Clinical Research
BibTex RIS Cite

Stabil olmayan femur proksimal kırıklarında anti rotatuar lag vidası olan proksimal femoral çivi (PFN) ile bıçaklı LAG vidası olan proksimal femoral çivinin biyomekanik kıyaslanması

Year 2022, Volume: 5 Issue: 3, 361 - 367, 31.12.2022
https://doi.org/10.36516/jocass.1210389

Abstract

Giriş: Proksimal femur kırıkları tedavisinde kullanılan farklı lag vidalarının çivi sisteminin aksiyel yüklenmedeki dayanıklılığında değişikliğe neden olup olmadığı değerlendirildi.
Gereç ve Yöntemler: AO/OTA 31/A2 tipinde kırık oluşturulan 14 kemik modeli yedişerli olacak şekilde iki gruba randomize olarak ayrıldı. Birinci gruptaki kemik modelleri bıçaklı lag vidası olan proksimal femur çivisi ile fikse edilirken; ikinci gruptaki kemik modelleri anti-rotatuar lag vidası olan proksimal femur çivisi ile fikse edildi. Tüm kemik modellerinin femur başlarına femur mekanik aksına uygun olacak şekilde 5 mm/dk hızda siklik kuvvet aksiyel olarak uygulandı. Test implant yetmezliği gelişinceye veya model kırılıncaya kadar sürdürüldü.
Sonuç: PFN grupundaki kemikler en az 908 N en fazla 1195 N kuvvetle kırılırken ortalamaları 1050 N oldu; A-PFN grupundaki kemikler en az 847 N en fazla 1219 N kuvvetle kırılırken ortalamaları 1096 N oldu. İki gruptaki kemiklere aksiyel yüklenme sonrası kırık oluşturan kuvvetler arasında istatiksel olarak anlamlı bir fark görülmedi (p=0,95;p>0,05)
Tartışma: Stabil olmayan intertrokanterik femur kırıklarında (ITFK) proksimal femur çivilerinde doğru pozisyonda yerleştirme ve tam redüksiyon ile cut-out ve varus kollaps komplikasyonları ile karşılaşılmadı. Bu sonuçlar sonrasında her iki model çivi stabil olmayan ITFK’larda güvenle kullanılabileceği ön görülmektedir.

References

  • 1.Dhanwal DK, Dennison EM, Harvey NC, et al. Epidemiology of hip fracture: Worldwide geographic variation. Indian J Orthop. 2011;45(1):15-22. https://doi.org/10.4103/0019-5413.73656
  • 2. Cooper C, Campion G, Melton LJ. Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2(6):285-9. https://doi.org/10.1007/BF01623184
  • 3.Khan AZ, Rames RD, Miller AN. Clinical Management of Osteoporotic Fractures. Curr Osteoporos Rep. 2018;16(3):299-311. https://doi.org/10.1007/s11914-018-0443-y
  • 4.Mattisson L, Bojan A, Enocson A. Epidemiology, treatment and mortality of trochanteric and subtrochanteric hip fractures: data from the Swedish fracture register. BMC Musculoskelet Disord. 2018;19(1):369. https://doi.org/10.1186/s12891-018-2276-3
  • 5. Sambandam SN, Chandrasekharan J, Mounasamy V, et al. Intertrochanteric fractures: a review of fixation methods. Eur J Orthop Surg Traumatol. 2016;26(4):339-53. https://doi.org/10.1007/s00590-016-1757-z
  • 6. Niu E, Yang A, Harris AHS, et al. Which Fixation Device is Preferred for Surgical Treatment of Intertrochanteric Hip Fractures in the United States? A Survey of Orthopaedic Surgeons. Clinical Orthopaedics & Related Research. 2015;473(11):3647-55. https://doi.org/10.1007/s11999-015-4469-5
  • 7.Ozturan B, Erinc S, Oz TT, et al. New Generation Nail Vs. Plate In The Treatment Of Unstable Intertrochanteric Femoral Fracture. Acta ortop bras. 2020;28:311-5. https://doi.org/10.1590/1413-785220202806234631
  • 8.Werner BC, Fashandi AH, Gwathmey FW, et al. Trends in the Management of Intertrochanteric Femur Fractures in the United States 2005-2011. HIP International. 2015;25(3):270-6. https://doi.org/10.5301/hipint.5000216
  • 9.Broderick JM, Bruce-Brand R, Stanley E, et al. Osteoporotic Hip Fractures: The Burden of Fixation Failure. The Scientific World Journal. 2013;2013:1-7. https://doi.org/10.1155/2013/515197
  • 10.Bojan AJ, Beimel C, Taglang G, et al. Critical factors in cut-out complication after gamma nail treatment of proximal femoral fractures. BMC Musculoskelet Disord. 2013;14(1):1. https://doi.org/10.1186/1471-2474-14-1
  • 11.Tisherman RT, Hankins ML, Moloney GB, et al. Distal locking of short cephalomedullary nails decreases varus collapse in unstable intertrochanteric fractures – a biomechanical analysis. Injury. 2021;52(3):414-8. https://doi.org/10.1016/j.injury.2021.02.007
  • 12.Andruszkow H, Frink M, Frömke C, et al. Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures. International Orthopaedics (SICOT). 2012;36(11):2347-54. https://doi.org/10.1007/s00264-012-1636-0
  • 13.Horner NS, Samuelsson K, Solyom J, et al. Implant-Related Complications and Mortality After Use of Short or Long Gamma Nail for Intertrochanteric and Subtrochanteric Fractures: A Prospective Study with Minimum 13-Year Follow-up. JBJS OA. 2017;2(3):e0026. https://doi.org/10.2106/JBJS.OA.17.00026
  • 14.Raghuraman R, Kam J, Chua D. Predictors of failure following fixation of intertrochanteric fractures with proximal femoral nail antirotation. smedj. 2019;60(9):463-7. https://doi.org/10.11622/smedj.2019114
  • 15.Zhang W, Antony Xavier RP, Decruz J, et al. Risk factors for mechanical failure of intertrochanteric fractures after fixation with proximal femoral nail antirotation (PFNA II): a study in a Southeast Asian population. Arch Orthop Trauma Surg. 2021;141(4):569-75. https://doi.org/10.1007/s00402-020-03399-2
  • 16.De Bruijn K, den Hartog D, Tuinebreijer W, et al. Reliability of Predictors for Screw Cutout in Intertrochanteric Hip Fractures. Journal of Bone and Joint Surgery. 2012;94(14):1266-72. https://doi.org/10.2106/JBJS.K.00357
  • 17.Tsai SW, Lin CFJ, Tzeng YH, et al. Risk factors for cut-out failure of Gamma3 nails in treating unstable intertrochanteric fractures: An analysis of 176 patients. Journal of the Chinese Medical Association. 2017;80(9):587-94. https://doi.org/10.1016/j.jcma.2017.04.007
  • 18.Lindvall E, Ghaffar S, Martirosian A, et al. Short Versus Long Intramedullary Nails in the Treatment of Pertrochanteric Hip Fractures: Incidence of Ipsilateral Fractures and Costs Associated With Each Implant. J Orthop Trauma. 2016;30(3):6.
  • 19.Halonen LM, Stenroos A, Vasara H, et al. Peri-implant fracture: a rare complication after intramedullary fixation of trochanteric femoral fracture. Arch Orthop Trauma Surg. 2021;142(12):3715-20. https://doi.org/10.1007/s00402-021-04193-4
  • 20.Yamamoto N, Yamakawa Y, Tomita Y, et al. Intraoperative fractures in cephalomedullary nailing for trochanteric fractures. Injury. 2022;53(2):561-8. https://doi.org/10.1016/j.injury.2021.10.017
Year 2022, Volume: 5 Issue: 3, 361 - 367, 31.12.2022
https://doi.org/10.36516/jocass.1210389

Abstract

References

  • 1.Dhanwal DK, Dennison EM, Harvey NC, et al. Epidemiology of hip fracture: Worldwide geographic variation. Indian J Orthop. 2011;45(1):15-22. https://doi.org/10.4103/0019-5413.73656
  • 2. Cooper C, Campion G, Melton LJ. Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2(6):285-9. https://doi.org/10.1007/BF01623184
  • 3.Khan AZ, Rames RD, Miller AN. Clinical Management of Osteoporotic Fractures. Curr Osteoporos Rep. 2018;16(3):299-311. https://doi.org/10.1007/s11914-018-0443-y
  • 4.Mattisson L, Bojan A, Enocson A. Epidemiology, treatment and mortality of trochanteric and subtrochanteric hip fractures: data from the Swedish fracture register. BMC Musculoskelet Disord. 2018;19(1):369. https://doi.org/10.1186/s12891-018-2276-3
  • 5. Sambandam SN, Chandrasekharan J, Mounasamy V, et al. Intertrochanteric fractures: a review of fixation methods. Eur J Orthop Surg Traumatol. 2016;26(4):339-53. https://doi.org/10.1007/s00590-016-1757-z
  • 6. Niu E, Yang A, Harris AHS, et al. Which Fixation Device is Preferred for Surgical Treatment of Intertrochanteric Hip Fractures in the United States? A Survey of Orthopaedic Surgeons. Clinical Orthopaedics & Related Research. 2015;473(11):3647-55. https://doi.org/10.1007/s11999-015-4469-5
  • 7.Ozturan B, Erinc S, Oz TT, et al. New Generation Nail Vs. Plate In The Treatment Of Unstable Intertrochanteric Femoral Fracture. Acta ortop bras. 2020;28:311-5. https://doi.org/10.1590/1413-785220202806234631
  • 8.Werner BC, Fashandi AH, Gwathmey FW, et al. Trends in the Management of Intertrochanteric Femur Fractures in the United States 2005-2011. HIP International. 2015;25(3):270-6. https://doi.org/10.5301/hipint.5000216
  • 9.Broderick JM, Bruce-Brand R, Stanley E, et al. Osteoporotic Hip Fractures: The Burden of Fixation Failure. The Scientific World Journal. 2013;2013:1-7. https://doi.org/10.1155/2013/515197
  • 10.Bojan AJ, Beimel C, Taglang G, et al. Critical factors in cut-out complication after gamma nail treatment of proximal femoral fractures. BMC Musculoskelet Disord. 2013;14(1):1. https://doi.org/10.1186/1471-2474-14-1
  • 11.Tisherman RT, Hankins ML, Moloney GB, et al. Distal locking of short cephalomedullary nails decreases varus collapse in unstable intertrochanteric fractures – a biomechanical analysis. Injury. 2021;52(3):414-8. https://doi.org/10.1016/j.injury.2021.02.007
  • 12.Andruszkow H, Frink M, Frömke C, et al. Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures. International Orthopaedics (SICOT). 2012;36(11):2347-54. https://doi.org/10.1007/s00264-012-1636-0
  • 13.Horner NS, Samuelsson K, Solyom J, et al. Implant-Related Complications and Mortality After Use of Short or Long Gamma Nail for Intertrochanteric and Subtrochanteric Fractures: A Prospective Study with Minimum 13-Year Follow-up. JBJS OA. 2017;2(3):e0026. https://doi.org/10.2106/JBJS.OA.17.00026
  • 14.Raghuraman R, Kam J, Chua D. Predictors of failure following fixation of intertrochanteric fractures with proximal femoral nail antirotation. smedj. 2019;60(9):463-7. https://doi.org/10.11622/smedj.2019114
  • 15.Zhang W, Antony Xavier RP, Decruz J, et al. Risk factors for mechanical failure of intertrochanteric fractures after fixation with proximal femoral nail antirotation (PFNA II): a study in a Southeast Asian population. Arch Orthop Trauma Surg. 2021;141(4):569-75. https://doi.org/10.1007/s00402-020-03399-2
  • 16.De Bruijn K, den Hartog D, Tuinebreijer W, et al. Reliability of Predictors for Screw Cutout in Intertrochanteric Hip Fractures. Journal of Bone and Joint Surgery. 2012;94(14):1266-72. https://doi.org/10.2106/JBJS.K.00357
  • 17.Tsai SW, Lin CFJ, Tzeng YH, et al. Risk factors for cut-out failure of Gamma3 nails in treating unstable intertrochanteric fractures: An analysis of 176 patients. Journal of the Chinese Medical Association. 2017;80(9):587-94. https://doi.org/10.1016/j.jcma.2017.04.007
  • 18.Lindvall E, Ghaffar S, Martirosian A, et al. Short Versus Long Intramedullary Nails in the Treatment of Pertrochanteric Hip Fractures: Incidence of Ipsilateral Fractures and Costs Associated With Each Implant. J Orthop Trauma. 2016;30(3):6.
  • 19.Halonen LM, Stenroos A, Vasara H, et al. Peri-implant fracture: a rare complication after intramedullary fixation of trochanteric femoral fracture. Arch Orthop Trauma Surg. 2021;142(12):3715-20. https://doi.org/10.1007/s00402-021-04193-4
  • 20.Yamamoto N, Yamakawa Y, Tomita Y, et al. Intraoperative fractures in cephalomedullary nailing for trochanteric fractures. Injury. 2022;53(2):561-8. https://doi.org/10.1016/j.injury.2021.10.017
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Orthopaedics
Journal Section Articles
Authors

Burak Özturan 0000-0002-1296-5059

Tarık Sarı 0000-0003-2080-6346

Publication Date December 31, 2022
Acceptance Date December 6, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Özturan, B., & Sarı, T. (2022). Stabil olmayan femur proksimal kırıklarında anti rotatuar lag vidası olan proksimal femoral çivi (PFN) ile bıçaklı LAG vidası olan proksimal femoral çivinin biyomekanik kıyaslanması. Journal of Cukurova Anesthesia and Surgical Sciences, 5(3), 361-367. https://doi.org/10.36516/jocass.1210389

download

You are free to:
Share — copy and redistribute the material in any medium or format The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes. NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.