Research Article
BibTex RIS Cite
Year 2024, , 16 - 29, 31.12.2024
https://doi.org/10.53570/jnt.1534850

Abstract

References

  • M. Abdalla, A. Bakhet, Extended Gauss hypergeometric matrix functions, Iranian Journal of Science and Technology, Transactions A: Science 42 (2018) 1465-1470.
  • M. Abdalla, A. Bakhet, Extension of beta matrix function, Asian Journal of Mathematics and Computer Research 9 (3) (2016) 253-264.
  • M. Abul-Dahab, A. Bakhet, A certain generalized gamma matrix functions and their properties, Journal of Analysis and Number Theory 3 (1) (2015) 63-68.
  • A. Bakhet, Y. Jiao, F. He, On the Wright hypergeometric matrix functions and their fractional calculus, Integral Transforms and Special Functions 30 (2) (2019) 138-156.
  • B. Çekim, New kinds of matrix polynomials, Miskolc Mathematical Notes 14 (3) (2013) 817-826.
  • B. Çekim, Generalized Euler's beta matrix and related functions, in: T. E. Simos, G. Psihoyios, Ch. Tsitouras (Eds.), 11th International Conference of Numerical Analysis and Applied Mathematics, Rhodes, 2013, pp. 1132-1135.
  • R. Dwivedi, V. Sahai, A note on the Appell matrix functions, Quaestiones Mathematicae 43 (3) (2020) 321-334.
  • R. Goyal, P. Agarwal, G. I. Oros, S. Jain, Extended beta and gamma matrix functions via 2-parameter Mittag-Leffler matrix function, Mathematics 10 (6) (2022) 892 8 pages.
  • M. Izadi, H. M. Srivastava, A novel matrix technique for multi-order pantograph differential equations of fractional order, Proceedings of the Royal Society A 477 (2253) (2021) 20210321 21 pages.
  • S. Jain, R. Goyal, G. I. Oros, P. Agarwal, S. Momani, A study of generalized hypergeometric matrix functions via two-parameter Mittag–Leffler matrix function, Open Physics 20 (1) (2022) 730-739.
  • L. Jodar, J. C. Cortés, Some properties of gamma and beta matrix functions, Applied Mathematics Letters 11 (1) (1998) 89-93.
  • L. Jodar, J. C. Cortés, On the hypergeometric matrix function, Journal of Computational and Applied Mathematics 99 (1-2) (1998) 205-217.
  • G. S. Khammash, P. Agarwal, J. Choi, Extended k-Gamma and k-Beta functions of matrix arguments, Mathematics, 8 (10) (2020) 1715 13 pages.
  • A. Verma, R. Dwivedi, V. Sahai, Some extended hypergeometric matrix functions and their fractional calculus, Mathematics in Engineering, Science and Aerospace 13 (4) (2022) 1131-1140.
  • N. U. Khan, S. Husain, A novel beta matrix function via Wiman matrix function and their applications, Analysis 43 (4) (2023) 255-266.
  • R. Dwivedi, V. Sahai, On the hypergeometric matrix functions of several variables, Journal of Mathematical Physics 59 (2) (2018) 023505 15 pages.
  • A. Verma, S. Bajpai, K. S. Yadav, Some results of new extended beta, hypergeometric, Appell and Lauricella matrix functions, Research in Mathematics 9 (1) (2022) 2151555 9 pages.
  • G. H. Golub, C. F. Van Loan, Matrix computations, 4th Edition, Johns Hopkins University Press, Baltimore, 2013.
  • G. B. Folland, Fourier analysis and its applications, American Mathematical Society, Providence, 2009.
  • J. Greene, Hypergeometric functions over finite fields, Transactions of the American Mathematical Society 301 (1) (1987) 77-101.
  • R. Dwivedi, V. Sahai, On the hypergeometric matrix functions of two variables, Linear and Multilinear Algebra 66 (9) (2018) 1819-1837.
  • H. M. Srivastava, H. L. Manocha, A treatise on generating functions, John Wily and Sons, New York 1984.

Certain Results on Extended Beta and Related Functions Using Matrix Arguments

Year 2024, , 16 - 29, 31.12.2024
https://doi.org/10.53570/jnt.1534850

Abstract

In this study, we present and explore extended beta matrix functions (EBMFs) and their key properties. By utilizing the beta matrix function (BMF), we introduce novel extensions of the Gauss hypergeometric matrix function (GHMF) and Kummer hypergeometric matrix function (KHMF). We delve into their integral representations, recurrence relations, transformation properties, and differential formulas. Additionally, we investigate their statistical applications, mainly focusing on the beta distribution, and derive expressions for the mean, variance, and moment-generating functions. Furthermore, we apply EBMFs to develop the Appell matrix function (AMF) and Lauricella matrix function (LMF) and their integral forms.

References

  • M. Abdalla, A. Bakhet, Extended Gauss hypergeometric matrix functions, Iranian Journal of Science and Technology, Transactions A: Science 42 (2018) 1465-1470.
  • M. Abdalla, A. Bakhet, Extension of beta matrix function, Asian Journal of Mathematics and Computer Research 9 (3) (2016) 253-264.
  • M. Abul-Dahab, A. Bakhet, A certain generalized gamma matrix functions and their properties, Journal of Analysis and Number Theory 3 (1) (2015) 63-68.
  • A. Bakhet, Y. Jiao, F. He, On the Wright hypergeometric matrix functions and their fractional calculus, Integral Transforms and Special Functions 30 (2) (2019) 138-156.
  • B. Çekim, New kinds of matrix polynomials, Miskolc Mathematical Notes 14 (3) (2013) 817-826.
  • B. Çekim, Generalized Euler's beta matrix and related functions, in: T. E. Simos, G. Psihoyios, Ch. Tsitouras (Eds.), 11th International Conference of Numerical Analysis and Applied Mathematics, Rhodes, 2013, pp. 1132-1135.
  • R. Dwivedi, V. Sahai, A note on the Appell matrix functions, Quaestiones Mathematicae 43 (3) (2020) 321-334.
  • R. Goyal, P. Agarwal, G. I. Oros, S. Jain, Extended beta and gamma matrix functions via 2-parameter Mittag-Leffler matrix function, Mathematics 10 (6) (2022) 892 8 pages.
  • M. Izadi, H. M. Srivastava, A novel matrix technique for multi-order pantograph differential equations of fractional order, Proceedings of the Royal Society A 477 (2253) (2021) 20210321 21 pages.
  • S. Jain, R. Goyal, G. I. Oros, P. Agarwal, S. Momani, A study of generalized hypergeometric matrix functions via two-parameter Mittag–Leffler matrix function, Open Physics 20 (1) (2022) 730-739.
  • L. Jodar, J. C. Cortés, Some properties of gamma and beta matrix functions, Applied Mathematics Letters 11 (1) (1998) 89-93.
  • L. Jodar, J. C. Cortés, On the hypergeometric matrix function, Journal of Computational and Applied Mathematics 99 (1-2) (1998) 205-217.
  • G. S. Khammash, P. Agarwal, J. Choi, Extended k-Gamma and k-Beta functions of matrix arguments, Mathematics, 8 (10) (2020) 1715 13 pages.
  • A. Verma, R. Dwivedi, V. Sahai, Some extended hypergeometric matrix functions and their fractional calculus, Mathematics in Engineering, Science and Aerospace 13 (4) (2022) 1131-1140.
  • N. U. Khan, S. Husain, A novel beta matrix function via Wiman matrix function and their applications, Analysis 43 (4) (2023) 255-266.
  • R. Dwivedi, V. Sahai, On the hypergeometric matrix functions of several variables, Journal of Mathematical Physics 59 (2) (2018) 023505 15 pages.
  • A. Verma, S. Bajpai, K. S. Yadav, Some results of new extended beta, hypergeometric, Appell and Lauricella matrix functions, Research in Mathematics 9 (1) (2022) 2151555 9 pages.
  • G. H. Golub, C. F. Van Loan, Matrix computations, 4th Edition, Johns Hopkins University Press, Baltimore, 2013.
  • G. B. Folland, Fourier analysis and its applications, American Mathematical Society, Providence, 2009.
  • J. Greene, Hypergeometric functions over finite fields, Transactions of the American Mathematical Society 301 (1) (1987) 77-101.
  • R. Dwivedi, V. Sahai, On the hypergeometric matrix functions of two variables, Linear and Multilinear Algebra 66 (9) (2018) 1819-1837.
  • H. M. Srivastava, H. L. Manocha, A treatise on generating functions, John Wily and Sons, New York 1984.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Research Article
Authors

Nabiullah Khan 0000-0003-0389-7899

Rakibul Sk 0009-0003-6131-1419

Saddam Husain 0000-0002-1852-4748

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date August 17, 2024
Acceptance Date November 11, 2024
Published in Issue Year 2024

Cite

APA Khan, N., Sk, R., & Husain, S. (2024). Certain Results on Extended Beta and Related Functions Using Matrix Arguments. Journal of New Theory(49), 16-29. https://doi.org/10.53570/jnt.1534850
AMA Khan N, Sk R, Husain S. Certain Results on Extended Beta and Related Functions Using Matrix Arguments. JNT. December 2024;(49):16-29. doi:10.53570/jnt.1534850
Chicago Khan, Nabiullah, Rakibul Sk, and Saddam Husain. “Certain Results on Extended Beta and Related Functions Using Matrix Arguments”. Journal of New Theory, no. 49 (December 2024): 16-29. https://doi.org/10.53570/jnt.1534850.
EndNote Khan N, Sk R, Husain S (December 1, 2024) Certain Results on Extended Beta and Related Functions Using Matrix Arguments. Journal of New Theory 49 16–29.
IEEE N. Khan, R. Sk, and S. Husain, “Certain Results on Extended Beta and Related Functions Using Matrix Arguments”, JNT, no. 49, pp. 16–29, December 2024, doi: 10.53570/jnt.1534850.
ISNAD Khan, Nabiullah et al. “Certain Results on Extended Beta and Related Functions Using Matrix Arguments”. Journal of New Theory 49 (December 2024), 16-29. https://doi.org/10.53570/jnt.1534850.
JAMA Khan N, Sk R, Husain S. Certain Results on Extended Beta and Related Functions Using Matrix Arguments. JNT. 2024;:16–29.
MLA Khan, Nabiullah et al. “Certain Results on Extended Beta and Related Functions Using Matrix Arguments”. Journal of New Theory, no. 49, 2024, pp. 16-29, doi:10.53570/jnt.1534850.
Vancouver Khan N, Sk R, Husain S. Certain Results on Extended Beta and Related Functions Using Matrix Arguments. JNT. 2024(49):16-29.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).