Research Article
BibTex RIS Cite

Effect of Addition of Different Gums on The Technological and Rheological Properties of Fish Gelatin

Year 2023, Volume: 20 Issue: 3, 663 - 676, 26.09.2023
https://doi.org/10.33462/jotaf.1226398

Abstract

Technological and rheological properties of fish gelatin (FG) with the addition of different gums (xanthan gum, gellan gum, agar-agar, locust bean gum, carrageenan, guar gum, gum arabic) were determined. Increase in the storage modulus (Gʹ) and loss modulus (Gʺ) was observed with the addition of gums to FG. The elastic structure of FG became stronger and showed a significantly higher gel property (Gʹ>Gʺ). The addition of gum arabic was seen to adversely affect the structure of FG, causing a decrease in gel strength and a more viscous structure. The highest gel strength was achieved with the addition of gellan gum (7.50%). The melting temperatures, gel strength, and consistency index of FG were increased with the addition of all gums, except gum arabic. Addition of 5.00% xanthan gum to FG resulted in an increase in the melting temperature to 15.93ᵒC, which was the highest melting temperature obtained with FG. Similarly, an increase in the melting point was detected with the addition of gellan gum, agar-agar, carrageenan, and carob gum compared to the control. Different hydrocolloids enhanced Kgel, G,G, consistency index, gel strength, and melting temperature of FG. Bloom values for Bovine Gelatin (BG) and FG were 247.16 and 31.29 g, respectively. The bloom value increased to 409.363 with the addition of gellan gum and changed between 8.11-131.08 with the other gums. The water holding capacity (WHC) was found to be 784.36% in BG and 35.14% in FG. The highest WHC among all the mixtures was determined as 232.5% with the addition of 5.00% xanthan gum. The best overall results were obtained with the addition of gellan gum. Gellan gum added to FG could potentially make it suitable for usage in the food industry.

References

  • Anvari, M. and Chung, D. (2016). Dynamic rheological and structural characterization of fish gelatin–Gum arabic coacervate gels cross-linked by tannic acid. Food Hydrocolloids, 60: 516-524.
  • AOAC. (2006). Official Methods of Analysis of the AOAC. Vol.1.
  • Avena‐Bustillos, R., Olsen, C., Olson, D., Chiou, B.-s., Yee, E., Bechtel, P. and McHugh, T. (2006). Water vapor permeability of mammalian and fish gelatin films. Journal of food science, 71(4): E202-E207.
  • Balian, G. and Bowes, J. (1977). The Science and Technology of Gelatin: The Structure and Properties of Collagen. In: Academic Press Inc., New York.
  • Binsi, P., Shamasundar, B., Dileep, A., Badii, F. and Howell, N. (2009). Rheological and functional properties of gelatin from the skin of Bigeye snapper (Priacanthus hamrur) fish: Influence of gelatin on the gel-forming ability of fish mince. Food Hydrocolloids, 23(1): 132-145.
  • Cai, L., Feng, J., Regenstein, J., Lv, Y. and Li, J. (2017). Confectionery gels: Effects of low calorie sweeteners on the rheological properties and microstructure of fish gelatin. Food Hydrocolloids, 67: 157-165.
  • Chandra, M. and Shamasundar, B. (2015). Texture profile analysis and functional properties of gelatin from the skin of three species of fresh water fish. International Journal of Food Properties, 18(3): 572-584.
  • Choi, S. S. and Regenstein, J. (2000). Physicochemical and sensory characteristics of fish gelatin. Journal of Food Science, 65(2): 194-199.
  • Europe, G. M. O. (2000). Standardised Methods for the Testing of Edible Gelatin. Gelatin Monograph. Ferry, J. D. (1980). Viscoelastic properties of polymers. John Wiley & Sons.
  • Garcia, M. M. and del Carmen Guillen, M. (2003). Method for the production of gelatin of marine origin and product thus obtained. In: Google Patents.
  • Gilsenan, P. and Ross-Murphy, S. (2000). Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocolloids, 14(3): 191-195.
  • GME. (2008). Gelatin manufacturers of Europe.
  • Haug, I. J., Draget, K. I. and Smidsrød, O. (2004). Physical behaviour of fish gelatin-κ-carrageenan mixtures. Carbohydrate Polymers, 56(1): 11-19.
  • Huang, T., Tu, Z.-c., Shangguan, X., Sha, X., Wang, H., Zhang, L. and Bansal, N. (2019). Fish gelatin modifications: A comprehensive review. Trends in Food Science & Technology, 86: 260-269.
  • Işik, N. O. (2018). Gelatin production from trim wastes of buffalo leather by different methods and determination rheological properties of buffalo gelatin. Journal of Tekirdag Agricultural Faculty, 15(3): 44-51.
  • Johnston-Banks, F. (1984). Tannery to table: an account of gelatine production. Journal of the Society of Leather Technologists and Chemists, 68: 141-145.
  • Kaewruang, P., Benjakul, S., Prodpran, T., Encarnacion, A. B. and Nalinanon, S. (2014). Impact of divalent salts and bovine gelatin on gel properties of phosphorylated gelatin from the skin of unicorn leatherjacket. LWT-Food Science and Technology, 55(2): 477-482.
  • Karayannakidis, P. D. and Zotos, A. (2016). Fish processing by-products as a potential source of gelatin: A review. Journal of Aquatic Food Product Technology, 25(1): 65-92.
  • Karim, A. and Bhat, R. (2009). Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids, 23(3): 563-576.
  • Kuan, Y.-H., Nafchi, A. M., Huda, N., Ariffin, F. and Karim, A. A. (2016). Effects of sugars on the gelation kinetics and texture of duck feet gelatin. Food Hydrocolloids, 58: 267-275.
  • Lin, K.-W. and Huang, H.-Y. (2003). Konjac/gellan gum mixed gels improve the quality of reduced-fat frankfurters. Meat Science, 65(2): 749-755.
  • Lin, L., Regenstein, J. M., Lv, S., Lu, J. and Jiang, S. (2017). An overview of gelatin derived from aquatic animals: Properties and modification. Trends in Food Science & Technology, 68: 102-112.
  • Lin, M. J.-Y., Humbert, E. and Sosulski, F. (1974). Certain functional properties of sunflower meal products. Journal of Food Science, 39(2): 368-370.
  • Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W. and Sheng, P. (2012). Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Communications, 3(1): 1-7.
  • Muyonga, J., Cole, C. and Duodu, K. (2004). Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids, 18(4): 581-592.
  • Nurul, A. and Sarbon, N. (2015). Effects of pH on functional, rheological and structural properties of eel (Monopterus sp.) skin gelatin compared to bovine gelatin. International Food Research Journal, 22(2): 572-583.
  • Pranoto, Y., Lee, C. M. and Park, H. J. (2007). Characterizations of fish gelatin films added with gellan and κ-carrageenan. LWT-Food Science and Technology, 40(5): 766-774.
  • Songchotikunpan, P., Tattiyakul, J. and Supaphol, P. (2008). Extraction and electrospinning of gelatin from fish skin. International Journal of Biological Macromolecules, 42(3): 247-255.
  • Sow, L. C. and Yang, H. (2015). Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin. Food Hydrocolloids, 45: 72-82.
  • Sow, L. C., Chong, J. M. N., Liao, Q. X. and Yang, H. (2018). Effects of κ-carrageenan on the structure and rheological properties of fish gelatin. Journal of Food Engineering, 239: 92-103.
  • Yang, H. and Wang, Y. (2009). Effects of concentration on nanostructural images and physical properties of gelatin from channel catfish skins. Food Hydrocolloids, 23(3): 577-584.
  • Yearbook, F. (2019). Fishery and Aquaculture Statistics 2016. Rome: FAO.
  • Zhong, Q. and Ikeda, S. (2012). Viscoelastic properties of concentrated aqueous ethanol suspensions of α-zein. Food Hydrocolloids, 28(1): 46-52.

Farklı Gam İlavesinin Balık Jelatinin Teknolojik ve Reolojik Özellikleri Üzerine Etkisi

Year 2023, Volume: 20 Issue: 3, 663 - 676, 26.09.2023
https://doi.org/10.33462/jotaf.1226398

Abstract

Farklı gamlar (ksantan gam, gellan gam, agar-agar, keçiboynuzu gam, karagenan, guar gam, gam arabik) ilavesinin balık jelatininin (FG) teknolojik ve reolojik özellikleri üzerine etkisi belirlenmiştir. Balık jelatinine gamların eklenmesiyle birikim modülünde (Gʹ) ve kayıp modülünde (Gʺ) artış tespit edilmiştir. Gam ilavesi ile balık jelatinin elastik yapısı güçlenmiş ve önemli ölçüde daha yüksek bir jel özelliği kazanmıştır (Gʹ>Gʺ). Gam arabik ilavesinin balık jelatininin yapısını olumsuz etkilediği, hem jel mukavemetinde azalmaya hem de daha viskoz bir yapıya neden olduğu tespit edilmiştir. En yüksek jel kuvveti olan 11390.17 Pa değerine % 7.50 gellan gam ilavesiyle ulaşılmıştır. Balık jelatininin erime sıcaklıkları, jel kuvveti ve kıvam indeksi, gam arabik hariç tüm gamların eklenmesiyle artmıştır. Balık jelatinine %5.00 ksantan gam ilave edilmesi, balık jelatini ile elde edilen en yüksek erime sıcaklığı olan 15.93ᵒC'ye erime sıcaklığında bir artışa neden olmuştur. Benzer şekilde gellan gam, agar-agar, karagenan ve keçiboynuzu gam ilavesiyle de kontrole göre erime noktasında artış tespit edilmiştir. Sığır jelatin (BG) ve balık jelatini (FG) için bloom değerleri sırasıyla 247.16 ve 31.29 g olarak tespit edilmiştir. Farklı hidrokolloidler, balık jelatininin Kgel, Gˈ,Gˈˈ, kıvam indeksi, jel kuvveti ve erime sıcaklığını arttırıcı etki göstermiştir. Bloom değeri gellan gam ilavesiyle 409.363 g 'ye yükselirken, diğer gamlarla 8.11 ile 131.08 g arasında değişiklik göstermiştir. Su tutma kapasitesi (WHC) sığır jelatininde %784.36, balık jelatininde ise %35.14 olarak tespit edilmiştir. Tüm karışımlar arasında en yüksek WHC, %5.00 ksantan gam ilavesiyle %232.5 olarak belirlenmiştir. Çalışma kapsamında en iyi sonuçlar gellan gam ilavesiyle elde edilmiştir. Balık jelatinine gellan gam ilavesi ile jelatin gıda endüstrisinde kullanıma uygun hale gelme potansiyeli kazanmaktadır.

References

  • Anvari, M. and Chung, D. (2016). Dynamic rheological and structural characterization of fish gelatin–Gum arabic coacervate gels cross-linked by tannic acid. Food Hydrocolloids, 60: 516-524.
  • AOAC. (2006). Official Methods of Analysis of the AOAC. Vol.1.
  • Avena‐Bustillos, R., Olsen, C., Olson, D., Chiou, B.-s., Yee, E., Bechtel, P. and McHugh, T. (2006). Water vapor permeability of mammalian and fish gelatin films. Journal of food science, 71(4): E202-E207.
  • Balian, G. and Bowes, J. (1977). The Science and Technology of Gelatin: The Structure and Properties of Collagen. In: Academic Press Inc., New York.
  • Binsi, P., Shamasundar, B., Dileep, A., Badii, F. and Howell, N. (2009). Rheological and functional properties of gelatin from the skin of Bigeye snapper (Priacanthus hamrur) fish: Influence of gelatin on the gel-forming ability of fish mince. Food Hydrocolloids, 23(1): 132-145.
  • Cai, L., Feng, J., Regenstein, J., Lv, Y. and Li, J. (2017). Confectionery gels: Effects of low calorie sweeteners on the rheological properties and microstructure of fish gelatin. Food Hydrocolloids, 67: 157-165.
  • Chandra, M. and Shamasundar, B. (2015). Texture profile analysis and functional properties of gelatin from the skin of three species of fresh water fish. International Journal of Food Properties, 18(3): 572-584.
  • Choi, S. S. and Regenstein, J. (2000). Physicochemical and sensory characteristics of fish gelatin. Journal of Food Science, 65(2): 194-199.
  • Europe, G. M. O. (2000). Standardised Methods for the Testing of Edible Gelatin. Gelatin Monograph. Ferry, J. D. (1980). Viscoelastic properties of polymers. John Wiley & Sons.
  • Garcia, M. M. and del Carmen Guillen, M. (2003). Method for the production of gelatin of marine origin and product thus obtained. In: Google Patents.
  • Gilsenan, P. and Ross-Murphy, S. (2000). Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocolloids, 14(3): 191-195.
  • GME. (2008). Gelatin manufacturers of Europe.
  • Haug, I. J., Draget, K. I. and Smidsrød, O. (2004). Physical behaviour of fish gelatin-κ-carrageenan mixtures. Carbohydrate Polymers, 56(1): 11-19.
  • Huang, T., Tu, Z.-c., Shangguan, X., Sha, X., Wang, H., Zhang, L. and Bansal, N. (2019). Fish gelatin modifications: A comprehensive review. Trends in Food Science & Technology, 86: 260-269.
  • Işik, N. O. (2018). Gelatin production from trim wastes of buffalo leather by different methods and determination rheological properties of buffalo gelatin. Journal of Tekirdag Agricultural Faculty, 15(3): 44-51.
  • Johnston-Banks, F. (1984). Tannery to table: an account of gelatine production. Journal of the Society of Leather Technologists and Chemists, 68: 141-145.
  • Kaewruang, P., Benjakul, S., Prodpran, T., Encarnacion, A. B. and Nalinanon, S. (2014). Impact of divalent salts and bovine gelatin on gel properties of phosphorylated gelatin from the skin of unicorn leatherjacket. LWT-Food Science and Technology, 55(2): 477-482.
  • Karayannakidis, P. D. and Zotos, A. (2016). Fish processing by-products as a potential source of gelatin: A review. Journal of Aquatic Food Product Technology, 25(1): 65-92.
  • Karim, A. and Bhat, R. (2009). Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids, 23(3): 563-576.
  • Kuan, Y.-H., Nafchi, A. M., Huda, N., Ariffin, F. and Karim, A. A. (2016). Effects of sugars on the gelation kinetics and texture of duck feet gelatin. Food Hydrocolloids, 58: 267-275.
  • Lin, K.-W. and Huang, H.-Y. (2003). Konjac/gellan gum mixed gels improve the quality of reduced-fat frankfurters. Meat Science, 65(2): 749-755.
  • Lin, L., Regenstein, J. M., Lv, S., Lu, J. and Jiang, S. (2017). An overview of gelatin derived from aquatic animals: Properties and modification. Trends in Food Science & Technology, 68: 102-112.
  • Lin, M. J.-Y., Humbert, E. and Sosulski, F. (1974). Certain functional properties of sunflower meal products. Journal of Food Science, 39(2): 368-370.
  • Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W. and Sheng, P. (2012). Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Communications, 3(1): 1-7.
  • Muyonga, J., Cole, C. and Duodu, K. (2004). Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids, 18(4): 581-592.
  • Nurul, A. and Sarbon, N. (2015). Effects of pH on functional, rheological and structural properties of eel (Monopterus sp.) skin gelatin compared to bovine gelatin. International Food Research Journal, 22(2): 572-583.
  • Pranoto, Y., Lee, C. M. and Park, H. J. (2007). Characterizations of fish gelatin films added with gellan and κ-carrageenan. LWT-Food Science and Technology, 40(5): 766-774.
  • Songchotikunpan, P., Tattiyakul, J. and Supaphol, P. (2008). Extraction and electrospinning of gelatin from fish skin. International Journal of Biological Macromolecules, 42(3): 247-255.
  • Sow, L. C. and Yang, H. (2015). Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin. Food Hydrocolloids, 45: 72-82.
  • Sow, L. C., Chong, J. M. N., Liao, Q. X. and Yang, H. (2018). Effects of κ-carrageenan on the structure and rheological properties of fish gelatin. Journal of Food Engineering, 239: 92-103.
  • Yang, H. and Wang, Y. (2009). Effects of concentration on nanostructural images and physical properties of gelatin from channel catfish skins. Food Hydrocolloids, 23(3): 577-584.
  • Yearbook, F. (2019). Fishery and Aquaculture Statistics 2016. Rome: FAO.
  • Zhong, Q. and Ikeda, S. (2012). Viscoelastic properties of concentrated aqueous ethanol suspensions of α-zein. Food Hydrocolloids, 28(1): 46-52.
There are 33 citations in total.

Details

Primary Language English
Subjects Food Technology
Journal Section Articles
Authors

Oylum Şimal Yılmaz 0000-0003-1078-7604

Tuncay Gümüş 0000-0001-7635-5519

Gülce Bedis Kaynarca 0000-0001-7896-457X

Deniz Damla Altan Kamer 0000-0002-9119-5979

Early Pub Date September 12, 2023
Publication Date September 26, 2023
Submission Date December 29, 2022
Acceptance Date March 24, 2023
Published in Issue Year 2023 Volume: 20 Issue: 3

Cite

APA Yılmaz, O. Ş., Gümüş, T., Kaynarca, G. B., Altan Kamer, D. D. (2023). Effect of Addition of Different Gums on The Technological and Rheological Properties of Fish Gelatin. Tekirdağ Ziraat Fakültesi Dergisi, 20(3), 663-676. https://doi.org/10.33462/jotaf.1226398
AMA Yılmaz OŞ, Gümüş T, Kaynarca GB, Altan Kamer DD. Effect of Addition of Different Gums on The Technological and Rheological Properties of Fish Gelatin. JOTAF. September 2023;20(3):663-676. doi:10.33462/jotaf.1226398
Chicago Yılmaz, Oylum Şimal, Tuncay Gümüş, Gülce Bedis Kaynarca, and Deniz Damla Altan Kamer. “Effect of Addition of Different Gums on The Technological and Rheological Properties of Fish Gelatin”. Tekirdağ Ziraat Fakültesi Dergisi 20, no. 3 (September 2023): 663-76. https://doi.org/10.33462/jotaf.1226398.
EndNote Yılmaz OŞ, Gümüş T, Kaynarca GB, Altan Kamer DD (September 1, 2023) Effect of Addition of Different Gums on The Technological and Rheological Properties of Fish Gelatin. Tekirdağ Ziraat Fakültesi Dergisi 20 3 663–676.
IEEE O. Ş. Yılmaz, T. Gümüş, G. B. Kaynarca, and D. D. Altan Kamer, “Effect of Addition of Different Gums on The Technological and Rheological Properties of Fish Gelatin”, JOTAF, vol. 20, no. 3, pp. 663–676, 2023, doi: 10.33462/jotaf.1226398.
ISNAD Yılmaz, Oylum Şimal et al. “Effect of Addition of Different Gums on The Technological and Rheological Properties of Fish Gelatin”. Tekirdağ Ziraat Fakültesi Dergisi 20/3 (September 2023), 663-676. https://doi.org/10.33462/jotaf.1226398.
JAMA Yılmaz OŞ, Gümüş T, Kaynarca GB, Altan Kamer DD. Effect of Addition of Different Gums on The Technological and Rheological Properties of Fish Gelatin. JOTAF. 2023;20:663–676.
MLA Yılmaz, Oylum Şimal et al. “Effect of Addition of Different Gums on The Technological and Rheological Properties of Fish Gelatin”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 20, no. 3, 2023, pp. 663-76, doi:10.33462/jotaf.1226398.
Vancouver Yılmaz OŞ, Gümüş T, Kaynarca GB, Altan Kamer DD. Effect of Addition of Different Gums on The Technological and Rheological Properties of Fish Gelatin. JOTAF. 2023;20(3):663-76.