Research Article
BibTex RIS Cite
Year 2021, Volume: 8 Issue: 2, 491 - 500, 31.05.2021
https://doi.org/10.18596/jotcsa.842525

Abstract

References

  • 1. Fotakis, C., Anglos, D., Zafiropulos, V., Georgiou, S., Tornari V. Lasers in the Preservation of Cultural Heritage: Principles and Applications. CRC Press. 2006.
  • 2. Messina, G., Santangelo S. GNSR 2001: State of Art and Future Development in Raman Spectroscopy and Related Techniques. CRC Press. 2001. 290 p.
  • 3. Burgio L, Clark RJH. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Vol. 57, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 2001. 1491–1521 p.
  • 4. Best SP, Clark RJH, Withnall R. Non-destructive pigment analysis of artefacts by Raman microscopy. Endeavour. 1992;16(2):66–73.
  • 5. Chalmers JM, Edwards HGM, Hargreaves MD. Infrared and Raman spectroscopy in Forensic Science. Wiley; 2012.
  • 6. Clark RJH. Raman microscopy: Application to the identification of pigments on medieval manuscripts. Chem Soc Rev. 1995;24(3):187–96.
  • 7. Clark RJH. Pigment identification on medieval manuscripts by Raman microscopy. J Mol Struct. 1995;347:417–27.
  • 8. Burgio L, Ciomartan DA, Clark RJH. Pigment identification on medieval manuscripts, paintings and other artefacts by Raman microscopy: Applications to the study of three German manuscripts. J Mol Struct. 1997;405(1):1–11.
  • 9. Jurado-López A, Demko O, Clark RJH, Jacobs D. Analysis of the palette of a precious 16th century illuminated Turkish manuscript by Raman microscopy. J Raman Spectrosc. 2004;35(2):119–24.
  • 10. Cazzanelli E, Platania E, De Santo G, Fasanella A, Castriota M. Micro-spectroscopic Raman investigation on the canvas oil painting “Rebecca at the well” of Neapolitan anonymous. J Raman Spectrosc. 2012;43(11):1694–8.
  • 11. Antunes V, Candeias A, Mirão J, Carvalho ML, Dias CB, Manhita A, et al. Analytical characterization of the palette and painting techniques of Jorge Afonso, the great 16th century Master of Lisbon painting workshop. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2018;193:264–75. Available from:https://doi.org/10.1016/j.saa.2017.12.027
  • 12. Cristina L. Aibeo, Stien Goffin, Olivier Schalm, Geert van der Snickt, Nathalie Laquiere, Peter Eyskens KJ. Micro-Raman analysis for the identification of pigments from 19th and 20th century paintings. J Raman Spectrosc. 2008;39(May):1091–8. Available from: 10.1002/jrs.1990
  • 13. Damjanović L, Gajić-Kvaščev M, Durdević J, Andrić V, Marić-Stojanović M, Lazić T, et al. The characterization of canvas painting by the Serbian artist Milo Milunović using X-ray fluorescence, micro-Raman and FTIR spectroscopy. Radiat Phys Chem. 2015;115:135–42.
  • 14. Ricci C, Borgia I, Brunetti BG, Miliani C, Sgamellotti A, Seccaroni C, et al. The Perugino’s palette: Integration of an extended in situ XRF study by Raman spectroscopy. J Raman Spectrosc. 2004;35(8–9):616–21.
  • 15. Artesani A, Ghirardello M, Mosca S, Nevin A, Valentini G, Comelli D. Combined photoluminescence and Raman microscopy for the identification of modern pigments: explanatory examples on cross-sections from Russian avant-garde paintings. Herit Sci. 2019;7(1):1–13. Available from: https://doi.org/10.1186/s40494-019-0258-x
  • 16. Giorgi L, Nevin A, Nodari L, Comelli D, Alberti R, Gironda M, et al. In-situ technical study of modern paintings part 1: The evolution of artistic materials and painting techniques in ten paintings from 1889 to 1940 by Alessandro Milesi (1856–1945). Spectrochim Acta - Part A Mol Biomol Spectrosc. 2019;219:530–8. Available from: https://doi.org/10.1016/j.saa.2019.04.083
  • 17. Vermeulen M, Saverwyns S, Coudray A, Janssens K, Sanyova J. Identification by Raman spectroscopy of pararealgar as a starting material in the synthesis of amorphous arsenic sulfide pigments. Dye Pigment. 2018;149(October 2017):290–7.
  • 18. Akyuz S, Akyuz T, Emre G, Gulec A, Basaran S. Pigment analyses of a portrait and paint box of Turkish artist Feyhaman Duran (1886-1970): The EDXRF, FT-IR and micro Raman spectroscopic studies. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2012;89:74–81. Available from: http://dx.doi.org/10.1016/j.saa.2011.12.046
  • 19. Yaban NT. Environment of Culture and Art in the Ottoman Empire in 19th Century. Online J Sci Technol. 2018;8(2):71–8.
  • 20. Shaw WMK. Ottoman painting: reflections of Western art from the Ottoman Empire to the Turkish Republic. IB Tauris Publishers. 2010. 208 p.
  • 21. Gültekin G. Western Trends in the Turkish Art of Painting.pdf. Ankara: T.C. Ziraat Bankası Cultural and Art Activities, Ajans Türk Publishing&Printing Co. Inc.; 1992. 216 p.
  • 22. Veronika Košařová, David Hradil, Janka Hradilová, Zdeňka Čermáková, Ivan Němec MS. The efficiency of micro-Raman spectroscopy in the analysis of complicated mixtures in modern paints: Munch’s and Kupka’s paintings under study. Spectrochim Acta Part A Mol Biomol Spectrosc. 2016;156:36–46.
  • 23. Marinho JZ, Romeiro FC, Lemos SCS, Motta F V., Riccardi CS, Li MS, et al. Urea-based synthesis of zinc oxide nanostructures at low temperature. J Nanomater. 2012;2012.
  • 24. Rosi F, Miliani C, Borgia I, Brunetti B, Sgamellotti A. Identification of nineteenth century blue and green pigments by in situ x-ray fluorescence and micro-Raman spectroscopy. J Raman Spectrosc. 2004;35(8–9):610–5.
  • 25. Bell IM, Clark RJH, Gibbs PJ. Raman spectroscopic library of natural and synthetic pigments (pre-∼ 1850 AD). Spectrochim Acta - Part A Mol Biomol Spectrosc. 1997;53(12):2159–79.
  • 26. Grim DM, Allison J. Identification of colorants as used in watercolor and oil paintings by UV laser desorption mass spectrometry. Int J Mass Spectrom. 2003;222(1–3):85–99.
  • 27. Edwards HGM. Analytical raman spectroscopic discrimination between yellow pigments of the renaissance. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2011;80(1):14–20. Available from: http://dx.doi.org/10.1016/j.saa.2010.12.023
  • 28. Li XL, Sun CJ, Luo L Bin, He Y. Nondestructive detection of lead chrome green in tea by Raman spectroscopy. Sci Rep. 2015;5:1–9. Available from:http://dx.doi.org/10.1038/srep15729
  • 29. Gautier G, Bezur A, Muir K, Casadio F, Fiedler I. Chemical fingerprinting of ready-mixed house paints of relevance to artistic production in the first half of the twentieth century. Part I: Inorganic and organic pigments. Appl Spectrosc. 2009;63(6):597–603.
  • 30. Correia AM, Clark RJH, Ribeiro MIM, Duarte MLTS. Pigment study by Raman microscopy of 23 paintings by the Portuguese artist Henrique Pousão (1859-1884). J Raman Spectrosc. 2007;38(11):1390–405.
  • 31. Simonsen KP, Christiansen MB, Vinum MG, Sanyova J, Bendix J. Single crystal X-ray structure of the artists’ pigment zinc yellow. J Mol Struct. 2017;1141:322–7. Available from: http://dx.doi.org/10.1016/j.molstruc.2017.03.108
  • 32. Nicholas Eastaugh, Valentine Walsh, Tracey Chaplin RS. Pigment Compendium. A Dictionary and Optical Microscopy of Historical Pigments. Butterworth-Heinemann. 2008.
  • 33. Feller RL, editor. Artists’ Pigments: A Handbook of Their History and Characteristics. Volume 1. Oxford University Press; 1986.
  • 34. Osticioli I, Mendes NFC, Nevin A, Gil FPSC, Becucci M, Castellucci E. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2009;73(3):525–31.
  • 35. Frausto-Reyes C, Ortiz-Morales M, Bujdud-Pérez JM, Magaña-Cota GE, Mejía-Falcón R. Raman spectroscopy for the identification of pigments and color measurement in Dugès watercolors. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2009;74(5):1275–9.
  • 36. Colomban P. Lapis lazuli as unexpected blue pigment in Iranian Lâjvardina ceramics. J Raman Spectrosc. 2003;34(6):420–3.
  • 37. Tomasini EP, Halac EB, Reinoso M, Di Liscia EJ, Maier MS. Micro-Raman spectroscopy of carbon-based black pigments. J Raman Spectrosc. 2012;43(11):1671–5.
  • 38. Coccato A, Jehlicka J, Moens L, Vandenabeele P. Raman spectroscopy for the investigation of carbon-based black pigments. J Raman Spectrosc. 2015;46(10):1003–15.
  • 39. Pięta E, Proniewicz E, Szmelter-Fausek B, Olszewska-͆wietlik J, Proniewicz LM. Pigment characterization of important golden age panel paintings of the 17th century. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2015;136:594–600.
  • 40. Lauridsen CB, Sanyova J, Simonsen KP. Raman analysis of complex pigment mixtures in 20th century metal knight shields of the Order of the Elephant. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2015;150:54–62. Available from: http://dx.doi.org/10.1016/j.saa.2015.04.117
  • 41. O’Donoghue E, Romero R, Dik loris. French eighteenth-century painting techniques. Stud Conserv. 1998;43(sup1):185–9.
  • 42. Burgio L, Clark RJH, Hark RR. Raman microscopy and x-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings. Proc Natl Acad Sci U S A. 2010;107(13):5726–31.
  • 43. Osmond G, keune K, Boon J. A study of zinc soap aggregates in a late 19th century painting by R.G. Rivers at the Queensland Art Gallery. AICCM Bull. 2005;29(1):37–46.

Complementary Use of Raman and µ-XRF Spectroscopy for Non-destructive Characterization of an Oil Painting by Turkish Painter İbrahim Çallı

Year 2021, Volume: 8 Issue: 2, 491 - 500, 31.05.2021
https://doi.org/10.18596/jotcsa.842525

Abstract

The aim of the present work was to invastigate the pigments used in oil painting “in the park” created in the first half of the 20th century, by Turkish painter and academician İbrahim Çallı (1882-1960). The non-destructive analyses were performed with a combination of µ-XRF and Raman Microscopy. Obtained results revealed following pigments on the investigated painting: zinc white (ZnO), zinc yellow (K2O·4ZnCrO4·3H2O), chrome yellow (PbCrO4), strontium yellow (SrCrO4), ultramarine (Na7Al6Si6O24S3), prussian blue (Fe7C18N18), hematite (α-Fe2O3), cadmium red (CdSe), barite (BaSO4) and carbon black.
There is a great lack of knowledge about the materials used in Turkish painting and this non-destructive study provides the first systematic investigation into Çallı's palette.

References

  • 1. Fotakis, C., Anglos, D., Zafiropulos, V., Georgiou, S., Tornari V. Lasers in the Preservation of Cultural Heritage: Principles and Applications. CRC Press. 2006.
  • 2. Messina, G., Santangelo S. GNSR 2001: State of Art and Future Development in Raman Spectroscopy and Related Techniques. CRC Press. 2001. 290 p.
  • 3. Burgio L, Clark RJH. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Vol. 57, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 2001. 1491–1521 p.
  • 4. Best SP, Clark RJH, Withnall R. Non-destructive pigment analysis of artefacts by Raman microscopy. Endeavour. 1992;16(2):66–73.
  • 5. Chalmers JM, Edwards HGM, Hargreaves MD. Infrared and Raman spectroscopy in Forensic Science. Wiley; 2012.
  • 6. Clark RJH. Raman microscopy: Application to the identification of pigments on medieval manuscripts. Chem Soc Rev. 1995;24(3):187–96.
  • 7. Clark RJH. Pigment identification on medieval manuscripts by Raman microscopy. J Mol Struct. 1995;347:417–27.
  • 8. Burgio L, Ciomartan DA, Clark RJH. Pigment identification on medieval manuscripts, paintings and other artefacts by Raman microscopy: Applications to the study of three German manuscripts. J Mol Struct. 1997;405(1):1–11.
  • 9. Jurado-López A, Demko O, Clark RJH, Jacobs D. Analysis of the palette of a precious 16th century illuminated Turkish manuscript by Raman microscopy. J Raman Spectrosc. 2004;35(2):119–24.
  • 10. Cazzanelli E, Platania E, De Santo G, Fasanella A, Castriota M. Micro-spectroscopic Raman investigation on the canvas oil painting “Rebecca at the well” of Neapolitan anonymous. J Raman Spectrosc. 2012;43(11):1694–8.
  • 11. Antunes V, Candeias A, Mirão J, Carvalho ML, Dias CB, Manhita A, et al. Analytical characterization of the palette and painting techniques of Jorge Afonso, the great 16th century Master of Lisbon painting workshop. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2018;193:264–75. Available from:https://doi.org/10.1016/j.saa.2017.12.027
  • 12. Cristina L. Aibeo, Stien Goffin, Olivier Schalm, Geert van der Snickt, Nathalie Laquiere, Peter Eyskens KJ. Micro-Raman analysis for the identification of pigments from 19th and 20th century paintings. J Raman Spectrosc. 2008;39(May):1091–8. Available from: 10.1002/jrs.1990
  • 13. Damjanović L, Gajić-Kvaščev M, Durdević J, Andrić V, Marić-Stojanović M, Lazić T, et al. The characterization of canvas painting by the Serbian artist Milo Milunović using X-ray fluorescence, micro-Raman and FTIR spectroscopy. Radiat Phys Chem. 2015;115:135–42.
  • 14. Ricci C, Borgia I, Brunetti BG, Miliani C, Sgamellotti A, Seccaroni C, et al. The Perugino’s palette: Integration of an extended in situ XRF study by Raman spectroscopy. J Raman Spectrosc. 2004;35(8–9):616–21.
  • 15. Artesani A, Ghirardello M, Mosca S, Nevin A, Valentini G, Comelli D. Combined photoluminescence and Raman microscopy for the identification of modern pigments: explanatory examples on cross-sections from Russian avant-garde paintings. Herit Sci. 2019;7(1):1–13. Available from: https://doi.org/10.1186/s40494-019-0258-x
  • 16. Giorgi L, Nevin A, Nodari L, Comelli D, Alberti R, Gironda M, et al. In-situ technical study of modern paintings part 1: The evolution of artistic materials and painting techniques in ten paintings from 1889 to 1940 by Alessandro Milesi (1856–1945). Spectrochim Acta - Part A Mol Biomol Spectrosc. 2019;219:530–8. Available from: https://doi.org/10.1016/j.saa.2019.04.083
  • 17. Vermeulen M, Saverwyns S, Coudray A, Janssens K, Sanyova J. Identification by Raman spectroscopy of pararealgar as a starting material in the synthesis of amorphous arsenic sulfide pigments. Dye Pigment. 2018;149(October 2017):290–7.
  • 18. Akyuz S, Akyuz T, Emre G, Gulec A, Basaran S. Pigment analyses of a portrait and paint box of Turkish artist Feyhaman Duran (1886-1970): The EDXRF, FT-IR and micro Raman spectroscopic studies. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2012;89:74–81. Available from: http://dx.doi.org/10.1016/j.saa.2011.12.046
  • 19. Yaban NT. Environment of Culture and Art in the Ottoman Empire in 19th Century. Online J Sci Technol. 2018;8(2):71–8.
  • 20. Shaw WMK. Ottoman painting: reflections of Western art from the Ottoman Empire to the Turkish Republic. IB Tauris Publishers. 2010. 208 p.
  • 21. Gültekin G. Western Trends in the Turkish Art of Painting.pdf. Ankara: T.C. Ziraat Bankası Cultural and Art Activities, Ajans Türk Publishing&Printing Co. Inc.; 1992. 216 p.
  • 22. Veronika Košařová, David Hradil, Janka Hradilová, Zdeňka Čermáková, Ivan Němec MS. The efficiency of micro-Raman spectroscopy in the analysis of complicated mixtures in modern paints: Munch’s and Kupka’s paintings under study. Spectrochim Acta Part A Mol Biomol Spectrosc. 2016;156:36–46.
  • 23. Marinho JZ, Romeiro FC, Lemos SCS, Motta F V., Riccardi CS, Li MS, et al. Urea-based synthesis of zinc oxide nanostructures at low temperature. J Nanomater. 2012;2012.
  • 24. Rosi F, Miliani C, Borgia I, Brunetti B, Sgamellotti A. Identification of nineteenth century blue and green pigments by in situ x-ray fluorescence and micro-Raman spectroscopy. J Raman Spectrosc. 2004;35(8–9):610–5.
  • 25. Bell IM, Clark RJH, Gibbs PJ. Raman spectroscopic library of natural and synthetic pigments (pre-∼ 1850 AD). Spectrochim Acta - Part A Mol Biomol Spectrosc. 1997;53(12):2159–79.
  • 26. Grim DM, Allison J. Identification of colorants as used in watercolor and oil paintings by UV laser desorption mass spectrometry. Int J Mass Spectrom. 2003;222(1–3):85–99.
  • 27. Edwards HGM. Analytical raman spectroscopic discrimination between yellow pigments of the renaissance. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2011;80(1):14–20. Available from: http://dx.doi.org/10.1016/j.saa.2010.12.023
  • 28. Li XL, Sun CJ, Luo L Bin, He Y. Nondestructive detection of lead chrome green in tea by Raman spectroscopy. Sci Rep. 2015;5:1–9. Available from:http://dx.doi.org/10.1038/srep15729
  • 29. Gautier G, Bezur A, Muir K, Casadio F, Fiedler I. Chemical fingerprinting of ready-mixed house paints of relevance to artistic production in the first half of the twentieth century. Part I: Inorganic and organic pigments. Appl Spectrosc. 2009;63(6):597–603.
  • 30. Correia AM, Clark RJH, Ribeiro MIM, Duarte MLTS. Pigment study by Raman microscopy of 23 paintings by the Portuguese artist Henrique Pousão (1859-1884). J Raman Spectrosc. 2007;38(11):1390–405.
  • 31. Simonsen KP, Christiansen MB, Vinum MG, Sanyova J, Bendix J. Single crystal X-ray structure of the artists’ pigment zinc yellow. J Mol Struct. 2017;1141:322–7. Available from: http://dx.doi.org/10.1016/j.molstruc.2017.03.108
  • 32. Nicholas Eastaugh, Valentine Walsh, Tracey Chaplin RS. Pigment Compendium. A Dictionary and Optical Microscopy of Historical Pigments. Butterworth-Heinemann. 2008.
  • 33. Feller RL, editor. Artists’ Pigments: A Handbook of Their History and Characteristics. Volume 1. Oxford University Press; 1986.
  • 34. Osticioli I, Mendes NFC, Nevin A, Gil FPSC, Becucci M, Castellucci E. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2009;73(3):525–31.
  • 35. Frausto-Reyes C, Ortiz-Morales M, Bujdud-Pérez JM, Magaña-Cota GE, Mejía-Falcón R. Raman spectroscopy for the identification of pigments and color measurement in Dugès watercolors. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2009;74(5):1275–9.
  • 36. Colomban P. Lapis lazuli as unexpected blue pigment in Iranian Lâjvardina ceramics. J Raman Spectrosc. 2003;34(6):420–3.
  • 37. Tomasini EP, Halac EB, Reinoso M, Di Liscia EJ, Maier MS. Micro-Raman spectroscopy of carbon-based black pigments. J Raman Spectrosc. 2012;43(11):1671–5.
  • 38. Coccato A, Jehlicka J, Moens L, Vandenabeele P. Raman spectroscopy for the investigation of carbon-based black pigments. J Raman Spectrosc. 2015;46(10):1003–15.
  • 39. Pięta E, Proniewicz E, Szmelter-Fausek B, Olszewska-͆wietlik J, Proniewicz LM. Pigment characterization of important golden age panel paintings of the 17th century. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2015;136:594–600.
  • 40. Lauridsen CB, Sanyova J, Simonsen KP. Raman analysis of complex pigment mixtures in 20th century metal knight shields of the Order of the Elephant. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2015;150:54–62. Available from: http://dx.doi.org/10.1016/j.saa.2015.04.117
  • 41. O’Donoghue E, Romero R, Dik loris. French eighteenth-century painting techniques. Stud Conserv. 1998;43(sup1):185–9.
  • 42. Burgio L, Clark RJH, Hark RR. Raman microscopy and x-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings. Proc Natl Acad Sci U S A. 2010;107(13):5726–31.
  • 43. Osmond G, keune K, Boon J. A study of zinc soap aggregates in a late 19th century painting by R.G. Rivers at the Queensland Art Gallery. AICCM Bull. 2005;29(1):37–46.
There are 43 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Articles
Authors

Özden Ormancı 0000-0002-1098-3923

Meriç Bakiler 0000-0002-3561-6716

Publication Date May 31, 2021
Submission Date December 20, 2020
Acceptance Date March 11, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

Vancouver Ormancı Ö, Bakiler M. Complementary Use of Raman and µ-XRF Spectroscopy for Non-destructive Characterization of an Oil Painting by Turkish Painter İbrahim Çallı. JOTCSA. 2021;8(2):491-500.