Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 2, 201 - 208, 31.07.2021

Abstract

References

  • Adile, D., Aktan, N.: Some results on Nearly cosymplectic manifolds, Universal Journal of Mathematics and Applications, 2(2019), 218-223.
  • Ayar, G., Tekin, P., Aktan, N., : Some Curvature Conditions on Nearly Cosymplectic Manifolds, Indian Journal Of Industrial and Applied Mathematics, 10(2019), 51-58.
  • Ayar, G., Yıldırım, M. : Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds, Facta Universitatis(Nis) Ser. Math. Inform., 34(2019), 503-510.
  • Ayar, G., Yıldırım, M.: etha-Ricci solitons on Nearly Kenmotsu Manifolds, Asian-European Journal of Mathematics, 12(2019), 2040002-2040010.
  • Barua, B., De, U. C.: Characterizations of a Riemannian manifold admitting Ricci solitons. Facta Universitatis(NIS)Ser. Math. Inform., 28(2013), 127-132.
  • Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics,Springer-Verlag, Berlin, 1976.
  • Blair, D. E. Almost Contact Manifolds with Killing Structure Tensors, I. Pac. J. Math. 39 (1971), 285-292.
  • Blair, D. E., Goldberg S.I. Topology of almost contact manifolds, J.Differential Geometry 1(1967), 347-354.
  • Catino, G., Mazzieri, L. Gradient Einstein solitons, Nonlinear Anal. 132(2016), 66-94.
  • Chave, T., Valent, G.: Quasi-Einstein metrics and their renormalizability properties. Helv. Phys. Acta. 69(1996), 344-347.
  • Chen, B.Y., Geometry of submanifolds, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1973.
  • Chinea, D., de Leon M., Marrero J. C.: Topology of cosymplectic manifolds, J. Math. Pures Appl., 72 (1993), 567-591.
  • Chow, B., Knopf, D., The Ricci flow: An introduction, Mathematical Surveys and Monographs 110. American Math. Soc., 2004.
  • De, U. C. Ricci soliton and gradient Ricci soliton on P-Sasakian manifolds. The Aligarh Bull. of Maths., 29(2010), 29-34.
  • De Nicola, A., Dileo, G., Yudin, I. On Nearly Sasakian and Nearly Cosymplectic Manifolds, Annali di Matematica , 197(2018), 127-138.
  • Endo, H. On the Curvature Tensor of Nearly Cosymplectic Manifolds of Constant phi-sectional curvature. An. Stiit. Univ. "Al. I. Cuza" Iasi. Mat. (N.S.), (2005), 439-454.
  • Friedan, D. Non linear models in 2 + epsilon dimensions. Ann. Phys. 163(1985), 318419.
  • Gray, A., Nearly Kahler Manifolds, J. Differential Geom. 4 (1970), 283-309.
  • Hamilton, R. S. Three-manifolds with positive Ricci curvature, Journal of Differential Geometry, 17(1982), 255-306.
  • Hamilton, R. S.: The Ricci flow on surfaces. Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math., American Math. Soc.,71(1988),237-262.
  • Ivey, T.: Ricci solitons on compact 3-manifolds. Differential Geo. Appl. 3(1993), 301-307.
  • Libermann, P.: Sur les automorphismes in nit esimaux des structures symplectiques et de atructures de contact, oll. G'eom. Diff. Globale, (1959), 37-59.
  • Mukut Mani Tripathi, Ricci solitons in contact metric manifolds, arXiv:0801.4222 (or arXiv:0801.4222v1 [math.DG] for this version)
  • Perelman, G., The entopy formula for the Ricci ow and its geometric applications, http://arxiv.org/abs/math.DG/02111159.
  • Sharma, R.: Certain results on K-contact and (k; m)-contact manifolds. Journal of Geometry, 89(2008), 138-147
  • Yıldırım, M., Ayar, G.: Nearly cosymplectic manifolds with nullity conditions, Asian-Europan journal of Mathematics, 12(2019), 2040012-2040021.

RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS

Year 2021, Volume: 4 Issue: 2, 201 - 208, 31.07.2021

Abstract

In this article, a number of properties have been obtained by examining Ricci solitons and gradient Ricci solitons on nearly cosymplectic manifolds.

References

  • Adile, D., Aktan, N.: Some results on Nearly cosymplectic manifolds, Universal Journal of Mathematics and Applications, 2(2019), 218-223.
  • Ayar, G., Tekin, P., Aktan, N., : Some Curvature Conditions on Nearly Cosymplectic Manifolds, Indian Journal Of Industrial and Applied Mathematics, 10(2019), 51-58.
  • Ayar, G., Yıldırım, M. : Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds, Facta Universitatis(Nis) Ser. Math. Inform., 34(2019), 503-510.
  • Ayar, G., Yıldırım, M.: etha-Ricci solitons on Nearly Kenmotsu Manifolds, Asian-European Journal of Mathematics, 12(2019), 2040002-2040010.
  • Barua, B., De, U. C.: Characterizations of a Riemannian manifold admitting Ricci solitons. Facta Universitatis(NIS)Ser. Math. Inform., 28(2013), 127-132.
  • Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics,Springer-Verlag, Berlin, 1976.
  • Blair, D. E. Almost Contact Manifolds with Killing Structure Tensors, I. Pac. J. Math. 39 (1971), 285-292.
  • Blair, D. E., Goldberg S.I. Topology of almost contact manifolds, J.Differential Geometry 1(1967), 347-354.
  • Catino, G., Mazzieri, L. Gradient Einstein solitons, Nonlinear Anal. 132(2016), 66-94.
  • Chave, T., Valent, G.: Quasi-Einstein metrics and their renormalizability properties. Helv. Phys. Acta. 69(1996), 344-347.
  • Chen, B.Y., Geometry of submanifolds, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1973.
  • Chinea, D., de Leon M., Marrero J. C.: Topology of cosymplectic manifolds, J. Math. Pures Appl., 72 (1993), 567-591.
  • Chow, B., Knopf, D., The Ricci flow: An introduction, Mathematical Surveys and Monographs 110. American Math. Soc., 2004.
  • De, U. C. Ricci soliton and gradient Ricci soliton on P-Sasakian manifolds. The Aligarh Bull. of Maths., 29(2010), 29-34.
  • De Nicola, A., Dileo, G., Yudin, I. On Nearly Sasakian and Nearly Cosymplectic Manifolds, Annali di Matematica , 197(2018), 127-138.
  • Endo, H. On the Curvature Tensor of Nearly Cosymplectic Manifolds of Constant phi-sectional curvature. An. Stiit. Univ. "Al. I. Cuza" Iasi. Mat. (N.S.), (2005), 439-454.
  • Friedan, D. Non linear models in 2 + epsilon dimensions. Ann. Phys. 163(1985), 318419.
  • Gray, A., Nearly Kahler Manifolds, J. Differential Geom. 4 (1970), 283-309.
  • Hamilton, R. S. Three-manifolds with positive Ricci curvature, Journal of Differential Geometry, 17(1982), 255-306.
  • Hamilton, R. S.: The Ricci flow on surfaces. Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math., American Math. Soc.,71(1988),237-262.
  • Ivey, T.: Ricci solitons on compact 3-manifolds. Differential Geo. Appl. 3(1993), 301-307.
  • Libermann, P.: Sur les automorphismes in nit esimaux des structures symplectiques et de atructures de contact, oll. G'eom. Diff. Globale, (1959), 37-59.
  • Mukut Mani Tripathi, Ricci solitons in contact metric manifolds, arXiv:0801.4222 (or arXiv:0801.4222v1 [math.DG] for this version)
  • Perelman, G., The entopy formula for the Ricci ow and its geometric applications, http://arxiv.org/abs/math.DG/02111159.
  • Sharma, R.: Certain results on K-contact and (k; m)-contact manifolds. Journal of Geometry, 89(2008), 138-147
  • Yıldırım, M., Ayar, G.: Nearly cosymplectic manifolds with nullity conditions, Asian-Europan journal of Mathematics, 12(2019), 2040012-2040021.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Mustafa Yıldırım 0000-0002-7885-1492

Gülhan Ayar 0000-0002-1018-4590

Publication Date July 31, 2021
Submission Date June 20, 2021
Acceptance Date July 28, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Yıldırım, M., & Ayar, G. (2021). RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS. Journal of Universal Mathematics, 4(2), 201-208.
AMA Yıldırım M, Ayar G. RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS. JUM. July 2021;4(2):201-208.
Chicago Yıldırım, Mustafa, and Gülhan Ayar. “RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS”. Journal of Universal Mathematics 4, no. 2 (July 2021): 201-8.
EndNote Yıldırım M, Ayar G (July 1, 2021) RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS. Journal of Universal Mathematics 4 2 201–208.
IEEE M. Yıldırım and G. Ayar, “RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS”, JUM, vol. 4, no. 2, pp. 201–208, 2021.
ISNAD Yıldırım, Mustafa - Ayar, Gülhan. “RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS”. Journal of Universal Mathematics 4/2 (July 2021), 201-208.
JAMA Yıldırım M, Ayar G. RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS. JUM. 2021;4:201–208.
MLA Yıldırım, Mustafa and Gülhan Ayar. “RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS”. Journal of Universal Mathematics, vol. 4, no. 2, 2021, pp. 201-8.
Vancouver Yıldırım M, Ayar G. RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY COSYMPLECTIC MANIFOLDS. JUM. 2021;4(2):201-8.