Research Article
BibTex RIS Cite

Factorable Surfaces in Pseudo-Galilean Space with Prescribed Mean and Gaussian Curvatures

Year 2022, Issue: 40, 1 - 11, 30.09.2022
https://doi.org/10.53570/jnt.1137525

Abstract

We study the so-called factorable surfaces in the pseudo-Galilean space, the graphs of the product of two functions of one variable. We then classify these surfaces when the mean and Gaussian curvatures are functions of one variable.

References

  • O. Giering, Vorlesungen über höhere Geometrie, Friedr Vieweg & Sohn, Braunschweig, Germany, 1982.
  • B. Divjak and Z. Milin-Sipus, Special Curves on Ruled Surfaces in Galilean and Pseudo-Galilean Spaces, Acta Mathematica Hungarica 98 (1) (2003) 203-215.
  • E. M_olnar, The Projective Interpretation of the Eight 3-Dimensional Homogeneous Geometries, Beitrage zur Algebra und Geometrie 38 (2) (1997) 261-288.
  • A. Onishchick and R. Sulanke, Projective and Cayley-Klein Geometries, Springer, 2006.
  • I. M. Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, 1979.
  • B. Y. Chen, G. E. Vîlcu, Geometric Classifications of Homogeneous Production Functions, Applied Mathematics and Computation 225 (2013) 345-351.
  • B. Y. Chen, A Note on Homogeneous Production Models, Kragujevac Journal of Mathematics 36 (1) (2012) 41-43.
  • B. Y. Chen, Solutions to Homogeneous Monge-Ampère Equations of Homothetic Functions and Their Applications to Production Models in Economics, Journal of Mathematical Analysis and Applications 411 (2014) 223-229.
  • M. J. P. Cullen, R.J. Douglas, Applications of the Monge-Ampère equation and Monge transport problem to meterology and oceanography, In: L. A. Ca_arelli, M. Milman (eds.), NSF-CBMS Conference on the Monge Amp`ere Equation, Applications to Geometry and Optimization, July 9-13, Florida Atlantic University, 1997, pp. 33-54.
  • D. Gilbarg, N. S. Trudinger, Elliptic Partial Di_erential Equations of Second Order, Berlin, Springer-Verlag, 1983.
  • V. Ushakov, The Explicit General Solution of Trivial Monge-Amp_ere Equation, Commentarii Mathematici Helvetici 75 (2000) 125-133.
  • M. E. Aydın, M. Alyamac Külahcı, A.O. Öğrenmis, Constant Curvature Translation Surfaces in Galilean 3-Space, International Electronic Journal of Geometry 12 (1) (2019) 9-19.
  • A. Kelleci, Translation-Factorable Surfaces with Vanishing Curvatures in Galilean 3-Spaces, International Journal of Maps in Mathematics 4 (1) (2021) 14-26.
  • Z. Milin-Sipus, B. Divjak, Translation Surface in the Galilean Space, Glasnik Matematicki 46 (66) (2011) 455-469.
  • Z. Milin-Sipus, On a Certain Class of Translation Surfaces in a Pseudo-Galilean Space, International Mathematical Forum 6 (23) (2011) 1113-1125.
  • D. W. Yoon, Some Classification of Translation Surfaces in Galilean 3-Space, International Journal of Mathematical Analysis 6 (28) (2012) 1355-1361.
  • M.E. Aydın, S. Aykurt Sepet, H. Gün Bozok, Translation Surfaces in Pseudo-Galilean Space with Prescribed Mean and Gaussian Curvatures, Honam Mathematical Journal 44 (1) (2022) 36-51.
  • G. Ruiz-Hernández, Translation Hypersurfaces whose Curvature Depends Partially on Its Variables, Journal of Mathematical Analysis and Applications 497 (2) (2021) 124913.
  • C. Baikoussis,T. Koufogioros, Helicoidal Surface with Prescribed Mean or Gauss Curvature, Journal of Geometry 63 (1998) 25-29.
  • K. Kenmotsu, Surface of Revolution with Prescribed Mean Curvature, Tohoku Mathematical Journal 32 (1980) 147-153.
  • I. Van de Woestyne, Minimal Homothetical Hypersurfaces of a Semi-Euclidean Space, Results in Mathematics 27 (1995) 333-342.
  • H. S. Abdel-Aziz, M. Khalifa Saad, A. Ali Haytham, Affine Factorable Surfaces in Pseudo-Galilean Space, arXiv:1812.00765v1[math.GM].
  • P. Bansal, M. H. Shahid, On Classi_cation of Factorable Surfaces in Galilean Space G3, Jordan Journal of Mathematics and Statistics 12 (3) (2019) 289-306.
  • M. S. Lone, Homothetical Surfaces in Three Dimensional Pseudo-Galilean Spaces Satisfying $\vartriangle ^{II}\mathbf{x}_{i}=\lambda_{i}\mathbf{x}_{i}$, Advances in Applied Clifiord Algebras 29 (92) (2019).
  • M. E. Aydın, A. O. Öğrenmis, M. Ergüt, Classification of Factorable Surfaces in the Pseudo-Galilean Space, Glasnik Matematicki 70 (50) (2015) 441-451.
  • M. E. Aydın, M. Alyamac Külahcı, A. O. Öğrenmis, Non-Zero Constant Curvature Factorable Surfaces in Pseudo-Galilean Space, Communications of the Korean Mathematical Society 33 (1) (2018) 247-259.
  • B. Divjak, Z. Milin-Sipus, Minding Isometries of Ruled Surfaces in Pseudo-Galilean Space, Journal of Geometry 77 (2003) 35-47.
Year 2022, Issue: 40, 1 - 11, 30.09.2022
https://doi.org/10.53570/jnt.1137525

Abstract

References

  • O. Giering, Vorlesungen über höhere Geometrie, Friedr Vieweg & Sohn, Braunschweig, Germany, 1982.
  • B. Divjak and Z. Milin-Sipus, Special Curves on Ruled Surfaces in Galilean and Pseudo-Galilean Spaces, Acta Mathematica Hungarica 98 (1) (2003) 203-215.
  • E. M_olnar, The Projective Interpretation of the Eight 3-Dimensional Homogeneous Geometries, Beitrage zur Algebra und Geometrie 38 (2) (1997) 261-288.
  • A. Onishchick and R. Sulanke, Projective and Cayley-Klein Geometries, Springer, 2006.
  • I. M. Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, 1979.
  • B. Y. Chen, G. E. Vîlcu, Geometric Classifications of Homogeneous Production Functions, Applied Mathematics and Computation 225 (2013) 345-351.
  • B. Y. Chen, A Note on Homogeneous Production Models, Kragujevac Journal of Mathematics 36 (1) (2012) 41-43.
  • B. Y. Chen, Solutions to Homogeneous Monge-Ampère Equations of Homothetic Functions and Their Applications to Production Models in Economics, Journal of Mathematical Analysis and Applications 411 (2014) 223-229.
  • M. J. P. Cullen, R.J. Douglas, Applications of the Monge-Ampère equation and Monge transport problem to meterology and oceanography, In: L. A. Ca_arelli, M. Milman (eds.), NSF-CBMS Conference on the Monge Amp`ere Equation, Applications to Geometry and Optimization, July 9-13, Florida Atlantic University, 1997, pp. 33-54.
  • D. Gilbarg, N. S. Trudinger, Elliptic Partial Di_erential Equations of Second Order, Berlin, Springer-Verlag, 1983.
  • V. Ushakov, The Explicit General Solution of Trivial Monge-Amp_ere Equation, Commentarii Mathematici Helvetici 75 (2000) 125-133.
  • M. E. Aydın, M. Alyamac Külahcı, A.O. Öğrenmis, Constant Curvature Translation Surfaces in Galilean 3-Space, International Electronic Journal of Geometry 12 (1) (2019) 9-19.
  • A. Kelleci, Translation-Factorable Surfaces with Vanishing Curvatures in Galilean 3-Spaces, International Journal of Maps in Mathematics 4 (1) (2021) 14-26.
  • Z. Milin-Sipus, B. Divjak, Translation Surface in the Galilean Space, Glasnik Matematicki 46 (66) (2011) 455-469.
  • Z. Milin-Sipus, On a Certain Class of Translation Surfaces in a Pseudo-Galilean Space, International Mathematical Forum 6 (23) (2011) 1113-1125.
  • D. W. Yoon, Some Classification of Translation Surfaces in Galilean 3-Space, International Journal of Mathematical Analysis 6 (28) (2012) 1355-1361.
  • M.E. Aydın, S. Aykurt Sepet, H. Gün Bozok, Translation Surfaces in Pseudo-Galilean Space with Prescribed Mean and Gaussian Curvatures, Honam Mathematical Journal 44 (1) (2022) 36-51.
  • G. Ruiz-Hernández, Translation Hypersurfaces whose Curvature Depends Partially on Its Variables, Journal of Mathematical Analysis and Applications 497 (2) (2021) 124913.
  • C. Baikoussis,T. Koufogioros, Helicoidal Surface with Prescribed Mean or Gauss Curvature, Journal of Geometry 63 (1998) 25-29.
  • K. Kenmotsu, Surface of Revolution with Prescribed Mean Curvature, Tohoku Mathematical Journal 32 (1980) 147-153.
  • I. Van de Woestyne, Minimal Homothetical Hypersurfaces of a Semi-Euclidean Space, Results in Mathematics 27 (1995) 333-342.
  • H. S. Abdel-Aziz, M. Khalifa Saad, A. Ali Haytham, Affine Factorable Surfaces in Pseudo-Galilean Space, arXiv:1812.00765v1[math.GM].
  • P. Bansal, M. H. Shahid, On Classi_cation of Factorable Surfaces in Galilean Space G3, Jordan Journal of Mathematics and Statistics 12 (3) (2019) 289-306.
  • M. S. Lone, Homothetical Surfaces in Three Dimensional Pseudo-Galilean Spaces Satisfying $\vartriangle ^{II}\mathbf{x}_{i}=\lambda_{i}\mathbf{x}_{i}$, Advances in Applied Clifiord Algebras 29 (92) (2019).
  • M. E. Aydın, A. O. Öğrenmis, M. Ergüt, Classification of Factorable Surfaces in the Pseudo-Galilean Space, Glasnik Matematicki 70 (50) (2015) 441-451.
  • M. E. Aydın, M. Alyamac Külahcı, A. O. Öğrenmis, Non-Zero Constant Curvature Factorable Surfaces in Pseudo-Galilean Space, Communications of the Korean Mathematical Society 33 (1) (2018) 247-259.
  • B. Divjak, Z. Milin-Sipus, Minding Isometries of Ruled Surfaces in Pseudo-Galilean Space, Journal of Geometry 77 (2003) 35-47.
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Sezin Aykurt Sepet 0000-0003-1521-6798

Hülya Gün Bozok 0000-0002-7370-5760

Muhittin Evren Aydın 0000-0001-9337-8165

Publication Date September 30, 2022
Submission Date June 29, 2022
Published in Issue Year 2022 Issue: 40

Cite

APA Aykurt Sepet, S., Gün Bozok, H., & Aydın, M. E. (2022). Factorable Surfaces in Pseudo-Galilean Space with Prescribed Mean and Gaussian Curvatures. Journal of New Theory(40), 1-11. https://doi.org/10.53570/jnt.1137525
AMA Aykurt Sepet S, Gün Bozok H, Aydın ME. Factorable Surfaces in Pseudo-Galilean Space with Prescribed Mean and Gaussian Curvatures. JNT. September 2022;(40):1-11. doi:10.53570/jnt.1137525
Chicago Aykurt Sepet, Sezin, Hülya Gün Bozok, and Muhittin Evren Aydın. “Factorable Surfaces in Pseudo-Galilean Space With Prescribed Mean and Gaussian Curvatures”. Journal of New Theory, no. 40 (September 2022): 1-11. https://doi.org/10.53570/jnt.1137525.
EndNote Aykurt Sepet S, Gün Bozok H, Aydın ME (September 1, 2022) Factorable Surfaces in Pseudo-Galilean Space with Prescribed Mean and Gaussian Curvatures. Journal of New Theory 40 1–11.
IEEE S. Aykurt Sepet, H. Gün Bozok, and M. E. Aydın, “Factorable Surfaces in Pseudo-Galilean Space with Prescribed Mean and Gaussian Curvatures”, JNT, no. 40, pp. 1–11, September 2022, doi: 10.53570/jnt.1137525.
ISNAD Aykurt Sepet, Sezin et al. “Factorable Surfaces in Pseudo-Galilean Space With Prescribed Mean and Gaussian Curvatures”. Journal of New Theory 40 (September 2022), 1-11. https://doi.org/10.53570/jnt.1137525.
JAMA Aykurt Sepet S, Gün Bozok H, Aydın ME. Factorable Surfaces in Pseudo-Galilean Space with Prescribed Mean and Gaussian Curvatures. JNT. 2022;:1–11.
MLA Aykurt Sepet, Sezin et al. “Factorable Surfaces in Pseudo-Galilean Space With Prescribed Mean and Gaussian Curvatures”. Journal of New Theory, no. 40, 2022, pp. 1-11, doi:10.53570/jnt.1137525.
Vancouver Aykurt Sepet S, Gün Bozok H, Aydın ME. Factorable Surfaces in Pseudo-Galilean Space with Prescribed Mean and Gaussian Curvatures. JNT. 2022(40):1-11.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).