Factorable Surfaces in Pseudo-Galilean Space with Prescribed Mean and Gaussian Curvatures
Year 2022,
Issue: 40, 1 - 11, 30.09.2022
Sezin Aykurt Sepet
,
Hülya Gün Bozok
,
Muhittin Evren Aydın
Abstract
We study the so-called factorable surfaces in the pseudo-Galilean space, the graphs of the product of two functions of one variable. We then classify these surfaces when the mean and Gaussian curvatures are functions of one variable.
References
- O. Giering, Vorlesungen über höhere Geometrie, Friedr Vieweg & Sohn, Braunschweig, Germany,
1982.
- B. Divjak and Z. Milin-Sipus, Special Curves on Ruled Surfaces in Galilean and Pseudo-Galilean Spaces, Acta Mathematica Hungarica 98 (1) (2003) 203-215.
- E. M_olnar, The Projective Interpretation of the Eight 3-Dimensional Homogeneous Geometries, Beitrage zur Algebra und Geometrie 38 (2) (1997) 261-288.
- A. Onishchick and R. Sulanke, Projective and Cayley-Klein Geometries, Springer, 2006.
- I. M. Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, 1979.
- B. Y. Chen, G. E. Vîlcu, Geometric Classifications of Homogeneous Production Functions, Applied Mathematics and Computation 225 (2013) 345-351.
- B. Y. Chen, A Note on Homogeneous Production Models, Kragujevac Journal of Mathematics 36 (1) (2012) 41-43.
- B. Y. Chen, Solutions to Homogeneous Monge-Ampère Equations of Homothetic Functions and Their Applications to Production Models in Economics, Journal of Mathematical Analysis and Applications 411 (2014) 223-229.
- M. J. P. Cullen, R.J. Douglas, Applications of the Monge-Ampère equation and Monge transport problem to meterology and oceanography, In: L. A. Ca_arelli, M. Milman (eds.), NSF-CBMS Conference on the Monge Amp`ere Equation, Applications to Geometry and Optimization, July 9-13, Florida Atlantic University, 1997, pp. 33-54.
- D. Gilbarg, N. S. Trudinger, Elliptic Partial Di_erential Equations of Second Order, Berlin, Springer-Verlag, 1983.
- V. Ushakov, The Explicit General Solution of Trivial Monge-Amp_ere Equation, Commentarii Mathematici Helvetici 75 (2000) 125-133.
- M. E. Aydın, M. Alyamac Külahcı, A.O. Öğrenmis, Constant Curvature Translation Surfaces in Galilean 3-Space, International Electronic Journal of Geometry 12 (1) (2019) 9-19.
- A. Kelleci, Translation-Factorable Surfaces with Vanishing Curvatures in Galilean 3-Spaces, International Journal of Maps in Mathematics 4 (1) (2021) 14-26.
- Z. Milin-Sipus, B. Divjak, Translation Surface in the Galilean Space, Glasnik Matematicki 46 (66) (2011) 455-469.
- Z. Milin-Sipus, On a Certain Class of Translation Surfaces in a Pseudo-Galilean Space, International Mathematical Forum 6 (23) (2011) 1113-1125.
- D. W. Yoon, Some Classification of Translation Surfaces in Galilean 3-Space, International Journal of Mathematical Analysis 6 (28) (2012) 1355-1361.
- M.E. Aydın, S. Aykurt Sepet, H. Gün Bozok, Translation Surfaces in Pseudo-Galilean Space with Prescribed Mean and Gaussian Curvatures, Honam Mathematical Journal 44 (1) (2022) 36-51.
- G. Ruiz-Hernández, Translation Hypersurfaces whose Curvature Depends Partially on Its Variables, Journal of Mathematical Analysis and Applications 497 (2) (2021) 124913.
- C. Baikoussis,T. Koufogioros, Helicoidal Surface with Prescribed Mean or Gauss Curvature, Journal of Geometry 63 (1998) 25-29.
- K. Kenmotsu, Surface of Revolution with Prescribed Mean Curvature, Tohoku Mathematical Journal 32 (1980) 147-153.
- I. Van de Woestyne, Minimal Homothetical Hypersurfaces of a Semi-Euclidean Space, Results in Mathematics 27 (1995) 333-342.
- H. S. Abdel-Aziz, M. Khalifa Saad, A. Ali Haytham, Affine Factorable Surfaces in Pseudo-Galilean Space, arXiv:1812.00765v1[math.GM].
- P. Bansal, M. H. Shahid, On Classi_cation of Factorable Surfaces in Galilean Space G3, Jordan Journal of Mathematics and Statistics 12 (3) (2019) 289-306.
- M. S. Lone, Homothetical Surfaces in Three Dimensional Pseudo-Galilean Spaces Satisfying $\vartriangle ^{II}\mathbf{x}_{i}=\lambda_{i}\mathbf{x}_{i}$, Advances in Applied Clifiord Algebras 29 (92) (2019).
- M. E. Aydın, A. O. Öğrenmis, M. Ergüt, Classification of Factorable Surfaces in the Pseudo-Galilean Space, Glasnik Matematicki 70 (50) (2015) 441-451.
- M. E. Aydın, M. Alyamac Külahcı, A. O. Öğrenmis, Non-Zero Constant Curvature Factorable Surfaces in Pseudo-Galilean Space, Communications of the Korean Mathematical Society 33 (1) (2018) 247-259.
- B. Divjak, Z. Milin-Sipus, Minding Isometries of Ruled Surfaces in Pseudo-Galilean Space, Journal of Geometry 77 (2003) 35-47.
Year 2022,
Issue: 40, 1 - 11, 30.09.2022
Sezin Aykurt Sepet
,
Hülya Gün Bozok
,
Muhittin Evren Aydın
References
- O. Giering, Vorlesungen über höhere Geometrie, Friedr Vieweg & Sohn, Braunschweig, Germany,
1982.
- B. Divjak and Z. Milin-Sipus, Special Curves on Ruled Surfaces in Galilean and Pseudo-Galilean Spaces, Acta Mathematica Hungarica 98 (1) (2003) 203-215.
- E. M_olnar, The Projective Interpretation of the Eight 3-Dimensional Homogeneous Geometries, Beitrage zur Algebra und Geometrie 38 (2) (1997) 261-288.
- A. Onishchick and R. Sulanke, Projective and Cayley-Klein Geometries, Springer, 2006.
- I. M. Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, 1979.
- B. Y. Chen, G. E. Vîlcu, Geometric Classifications of Homogeneous Production Functions, Applied Mathematics and Computation 225 (2013) 345-351.
- B. Y. Chen, A Note on Homogeneous Production Models, Kragujevac Journal of Mathematics 36 (1) (2012) 41-43.
- B. Y. Chen, Solutions to Homogeneous Monge-Ampère Equations of Homothetic Functions and Their Applications to Production Models in Economics, Journal of Mathematical Analysis and Applications 411 (2014) 223-229.
- M. J. P. Cullen, R.J. Douglas, Applications of the Monge-Ampère equation and Monge transport problem to meterology and oceanography, In: L. A. Ca_arelli, M. Milman (eds.), NSF-CBMS Conference on the Monge Amp`ere Equation, Applications to Geometry and Optimization, July 9-13, Florida Atlantic University, 1997, pp. 33-54.
- D. Gilbarg, N. S. Trudinger, Elliptic Partial Di_erential Equations of Second Order, Berlin, Springer-Verlag, 1983.
- V. Ushakov, The Explicit General Solution of Trivial Monge-Amp_ere Equation, Commentarii Mathematici Helvetici 75 (2000) 125-133.
- M. E. Aydın, M. Alyamac Külahcı, A.O. Öğrenmis, Constant Curvature Translation Surfaces in Galilean 3-Space, International Electronic Journal of Geometry 12 (1) (2019) 9-19.
- A. Kelleci, Translation-Factorable Surfaces with Vanishing Curvatures in Galilean 3-Spaces, International Journal of Maps in Mathematics 4 (1) (2021) 14-26.
- Z. Milin-Sipus, B. Divjak, Translation Surface in the Galilean Space, Glasnik Matematicki 46 (66) (2011) 455-469.
- Z. Milin-Sipus, On a Certain Class of Translation Surfaces in a Pseudo-Galilean Space, International Mathematical Forum 6 (23) (2011) 1113-1125.
- D. W. Yoon, Some Classification of Translation Surfaces in Galilean 3-Space, International Journal of Mathematical Analysis 6 (28) (2012) 1355-1361.
- M.E. Aydın, S. Aykurt Sepet, H. Gün Bozok, Translation Surfaces in Pseudo-Galilean Space with Prescribed Mean and Gaussian Curvatures, Honam Mathematical Journal 44 (1) (2022) 36-51.
- G. Ruiz-Hernández, Translation Hypersurfaces whose Curvature Depends Partially on Its Variables, Journal of Mathematical Analysis and Applications 497 (2) (2021) 124913.
- C. Baikoussis,T. Koufogioros, Helicoidal Surface with Prescribed Mean or Gauss Curvature, Journal of Geometry 63 (1998) 25-29.
- K. Kenmotsu, Surface of Revolution with Prescribed Mean Curvature, Tohoku Mathematical Journal 32 (1980) 147-153.
- I. Van de Woestyne, Minimal Homothetical Hypersurfaces of a Semi-Euclidean Space, Results in Mathematics 27 (1995) 333-342.
- H. S. Abdel-Aziz, M. Khalifa Saad, A. Ali Haytham, Affine Factorable Surfaces in Pseudo-Galilean Space, arXiv:1812.00765v1[math.GM].
- P. Bansal, M. H. Shahid, On Classi_cation of Factorable Surfaces in Galilean Space G3, Jordan Journal of Mathematics and Statistics 12 (3) (2019) 289-306.
- M. S. Lone, Homothetical Surfaces in Three Dimensional Pseudo-Galilean Spaces Satisfying $\vartriangle ^{II}\mathbf{x}_{i}=\lambda_{i}\mathbf{x}_{i}$, Advances in Applied Clifiord Algebras 29 (92) (2019).
- M. E. Aydın, A. O. Öğrenmis, M. Ergüt, Classification of Factorable Surfaces in the Pseudo-Galilean Space, Glasnik Matematicki 70 (50) (2015) 441-451.
- M. E. Aydın, M. Alyamac Külahcı, A. O. Öğrenmis, Non-Zero Constant Curvature Factorable Surfaces in Pseudo-Galilean Space, Communications of the Korean Mathematical Society 33 (1) (2018) 247-259.
- B. Divjak, Z. Milin-Sipus, Minding Isometries of Ruled Surfaces in Pseudo-Galilean Space, Journal of Geometry 77 (2003) 35-47.