science Ltd. 444pp.
  • Jamison, D.B., and Cook, N.G.W., (1979). An analysis of the measured values for the state of stress in the earth’s crust, In Fundamental of Rock Mechanics, 3rd Edition, Chapman and Hall, London
  • KGM, ARGE Dai. Bşk. (2013). Zonguldak Amasra Kurucaşile Yolu Kilimli Geçişi Aslankayası Jeolojik-Jeoteknik ve Tüneli Kesin Proje Raporları KTŞ. (2013). Karayolu Teknik Şartnamesi, Bölüm 350
  • Kun, M., Onargan, T., (2013). Influence of the fault zone in shallow tunneling: A case study of Izmir Metro Tunnel, Tunnelling and Underground Space Technology 33 (2013) 34–45, https://doi. org/10.1016/j.tust.2012.06.016
  • Nicholson, G.A. Bieniawski, Z.T. (1990). A nonlinear deformation modulus based on rock mass classification, International Journal of Mining and Geological Engineering, v. 8, issue 3, pp 181- 202, https://doi.org/10.1007/BF01554041
  • Palmstrom, A. and Broch, E. (2006). Use and misuse of rock mass classification systems with particular reference to the Q-system. Tunnels and Underground Space Technology, 21, 575- 593, https://doi.org/10.1016/j.tust.2005.10.005
  • Reinecker, J., Heidbach, O., Tingay, M., Connolly, P., and Müller, B. (2004). Release 2004 of the World Stress Map, Heidelberg Acad, of Sci. and Hum., Karlsruhe Univ., Karlsruhe, Germany (Available at www.world-stress-map.org).
  • Sönmez, H. Ulusay, R. (2002). A discussion on the Hoek–Brown failure criterion and suggested modification to the criterion verified by slope stability case studies, Yerbilimleri Dergisi, v.26, p.77-79
  • Sheorey, P.R., (1994). A theory for In Situ stresses in isotropic and transversely isotropic rock, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 31, Issue 1, February 1994, Pages 23-34, https://doi.org/10.1016/0148-9062(94)92312-4
  • Xiao, J.Z., Dai, F.C., Wei, Y.Q, Min, H., Xu, C., Tu, X.B., Wang, M.L., (2014). Cracking mechanism of secondary lining for a shallow and asymmetrically-loaded tunnel in loose deposits, Tunnelling and Underground Space Technology 43 (2014) 232–240, https://doi.org/10.1016/j. tust.2014.05.01
  • Zhang, Z., Chen, F., Li, N., Swoboda, Liu, N., (2017). Influence of fault on the surrounding rock stability of a tunnel: Location and thickness, Tunnelling and Underground Space Technology 61 (2017) 1–11, https://doi.org/10.1016/j.tust.2016.09.003
  • Zhang, L., (2017) Engineering Properties of Rocks, University of Arizona, Tucson, Arizona, United States, p. 378, https://doi.org/10.1016/ C2014-0-02645-7
  • Zhou, J., Yang X., Guo, J., (2022). Stability predictions for excavations of mountain tunnels based on [BQ] method and its field verification, Engineering Failure Analysis, 141, 106727https://doi. org/10.1016/j.engfailanal.2022.106727

Tünel Portal Tasarımında Kısıtlar: Sayısal Model ve Hat Etütleri Kullanarak Bir Değerlendirme

Year 2024, Volume: 48 Issue: 1, 1 - 18, 26.06.2024
https://doi.org/10.24232/jmd.1385219

Abstract

Bu çalışmada Aslankayası tünel projesine ait mühendislik jeolojisi ve jeoteknik tasarım çalışmalarını anlatmaktadır. Düşük örtü kalınlığı nedeni ile şev yüzeyine yakın olan yamaç tüneli, özellikle kazı işlemine başladıktan sonra asimetrik yüklemeye maruz kalacaktır. Asimetrik yükleme, proje artış kilometresi yönünde özellikle sağ tüpte etkili olacaktır. Ayrıca, bu bölgedeki sağ tüp sağ duvarı ile yamaç yüzeyi arasındaki et kalınlığı 6 m seviyesine kadar düşmektedir. Ayrıca, tünelin 1. derece arkeolojik koruma alanı altından geçiyor olması nedeniyle, tünel ekseni üzerinde yapılması gerekli olan bazı saha araştırma çalışmaları, örneğin jeoteknik sondaj çalışmaları ve ilgili saha deneyleri yapılamamıştır. Tünelin kazı destek sistemi; hat etütleri, yerinden örnek alma ve uluslararası kabul görmüş kaya sınıflama sistemleri kullanılarak (RMR, Q, GSI) ampirik çalışmalar ve nümerik modellemeler aracılığı ile belirlenmiştir. Bu çalışmalar için sahada yüzlek veren kaya kütlesi kesimleri kullanılmıştır. Saha çalışmalarından ve laboratuvar testlerinden elde edilen sonuçlar girdi olarak kullanılarak ampirik eşitlikler yardımı ile kaya kütlesi mühendislik parametreleri hesaplanmıştır. Hat etütleri ve mühendislik jeolojisi çalışmalarından elde edilen veriler ile nümerik modeller oluşturulmuştur. Nümerik modellerden elde edilen sonuçlar, mühendislik jeolojisi aşamasında asimetrik yükleme koşullar için yapılan tahminleri doğrulamıştır. Bu çalışmanın esas amacı da jeolojik birimlerin ve onların kazı sonrası davranışlarının doğru yorumlanmasının tünel kazı stabilitesi üzerindeki önemini göstermektir.

References

  • Amadei, B. and Stephansson O., (1997), Rock Stress and Its Measurement, Chapman & Hall, London, UK, DOI:10.1007/978-94-011-5346-1
  • Barton, N. Lien, R. Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support, Rock Mechanics, 6, 189-239 https://doi.org/10.1007/BF01239496
  • Barton, N. (2002), Some new Q-value correlations to assist in site characterization and tunnel design, International Journal of Rock Mechanics and Mining Sciences, v.39, pp.185–216 https://doi. org/10.1016/S1365-1609(02)00011-4
  • Bieniawski, Z.T. (1989), Engineering rock mass classification, John Wiley Sons, New York
  • Cai, M. Kaiser, P.K. Tasaka, Y. Minamic, M. (2007). Determination of residual strength parameters of jointed rock masses using the GSI system, International Journal of Rock Mechanics and Mining Sciences, 2007;44:247–65. https://doi. org/10.1016/j.ijrmms.2006.07.005
  • Carter, TG. (1992). Prediction and uncertainties in geological engineering and rock mass characterization assessments. Procedeings of 4th. international rock mechanics and rock engineering conference., Torino. Paper 1.
  • Cording, E.J. and Deere D.U. (1972). Rock tunnel supports and field measurements. Proc. North American rapid excav. tunneling conf., Chicago, (eds. K.S. Lane and L.A. Garfield) 1, 601- 622. New York: Society of Mining Engineers, American Institue of Mineral Metall Petroliumm Engineers
  • Das, R., Singh, P.K., Kainthola, A., Panthee, S., Singh, T.N., (2017). Numerical analysis of surface subsidence in asymmetric parallel highway tunnels, Journal of Rock Mechanics and Geotechnical Engineering 9, https://doi.org/10.1016/j. jrmge.2016.11.009
  • Guo, S., Wang, B., Zhang, P., Wang, S., Guo, S., Hou, X., (2017). Influence analysis and relationship evolution between construction parameters and ground settlements induced by shield tunneling under soil-rock mixed-face conditions, Tunnelling and Underground Space Technology 134, 105020, https://doi.org/10.1016/j. tust.2023.105020
  • Grimstad, E. and Barton, N. (1993). Updating the Q-System for NMT. Proc. int. symp. on sprayed concrete - modern use of wet mix sprayed concrete for underground support, Fagernes. 46- Oslo: Norwegian Concrete Association
  • Hoek, E. and Brown, E.T. (1980). Underground Excavations in Rock. London Institution of Mining and Metallurgy, London, 527 p.
  • Hoek, E. Brown, E.T. (1997). Practical estimates of rock mass strength, International Journal of Rock Mechanics and Mining Sciences, v.34(8), pp1165–1186 https://doi.org/10.1016/S1365- 1609(97)80069-X
  • Hoek, E. Diederichs M.S. (2005). Empirical Estimation of Rock Mass Modulus, International Journal Of Rock Mechanics and Mining Sciences, v.43
  • Hu, Z., Shen, J., Wang, Y., Guo, T., Liu, Z., Gao, X., Cracking characteristics and mechanism of entrance section in asymmetrically-load tunnel with bedded rock mass: A case study of a highway tunnel in southwest China, doi.org/10.1016/j. engfailanal.2021.105221
  • Hudson, J. A. and Harrison, J. P. (1997). Engineering rock Mechanics: An introduction to the principles. Published by Elsevier Science Ltd. 444pp.
  • Jamison, D.B., and Cook, N.G.W., (1979). An analysis of the measured values for the state of stress in the earth’s crust, In Fundamental of Rock Mechanics, 3rd Edition, Chapman and Hall, London
  • KGM, ARGE Dai. Bşk. (2013). Zonguldak Amasra Kurucaşile Yolu Kilimli Geçişi Aslankayası Jeolojik-Jeoteknik ve Tüneli Kesin Proje Raporları KTŞ. (2013). Karayolu Teknik Şartnamesi, Bölüm 350
  • Kun, M., Onargan, T., (2013). Influence of the fault zone in shallow tunneling: A case study of Izmir Metro Tunnel, Tunnelling and Underground Space Technology 33 (2013) 34–45, https://doi. org/10.1016/j.tust.2012.06.016
  • Nicholson, G.A. Bieniawski, Z.T. (1990). A nonlinear deformation modulus based on rock mass classification, International Journal of Mining and Geological Engineering, v. 8, issue 3, pp 181- 202, https://doi.org/10.1007/BF01554041
  • Palmstrom, A. and Broch, E. (2006). Use and misuse of rock mass classification systems with particular reference to the Q-system. Tunnels and Underground Space Technology, 21, 575- 593, https://doi.org/10.1016/j.tust.2005.10.005
  • Reinecker, J., Heidbach, O., Tingay, M., Connolly, P., and Müller, B. (2004). Release 2004 of the World Stress Map, Heidelberg Acad, of Sci. and Hum., Karlsruhe Univ., Karlsruhe, Germany (Available at www.world-stress-map.org).
  • Sönmez, H. Ulusay, R. (2002). A discussion on the Hoek–Brown failure criterion and suggested modification to the criterion verified by slope stability case studies, Yerbilimleri Dergisi, v.26, p.77-79
  • Sheorey, P.R., (1994). A theory for In Situ stresses in isotropic and transversely isotropic rock, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 31, Issue 1, February 1994, Pages 23-34, https://doi.org/10.1016/0148-9062(94)92312-4
  • Xiao, J.Z., Dai, F.C., Wei, Y.Q, Min, H., Xu, C., Tu, X.B., Wang, M.L., (2014). Cracking mechanism of secondary lining for a shallow and asymmetrically-loaded tunnel in loose deposits, Tunnelling and Underground Space Technology 43 (2014) 232–240, https://doi.org/10.1016/j. tust.2014.05.01
  • Zhang, Z., Chen, F., Li, N., Swoboda, Liu, N., (2017). Influence of fault on the surrounding rock stability of a tunnel: Location and thickness, Tunnelling and Underground Space Technology 61 (2017) 1–11, https://doi.org/10.1016/j.tust.2016.09.003
  • Zhang, L., (2017) Engineering Properties of Rocks, University of Arizona, Tucson, Arizona, United States, p. 378, https://doi.org/10.1016/ C2014-0-02645-7
  • Zhou, J., Yang X., Guo, J., (2022). Stability predictions for excavations of mountain tunnels based on [BQ] method and its field verification, Engineering Failure Analysis, 141, 106727https://doi. org/10.1016/j.engfailanal.2022.106727
There are 27 citations in total.

Details

Primary Language English
Subjects Applied Geology
Journal Section Research Article
Authors

Ozgur Satıcı 0000-0003-4709-4334

Publication Date June 26, 2024
Submission Date November 2, 2023
Acceptance Date April 9, 2024
Published in Issue Year 2024 Volume: 48 Issue: 1

Cite

APA Satıcı, O. (2024). Limitations in Tunnel Portal Design: An Evaluation Using Numerical Models and Line Surveys. Jeoloji Mühendisliği Dergisi, 48(1), 1-18. https://doi.org/10.24232/jmd.1385219