Research Article
BibTex RIS Cite

CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG'S SENSE

Year 2021, Volume: 4 Issue: 2, 157 - 165, 31.07.2021
https://doi.org/10.33773/jum.962880

Abstract

In this paper, connectedness in temporal intuitionistic fuzzy topology in Chang's sense is introduced and investigated. In the content of the paper, basic definitions, theorems and propositions about connectedness in temporal intuitionistic fuzzy topology in Chang's sense are given.

Supporting Institution

MINEVINO CO (MOLDOVA)

Project Number

MNV-2021-1002

References

  • K. T. Atanassov, Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, Vol. 20, N.1, pp. 87-96, (1986).
  • K. Atanassov, More on Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems. 33(1):37-45, (1989).
  • K. T. Atanassov, Temporal Intuitionistic Fuzzy Sets. Comptes Rendus de l’Academie Bulgare,Vol. 44, N.7,pp. 5–7 (1991).
  • C. L. Chang, Fuzzy topological Spaces. J. Math Ana. Appl.,Vol. 24, 182–190,(1968).
  • D. Çoker and M. Demirci , An Introduction to Intuitionistic Topological Spaces in Šostak’s Sense. BUSEFAL, Vol. 67,pp. 67–76, (1996).
  • D. Çoker, An Introduction to Intuitionistic Fuzzy Topological Spaces. Fuzzy Sets and Systems, Vol. 88, No. 1, pp. 81-89, (1997).
  • A. A. A. El-Latif and M. M. Khalaf, Connectedness in Intuitionistic Fuzzy Topological Spaces in Šostak’s Sense. Italian Journal of Pure and Applied Mathematics. No. 35, 649-668, (2015).
  • Y.C. Kim and S.E. Abbas, Connectedness in Intuitionistic Fuzzy Topological Spaces. Commun. Korean Math. Soc. Vol.20, No.1, 117-134, (2005).
  • F. Kutlu and T. Bilgin, Temporal Intuitionistic Fuzzy Topology in Šostak’s Sense. Notes on Intuitionistic Fuzzy Sets, Vol. 21 N.2, pp. 63–70, (2015).
  • F. Kutlu, O. Atan and T. Bilgin, Distance Measure, Similarity Measure, Entropy and Inclusion Measure for Temporal Intuitionistic Fuzzy Sets. In: Proceedings of IFSCOM’2016, Mersin/Turkey, pp.130–148, (2016).
  • F. Kutlu, Temporal Intuitionistic Fuzzy Topology in Chang’s Sense, Journal of Universal Mathematics. Vol.2 No.2, 144-153, (2019).
  • S. Yılmaz and G. Çuvalcıoğlu, On Level Operators for Temporal Intuitionistic Fuzzy Sets. Notes on Intuitionistic Fuzzy Sets, Vol. 20, N.2, pp. 6–15, (2014).
  • A. Šostak, On a Fuzzy Topological Structure. Rend Circ. Mat. Palermo Supp., Vol. 11, pp. 89-103, (1985).
Year 2021, Volume: 4 Issue: 2, 157 - 165, 31.07.2021
https://doi.org/10.33773/jum.962880

Abstract

Project Number

MNV-2021-1002

References

  • K. T. Atanassov, Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, Vol. 20, N.1, pp. 87-96, (1986).
  • K. Atanassov, More on Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems. 33(1):37-45, (1989).
  • K. T. Atanassov, Temporal Intuitionistic Fuzzy Sets. Comptes Rendus de l’Academie Bulgare,Vol. 44, N.7,pp. 5–7 (1991).
  • C. L. Chang, Fuzzy topological Spaces. J. Math Ana. Appl.,Vol. 24, 182–190,(1968).
  • D. Çoker and M. Demirci , An Introduction to Intuitionistic Topological Spaces in Šostak’s Sense. BUSEFAL, Vol. 67,pp. 67–76, (1996).
  • D. Çoker, An Introduction to Intuitionistic Fuzzy Topological Spaces. Fuzzy Sets and Systems, Vol. 88, No. 1, pp. 81-89, (1997).
  • A. A. A. El-Latif and M. M. Khalaf, Connectedness in Intuitionistic Fuzzy Topological Spaces in Šostak’s Sense. Italian Journal of Pure and Applied Mathematics. No. 35, 649-668, (2015).
  • Y.C. Kim and S.E. Abbas, Connectedness in Intuitionistic Fuzzy Topological Spaces. Commun. Korean Math. Soc. Vol.20, No.1, 117-134, (2005).
  • F. Kutlu and T. Bilgin, Temporal Intuitionistic Fuzzy Topology in Šostak’s Sense. Notes on Intuitionistic Fuzzy Sets, Vol. 21 N.2, pp. 63–70, (2015).
  • F. Kutlu, O. Atan and T. Bilgin, Distance Measure, Similarity Measure, Entropy and Inclusion Measure for Temporal Intuitionistic Fuzzy Sets. In: Proceedings of IFSCOM’2016, Mersin/Turkey, pp.130–148, (2016).
  • F. Kutlu, Temporal Intuitionistic Fuzzy Topology in Chang’s Sense, Journal of Universal Mathematics. Vol.2 No.2, 144-153, (2019).
  • S. Yılmaz and G. Çuvalcıoğlu, On Level Operators for Temporal Intuitionistic Fuzzy Sets. Notes on Intuitionistic Fuzzy Sets, Vol. 20, N.2, pp. 6–15, (2014).
  • A. Šostak, On a Fuzzy Topological Structure. Rend Circ. Mat. Palermo Supp., Vol. 11, pp. 89-103, (1985).
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Feride Tuğrul 0000-0001-7690-8080

Project Number MNV-2021-1002
Publication Date July 31, 2021
Submission Date July 5, 2021
Acceptance Date July 26, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Tuğrul, F. (2021). CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. Journal of Universal Mathematics, 4(2), 157-165. https://doi.org/10.33773/jum.962880
AMA Tuğrul F. CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. JUM. July 2021;4(2):157-165. doi:10.33773/jum.962880
Chicago Tuğrul, Feride. “CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”. Journal of Universal Mathematics 4, no. 2 (July 2021): 157-65. https://doi.org/10.33773/jum.962880.
EndNote Tuğrul F (July 1, 2021) CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. Journal of Universal Mathematics 4 2 157–165.
IEEE F. Tuğrul, “CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”, JUM, vol. 4, no. 2, pp. 157–165, 2021, doi: 10.33773/jum.962880.
ISNAD Tuğrul, Feride. “CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”. Journal of Universal Mathematics 4/2 (July 2021), 157-165. https://doi.org/10.33773/jum.962880.
JAMA Tuğrul F. CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. JUM. 2021;4:157–165.
MLA Tuğrul, Feride. “CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE”. Journal of Universal Mathematics, vol. 4, no. 2, 2021, pp. 157-65, doi:10.33773/jum.962880.
Vancouver Tuğrul F. CONNECTEDNESS IN TEMPORAL INTUITIONISTIC FUZZY TOPOLOGY IN CHANG’S SENSE. JUM. 2021;4(2):157-65.