Analyzing an efficient mix design for the production of quality asphalt concrete: A means of reducing roads’ maintenance cost
Year 2024,
, 177 - 198, 24.06.2024
Abiodun Kilani
,
Akinniyi Akinjide Adelani
Oladipupo Seun Oladejo
,
Bolanle Deborah Ikotun
Ademilade Olubambi
Abstract
Poor road design is the bedrock for strength deformation and formation of potholes in road pavement systems. The best choice of aggregates for asphalt concrete production contributes significantly to road pavement stability, sustainability, and durability at its serviceability life- style. The use of critical design and analysis techniques for the production of asphalt concrete is one of the standard means of eradicating the defect of roads’ pavement deformation in the global construction industries. This study reveals the hidden knowledge about the standard formulation and mix design required for producing durable asphaltic concrete pavements. In the experiment, three different mix designs were used to make quality asphalt concrete for the road’s binder pavement construction. This was done to ascertain the best quality ag- gregates required to produce durable asphalt concrete to construct binder road’s pavement. Also, the aggregates used for the production of quality asphalt concrete for the construction of road’s wearing course pavements were formulated using two mix designs. The results of the experiments proved that the asphalt concrete made with the aggregate formulated for the binder course from the first mix design yielded the best outcome, which is suggested for the global production of quality and standard asphalt concrete for road’ binder pavements’ con- struction. Although the formulated aggregates for the wearing course’s asphalt production were made from the two mix designs, however, the obtained results from the first mix design were satisfactory fell within the specified limits. This made it the best mix design for indus- trial practice. In addition, the accuracy and efficiency of the results obtained relied so much on the standard of estimation made to produce quality asphalt concrete, which cost up to $270,830.00 at Chainages 26 + 700 to 26 + 925. All the experimental results proved that ap- plication of standard aggregates’ mix design in road pavement construction helps in prevent- ing the problems of deformation, cracks, and other defects on the roads’ pavement system. Also, applying the first formulated mix design used in this study will help in maintaining the sustainable, durable, stable, and flexible road pavement in the global communities. Likewise, the government's constant expenditure on road pavement maintenance will be reduced.
Ethical Statement
All the survey and asphalt concrete analysis are carried out at Dutum Company Nigeria Limited's company
Supporting Institution
Dutum Company Nigeria Limited's company
Project Number
Federal Project (road construction)
Thanks
Authors appreciate the supports rendered by the management of Dutum Company Nigeria Limited for the opportunity to carry out this research both at the field and company’s laboratory.
References
- 1. Virginia Asphalt Association (2022). Publication of the Virginia Asphalt Association//Spring and Sum- mer Issue 2022. https://www.associationpublica- tions.com/flipbook/vaa/springsummer2022/index. html
- 2. Aguirre, M. A., Hassan, M. M., Shirzad, S., Moham- mad, L. N., & Cooper, S. B. (2017). Performance of asphalt rejuvenators in hot-mix asphalt containing recycled asphalt shingles. Transp Res Rec, 2633(1), 108–116. [CrossRef]
- 3. Mivehchi, M., Wen, H., Wen, Y., & Wang, L. (2022). Study of measures to design asphalt mixes including high percentages of recycled asphalt pavement and recycled asphalt shingles. Transp Res Rec, 2677(1), 036119812211089. [CrossRef]
- 4. Asphalt Paving Association of IOWA. Benefits of as- phalt. https://www.apai.net/Files/content/Asphalt/ Asphalt_Benefits_Page.pdf
- 5. Huang H. Y. (2004). Pavement Analysis and Design. Pearson Prentice Hall.
- 6. Tillamook County. AASHTO Manual and Handout by Tillamook. https://www.tillamookcounty.gov/ publicworks/page/aashto-manual-handout
- 7. HMA Paving and Contracting. What is Super- pave? https://www.hmacontracting.com/news/ what-is-superpave/
- 8. Horak, E., & Emery, S. J. (2010). Forensic investiga- tion to determine the reasons for premature failure in an asphalt surface layer. A case study. Road Mater Pavement Des, 11(3), 511–527. [CrossRef]
- 9. Vallerga, B. A., Lovering, W. R. (1985). Evolution of the Hveem stabilometer method of designing as- phalt paving mixtures. Asphalt Paving Technol Proc, 54, 243–265.
- 10. Robert F., Kandhal P., Brown E., Lee D., & Kennedy T. (1996). Hot mix asphalt materials, mixture design and construction. National Asphalt pavement Asso- ciation Education Foundation.
- 11. Elseifi M. A., Al-Qadi L., & P. J. Yoo (2006). Visco- elastic modeling and field validation of flexible pave- ments. J Eng Mech, 132(2), 172–178. [CrossRef]
- 12. Abu Abdo, A., Bayomy F., Nielsen R., Weaver, T., Jung, S. J., & Santi M. J. (July, 2009). Prediction of the dynamic modulus of Superpave mixes. Proceed- ings of the 8th International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCR2A ’09). Champaign, USA. [CrossRef]
- 13. Labmate. Laboratory product - Particles sizing using laboratory test sieves. https://www.labmate-online. com/news/laboratory-products/3/endecotts-ltd/ particle-sizing-using-laboratory-test-sieves/43593
- 14. Kovler, K. (2012). Does using coal fly ash in concrete construction present a radiation hazard? Constr Build Mater 29, 158–166. [CrossRef]
- 15. Read, H. (1943). Meditations on granite: Part one. Proc Geologist Assoc, 54(2), 64–85. [CrossRef]
- 16. Woo, I., Fleurisson, J. A., & Park, H. J. (2010). Influ- ence of weathering on shear strength of joints in a porphyritic granite rock mass in Jechon area, South Korea. Geosci J, 14(3), 289–299. [CrossRef]
- 17. Bas, M. J. & Streckeisen, A. L. (1991). The IUGS systematics of igneous rocks. J Geol Soc, 148(5), 825–833. [CrossRef ]
- 18. Silva, B., Rivas, T., & Prieto, B. (1999). Effects of li- chens on the geochemical weathering of granitic rocks. Chemosphere, 39(2), 379–388. [CrossRef]
- 19. Morad, S., El-Ghali, M. A., Caja, M. A., Al-Rama- dan, K., & Mansurbeg, H. (2009). Hydrothermal alteration of magmatic titanite: Evidence from pro- terozoic granitic rocks, southeastern Sweden. Can Mineral, 47(4), 801–811. [CrossRef]
- 20. Blatt, H., & Tracy, R. J. Petrology. igneous, sedimen- tary, and metamorphic. Geol Mag, 134(1), 121–142.
- 21. Fukumoto, T. (1972). Effect of particle breakage on compaction density of decomposed granite soils. Soils Found, 12(3), 55–63. [CrossRef]
- 22. Matsuda, T., & Shimizu, T. (2017). Study on correspondence between the evaluation of vibration sensation, average method, and measurement den- sity of acceleration levels for impact vibration in prefabricated housing floor. J Build Eng, 10, 124–139.[CrossRef ]
- 23. Maluski, H. (1978). Behaviour of biotites, amphi- boles, plagioclases and K-feldspars in response to tectonic events with the 40Ar-39Ar radiometric method. Example of Corsican granite. Geochim Cos- mochim, 42(11), 1619–1633. [CrossRef]
- 24. Leonard, R. J. (1929). Polygonal cracking in granite. Am J Sci, 18, 487–492. [CrossRef]
- 25. Holland, J. G. (1967). Rapid analysis of the wear- dale granite. Proc Yorkshire Geol Soc, 36(1), 91– 113. [CrossRef ]
- 26. Morrow, C. A., Moore, D. E., & Lockner, D. A. (2001). Permeability reduction in granite under hy- drothermal conditions. J Geophys Res: Solid Earth, 106(B12), 30551–30560. [CrossRef]
- 27. Karakaş, A., Smith M. R., L. Collis, L. (2020). Aggre- gates: Sand, gravel, and crushed rock aggregates for construction purposes (3rd edition). Arab J Geosci, 13, 11. [CrossRef]
- 28. al-Swaidani A. M., Baddoura, M. K., Samira D. A., & Choeb, W. (2015). Acid resistance, water perme- ability and chloride penetrability of concrete con- taining crushed basalt as aggregates. J Mater Sci Eng A, 5(8). [CrossRef]
- 29. Udaya Prakash, J., Ananth, S., Sivakumar, G., & Moorthy, T. (2018). Multi-objective optimization of wear parameters for aluminium matrix composites (413/B4C) using grey relational analysis. Mater To- day Proc, 5(2), 7207–7216. [CrossRef]
- 30. Huizn, M. E. (2022). Chips from the Quarry. Rock Miner, 97(6), 493–495. [CrossRef]
- 31. Nyembwe, K. J., Makhatha, M. E., & Mageza, K. (2017). Waste foundry sand mineralogical char- acterisation: the impact of cast alloy, casting tem- perature and molding additive on the nature waste foundry sand. Eng J, 21(7), 1–14. [CrossRef]
- 32. ASTM International. Road standards and paving standards. https://www.astm.org/products-services/ standards-and-publications/standards/road-stan- dards-and-paving-standards.html
- 33. Shi, X., Mirsayar, M., Mukhopadhyay, A., & Zollinger, D. (2019). Characterization of two-pa- rameter fracture properties of portland cement concrete containing reclaimed asphalt pavement aggregates by semicircular bending specimens. Cem Concr Compos, 95, 56–69. [CrossRef]
- 34. Hewitt, M., Tarca, A., & Yohn, T. L. (2015). The ef- fect of measurement subjectivity classifications on analysts’ use of persistence classifications when fore- casting earnings items. Contemp Account Res, 32(3), 1000–1023. [CrossRef ]
- 35. Abu Abdo A. M., Eckwright F., Jung S. J., Bayomy F., & Nielsen, R. (2014). Semi-circular notched beam- testing procedure for hot mixture asphalt. Proc Inst Civ Eng Transp, 167(1), 48–58. [CrossRef]
- 36. Abu Abdo, A. M., & Khater, M. E. (2018). Enhanc- ing rutting resistance of asphalt binder by adding plastic waste. Cogent Eng, 5(1), 1452472. [CrossRef]
- 37. AASHTO. (2006). Standard method of test for deter- mining the rheological properties of asphalt binder using a Dynamic Shear Rheometer (DSR) (AASH- TO T315-06). https://store.accuristech.com/ecia/ standards/aashto-t-315-06?product_id=1321092
- 38. Federal Ministry of Works. (1994). Specification for Roads and Bridges Construction. FMWH, Nigeria.
- 39. Nahkon K., & Jittichai R. (2017). Green assess- ment of thailand’s highway infrastructure: A green growth index approach. KSCE J Civ Eng, 21(3), 2526–2537. [CrossRef ]
- 40. David, V.,Victor A., Jose N., & Ana, C. (2020). As- sessment of eco-friendly pavement construction and maintenance using multi-recycled RAP mix- tures. Recycling, 5(3), 17. [CrossRef]
Year 2024,
, 177 - 198, 24.06.2024
Abiodun Kilani
,
Akinniyi Akinjide Adelani
Oladipupo Seun Oladejo
,
Bolanle Deborah Ikotun
Ademilade Olubambi
Project Number
Federal Project (road construction)
References
- 1. Virginia Asphalt Association (2022). Publication of the Virginia Asphalt Association//Spring and Sum- mer Issue 2022. https://www.associationpublica- tions.com/flipbook/vaa/springsummer2022/index. html
- 2. Aguirre, M. A., Hassan, M. M., Shirzad, S., Moham- mad, L. N., & Cooper, S. B. (2017). Performance of asphalt rejuvenators in hot-mix asphalt containing recycled asphalt shingles. Transp Res Rec, 2633(1), 108–116. [CrossRef]
- 3. Mivehchi, M., Wen, H., Wen, Y., & Wang, L. (2022). Study of measures to design asphalt mixes including high percentages of recycled asphalt pavement and recycled asphalt shingles. Transp Res Rec, 2677(1), 036119812211089. [CrossRef]
- 4. Asphalt Paving Association of IOWA. Benefits of as- phalt. https://www.apai.net/Files/content/Asphalt/ Asphalt_Benefits_Page.pdf
- 5. Huang H. Y. (2004). Pavement Analysis and Design. Pearson Prentice Hall.
- 6. Tillamook County. AASHTO Manual and Handout by Tillamook. https://www.tillamookcounty.gov/ publicworks/page/aashto-manual-handout
- 7. HMA Paving and Contracting. What is Super- pave? https://www.hmacontracting.com/news/ what-is-superpave/
- 8. Horak, E., & Emery, S. J. (2010). Forensic investiga- tion to determine the reasons for premature failure in an asphalt surface layer. A case study. Road Mater Pavement Des, 11(3), 511–527. [CrossRef]
- 9. Vallerga, B. A., Lovering, W. R. (1985). Evolution of the Hveem stabilometer method of designing as- phalt paving mixtures. Asphalt Paving Technol Proc, 54, 243–265.
- 10. Robert F., Kandhal P., Brown E., Lee D., & Kennedy T. (1996). Hot mix asphalt materials, mixture design and construction. National Asphalt pavement Asso- ciation Education Foundation.
- 11. Elseifi M. A., Al-Qadi L., & P. J. Yoo (2006). Visco- elastic modeling and field validation of flexible pave- ments. J Eng Mech, 132(2), 172–178. [CrossRef]
- 12. Abu Abdo, A., Bayomy F., Nielsen R., Weaver, T., Jung, S. J., & Santi M. J. (July, 2009). Prediction of the dynamic modulus of Superpave mixes. Proceed- ings of the 8th International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCR2A ’09). Champaign, USA. [CrossRef]
- 13. Labmate. Laboratory product - Particles sizing using laboratory test sieves. https://www.labmate-online. com/news/laboratory-products/3/endecotts-ltd/ particle-sizing-using-laboratory-test-sieves/43593
- 14. Kovler, K. (2012). Does using coal fly ash in concrete construction present a radiation hazard? Constr Build Mater 29, 158–166. [CrossRef]
- 15. Read, H. (1943). Meditations on granite: Part one. Proc Geologist Assoc, 54(2), 64–85. [CrossRef]
- 16. Woo, I., Fleurisson, J. A., & Park, H. J. (2010). Influ- ence of weathering on shear strength of joints in a porphyritic granite rock mass in Jechon area, South Korea. Geosci J, 14(3), 289–299. [CrossRef]
- 17. Bas, M. J. & Streckeisen, A. L. (1991). The IUGS systematics of igneous rocks. J Geol Soc, 148(5), 825–833. [CrossRef ]
- 18. Silva, B., Rivas, T., & Prieto, B. (1999). Effects of li- chens on the geochemical weathering of granitic rocks. Chemosphere, 39(2), 379–388. [CrossRef]
- 19. Morad, S., El-Ghali, M. A., Caja, M. A., Al-Rama- dan, K., & Mansurbeg, H. (2009). Hydrothermal alteration of magmatic titanite: Evidence from pro- terozoic granitic rocks, southeastern Sweden. Can Mineral, 47(4), 801–811. [CrossRef]
- 20. Blatt, H., & Tracy, R. J. Petrology. igneous, sedimen- tary, and metamorphic. Geol Mag, 134(1), 121–142.
- 21. Fukumoto, T. (1972). Effect of particle breakage on compaction density of decomposed granite soils. Soils Found, 12(3), 55–63. [CrossRef]
- 22. Matsuda, T., & Shimizu, T. (2017). Study on correspondence between the evaluation of vibration sensation, average method, and measurement den- sity of acceleration levels for impact vibration in prefabricated housing floor. J Build Eng, 10, 124–139.[CrossRef ]
- 23. Maluski, H. (1978). Behaviour of biotites, amphi- boles, plagioclases and K-feldspars in response to tectonic events with the 40Ar-39Ar radiometric method. Example of Corsican granite. Geochim Cos- mochim, 42(11), 1619–1633. [CrossRef]
- 24. Leonard, R. J. (1929). Polygonal cracking in granite. Am J Sci, 18, 487–492. [CrossRef]
- 25. Holland, J. G. (1967). Rapid analysis of the wear- dale granite. Proc Yorkshire Geol Soc, 36(1), 91– 113. [CrossRef ]
- 26. Morrow, C. A., Moore, D. E., & Lockner, D. A. (2001). Permeability reduction in granite under hy- drothermal conditions. J Geophys Res: Solid Earth, 106(B12), 30551–30560. [CrossRef]
- 27. Karakaş, A., Smith M. R., L. Collis, L. (2020). Aggre- gates: Sand, gravel, and crushed rock aggregates for construction purposes (3rd edition). Arab J Geosci, 13, 11. [CrossRef]
- 28. al-Swaidani A. M., Baddoura, M. K., Samira D. A., & Choeb, W. (2015). Acid resistance, water perme- ability and chloride penetrability of concrete con- taining crushed basalt as aggregates. J Mater Sci Eng A, 5(8). [CrossRef]
- 29. Udaya Prakash, J., Ananth, S., Sivakumar, G., & Moorthy, T. (2018). Multi-objective optimization of wear parameters for aluminium matrix composites (413/B4C) using grey relational analysis. Mater To- day Proc, 5(2), 7207–7216. [CrossRef]
- 30. Huizn, M. E. (2022). Chips from the Quarry. Rock Miner, 97(6), 493–495. [CrossRef]
- 31. Nyembwe, K. J., Makhatha, M. E., & Mageza, K. (2017). Waste foundry sand mineralogical char- acterisation: the impact of cast alloy, casting tem- perature and molding additive on the nature waste foundry sand. Eng J, 21(7), 1–14. [CrossRef]
- 32. ASTM International. Road standards and paving standards. https://www.astm.org/products-services/ standards-and-publications/standards/road-stan- dards-and-paving-standards.html
- 33. Shi, X., Mirsayar, M., Mukhopadhyay, A., & Zollinger, D. (2019). Characterization of two-pa- rameter fracture properties of portland cement concrete containing reclaimed asphalt pavement aggregates by semicircular bending specimens. Cem Concr Compos, 95, 56–69. [CrossRef]
- 34. Hewitt, M., Tarca, A., & Yohn, T. L. (2015). The ef- fect of measurement subjectivity classifications on analysts’ use of persistence classifications when fore- casting earnings items. Contemp Account Res, 32(3), 1000–1023. [CrossRef ]
- 35. Abu Abdo A. M., Eckwright F., Jung S. J., Bayomy F., & Nielsen, R. (2014). Semi-circular notched beam- testing procedure for hot mixture asphalt. Proc Inst Civ Eng Transp, 167(1), 48–58. [CrossRef]
- 36. Abu Abdo, A. M., & Khater, M. E. (2018). Enhanc- ing rutting resistance of asphalt binder by adding plastic waste. Cogent Eng, 5(1), 1452472. [CrossRef]
- 37. AASHTO. (2006). Standard method of test for deter- mining the rheological properties of asphalt binder using a Dynamic Shear Rheometer (DSR) (AASH- TO T315-06). https://store.accuristech.com/ecia/ standards/aashto-t-315-06?product_id=1321092
- 38. Federal Ministry of Works. (1994). Specification for Roads and Bridges Construction. FMWH, Nigeria.
- 39. Nahkon K., & Jittichai R. (2017). Green assess- ment of thailand’s highway infrastructure: A green growth index approach. KSCE J Civ Eng, 21(3), 2526–2537. [CrossRef ]
- 40. David, V.,Victor A., Jose N., & Ana, C. (2020). As- sessment of eco-friendly pavement construction and maintenance using multi-recycled RAP mix- tures. Recycling, 5(3), 17. [CrossRef]