Research Article
BibTex RIS Cite

Moleküler Baskılanmış Polimer Temelli Kreatinin-Seçici Katı-Hal Mikrosensör

Year 2021, Volume: 11 Issue: 2, 584 - 599, 15.12.2021
https://doi.org/10.31466/kfbd.956652

Abstract

Kreatinin baskılanmış polimer temelli bütünüyle katı-hal polivinilklorür (PVC)-membran potansiyometrik kreatinin-seçici mikrosensör geliştirildi. Baskılanmış polimer sentezinde; kalıp molekül, fonksiyonel monomer ve çapraz bağlayıcı olarak sırasıyla; kreatinin, metakrilik asit ve etilen glikol dimetakrilat (EGDMA) kullanıldı. Elde edilen kreatinin-baskılanmış polimerin iyonofor olarak kullanılmasıyla, PVC-membran yapısında kreatinine karşı seçici bir yanıt elde edildi. Kreatinin-seçici mikrosensörün bazı potansiyometrik performans özellikleri (doğrusal çalışma aralığı, tayin sınırı, seçicilik, eğim, cevap süresi, kullanım ömrü, pH ve sıcaklık vb.) incelendi. Hazırlanan mikrosensör, 57,2±1,2 mV (R2: 0,9979) eğimle 10-1-10-5 mol.L-1 konsantrasyon aralığında Nernst davranışı sergiledi. Geliştirilen mikrosensör elde edilen potansiyellerde önemli farklılıklar olmaksızın yaklaşık olarak altı hafta boyunca kullanıldı. Geliştirilen mikrosensörün tayin sınırı 5,0x10-6 mol.L-1 ve cevap süresi oldukça kısaydı (<15 s). Mikrosensörün pH çalışma aralığı 6,0-10,0 olarak belirlendi. Geliştirilen mikrosensör kullanılarak, sentetik numunelerde bulunan kreatinin başarıyla tayin edildi. Elde edilen potansiyometrik veriler, UV spektroskopi yöntemi ile elde edilen verilerle karşılaştırıldı ve metotların %95 güven sevisinde uyumlu olduğu sonucuna varıldı.

Supporting Institution

Giresun Üniversitesi

Project Number

FEN-BAP-C-281119-81

Thanks

Yazarlar, Giresun Üniversitesi Bilimsel Araştırma Projeleri Komisyonu Başkanlığı'nın desteğine (proje no: FEN-BAP-C-281119-81) teşekkür eder.

References

  • Barnea, Z. H. and Abookasis, D. (2019). Determination of creatinine level in patient blood samples by Fourier NIR spectroscopy and multivariate analysis in comparison with biochemical assay. Journal of Innovative Optical Health Sciences, 12(6), 1950015.
  • Borisov, S. M., Mayr T., Mistlberger, G., Waich, K., Koren, K. Chojnacki, P. and Klimant, I. (2019). Precipitation as a simple and versatile method for preparation of optical nanochemosensors, Talanta, 79(5), 1322-1330.
  • Buck, R. P. and Lindner E. (1994). IUPAC Analytical Chemistry Division, Commission on Electroanalytical Chemistry, Recomendations for nomen-clature of Ion-selective Electrodes, Pure and Applied Chemistry, 66, 2527-2536.
  • Carducci, C., Birarelli M. Leuzzi, V., Carducci, C., Battini R., Cioni G. and Antonozzi I., (2002). Guanidinoacetate and creatine plus creatinine assessment in physiologic fluids: an effective diagnostic tool for the biochemical diagnosis of arginine: glycine amidinotransferase and guanidinoacetate methyltransferase deficiencies. Clinical Chemistry, 48(10), 1772-1778.
  • Chen, L., Xu, S., and Li, J., (2011). Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chemical Society Reviews, 40, 2922-2942.
  • Cheong W. J., Yang S. H. and Ali F. (2013). Molecular imprinted polymers for separation science: a review of reviews. Journal of Separation Science, 36(3), 609-628.
  • Cubuk O., Altikatoglu M., Erci V., Isildak I., and Tinkilic N. (2012). An all solid-state creatinine biosensor based on ammonium-selective PVC-NH2 membrane electrode. Sensor Letters, 10, 1-6.
  • Darmokoesoemo H., Khasanah M., Sari N. M., Kadmi Y., Elmsellem H., Kusuma H. S. (2017). Development of electrode carbon paste modified by molecularly imprinted polymer as sensor for analysis of creatinine by potentiometric. Results in Physics, 7, 1808-1817.
  • Darmokoesoemo H., Khasanah M., Sari N. M. and Kusuma H.S. (2017). Analysis of creatinine by potentiometric using electrode carbon paste modified by molecularly imprinted polymer as sensor. Rasayan Journal of Chemistry, 10(2), 450-453.
  • Davis, C. P., Shiel C. W. (2021, January 29). Creatinine (Low, High, Blood Test Results Explained). Retrieved from https://www.medicinenet.com/creatinine_blood_test/article.htm
  • Delaney T.P., Mirsky V.M. and Wolfbeis O.S., (2002). Capacitive creatinine sensor based on a photografted molecularly imprinted polymer. Electroanalysis, 14(3), 221-224.
  • Dybko A. (2001). Errors in Chemical Sensor Measurements. Sensors, (1), 29-37.
  • Elmosallamy M.A.F. (2006). New potentiometric sensors for creatinine. Analytica Chimica Acta, 564(2), 253-257.
  • Erenas M. M., Ortiz-Gómez I., Orbe-Payá I., Hernández-Alonso D., Ballester P., Blondeau P., Andrade F. J., Salinas-Castillo A. and Capitán-Vallvey L. F. (2019). Ionophore-based optical sensor for urine creatinine determination. ACS Sensors, 4, 421-426.
  • Ge S., Yan M., Cheng X., Zhang C., Yu J., Zhao P. and Gao W. (2010). On-line molecular imprinted solid-phase extraction flow-injection fluorescence sensor for determination of florfenicol in animal tissues. Journal of Pharmaceutical and Biomedical Analysis, 52(4), 615-619.
  • Horne M.M. and Swearingen P. L. (1993). Fluids, Electrolytes and Acid-Base Balance. (2nd ed.). Mosby, St Louis.
  • Hu J., Dai H., Zeng Y., Yang Y., Wang H., Zhu X., Li L., Zhou G., Chen R. and Guo L. (2019). A cross-linker-based poly(ionic liquid) for sensitive electrochemical detection of 4-nonylphenol. Nanomaterials, 9(4), 513.
  • Isildak I. and Covington A. K. (1993). Ion‐selective electrode potentiometric detection in ion‐chromatography. Electroanalysis, 5 (9‐10), 815-824.
  • Isildak, I.; Yolcu M.; Isildak O., Demirel N., Topal G. and Hosgoren H. (2004). All-solid-state PVC membrane Ag+-selective electrodes based on diaza-18-crown-6 compounds, Microchimica Acta, 144(1), 177-181.
  • Khasanah M., Handajani U. S., Widati A. A., Abdulloh A. and Rindarti R. R. (2018). Construction and performance of creatinine selective electrode based on carbon paste-imprinting zeolite. Analytical &Bioanalytical Electrochemistry. 10(4), 429-438.
  • Kintzel, P. E. (2001). Anticancer drug-induced kidney disorders incidence, prevention and management. Drug Safety, 24(1), 19-38.
  • Kryscio D. R. and Peppas N. A., (2012). Critical review and perspective of macromolecularly imprinted polymers. Acta Biomaterialia, 8(2), 461-473.
  • Mohammadi S. and Khayatian G. (2015). Highly selective and sensitive photometric creatinine assay using silver nanoparticles. Microchimica Acta, 182:1379-1386.
  • Royani I., Widayani, Abdullah M. and Khairurrijal (2014). An atrazine molecularly imprinted polymer synthesized using a cooling-heating method with repeated washing: Its physico-chemical characteristics and enhanced cavities. International Journal of Electrochemıcal Scıence, 9, 5651-5662.
  • Salgarello M., Visconti G. and Barone-Adesi L. (2013). Interlocking circumareolar suture with undyed polyamide thread: a personal experience, Aesthetic Plastic Surgery, 37(5), 1061-1062.
  • Sellergren B. and Lanza F., (2001). Molecularly Imprinted Polymers: Man-made mimics of antibodies and their application in analytical chemistry: Techniques and instrumentation in analytical chemistry, Amsterdam, Netherlands: Elsevier Science.
  • Sukhang M., Junkuy A., Buckley N., Mohamed F. and Wunnapuk K. (2020). An LC-MS/MS method for creatine and creatinine analysis in paraquat-intoxicated patients. Journal of Environmental Science and Health, Part B, 55(3), 273-282.
  • Tsikas D., Wolf A., Mitschke A., Gutzki F-M., Will W. and Bader M. (2010). GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1;878(27), 2582-2592.
  • Vitali L., Gonçalves S., Rodrigues V., Fávere V. T. and Micke G. A. (2017). Development of a fast method for simultaneous determination of hippuric acid, mandelic acid, and creatinine in urine by capillary zone electrophoresis using polymer multilayer-coated capillary. Analytical and Bioanalytical Chemistry, 409(7), 1943-1950.
  • Wanga Y., Zhang Z., Jain V., Yi J., Mueller S., Sokolov J., Liu Z., Levon K., Rigas B. and Rafailovich M. H. (2010). Potentiometric sensors based on surface molecular imprinting: detection of cancer biomarkers and viruses, Sensors and Actuators B: Chemical, 146(1), 381-387.
  • Wyss, M. and Kaddurah-Daouk, R., (2000). Creatine and creatinine metabolism. Physiological Reviews, 80(3), 1107-1213.
  • Yolcu M. and Dere N. (2018). All-solid-state potentiometric Cu(II)-selective sensor based on ion imprinted methacrylamide polymer, Electroanalysis, 30, 1147-1154.

Creatinine-Selective Solid-State Microsensor Based on Molecular Imprinted Polymer

Year 2021, Volume: 11 Issue: 2, 584 - 599, 15.12.2021
https://doi.org/10.31466/kfbd.956652

Abstract

A solid-state polyvinylchloride (PVC)-membrane potentiometric creatinine-selective microsensor based on a creatinine-imprinted polymer was developed. For the imprinted polymer synthesis process; creatinine, methacrylic acid and ethylene glycol dimethacrylate (EGDMA) were used as template molecule, functional monomer and crosslinker, respectively. By using the obtained creatinine-imprinted polymer as an ionophore, a selective response was obtained towards creatinine in the PVC-membrane structure. The potentiometric performance characteristics (linear operating range, detection limit, selectivity, slope, response time, lifetime, pH and temperature, etc.) of the creatinine-selective microsensor were investigated. The prepared microsensor exhibited Nernst behavior in the concentration range of 10-1-10-5 mol.L-1 with a slope of 57.2±1.2 mV (R2: 0.9979). The developed microsensor was used for approximately six weeks without significant differences in the potentials optained for creatinine. The detection limit of the developed microsensor was 5.0x10-6 mol. L-1 and the response time was rather short (<15 s). The pH working range of the microsensor was determined as 6.0-10.0. Using the developed microsensor, the creatinine determination was successfully performed in synthetic samples. The obtained potentiometric data were compared with the results obtained by UV spectroscopy method. The obtained results were in good harmony in 95% confidence level.

Project Number

FEN-BAP-C-281119-81

References

  • Barnea, Z. H. and Abookasis, D. (2019). Determination of creatinine level in patient blood samples by Fourier NIR spectroscopy and multivariate analysis in comparison with biochemical assay. Journal of Innovative Optical Health Sciences, 12(6), 1950015.
  • Borisov, S. M., Mayr T., Mistlberger, G., Waich, K., Koren, K. Chojnacki, P. and Klimant, I. (2019). Precipitation as a simple and versatile method for preparation of optical nanochemosensors, Talanta, 79(5), 1322-1330.
  • Buck, R. P. and Lindner E. (1994). IUPAC Analytical Chemistry Division, Commission on Electroanalytical Chemistry, Recomendations for nomen-clature of Ion-selective Electrodes, Pure and Applied Chemistry, 66, 2527-2536.
  • Carducci, C., Birarelli M. Leuzzi, V., Carducci, C., Battini R., Cioni G. and Antonozzi I., (2002). Guanidinoacetate and creatine plus creatinine assessment in physiologic fluids: an effective diagnostic tool for the biochemical diagnosis of arginine: glycine amidinotransferase and guanidinoacetate methyltransferase deficiencies. Clinical Chemistry, 48(10), 1772-1778.
  • Chen, L., Xu, S., and Li, J., (2011). Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chemical Society Reviews, 40, 2922-2942.
  • Cheong W. J., Yang S. H. and Ali F. (2013). Molecular imprinted polymers for separation science: a review of reviews. Journal of Separation Science, 36(3), 609-628.
  • Cubuk O., Altikatoglu M., Erci V., Isildak I., and Tinkilic N. (2012). An all solid-state creatinine biosensor based on ammonium-selective PVC-NH2 membrane electrode. Sensor Letters, 10, 1-6.
  • Darmokoesoemo H., Khasanah M., Sari N. M., Kadmi Y., Elmsellem H., Kusuma H. S. (2017). Development of electrode carbon paste modified by molecularly imprinted polymer as sensor for analysis of creatinine by potentiometric. Results in Physics, 7, 1808-1817.
  • Darmokoesoemo H., Khasanah M., Sari N. M. and Kusuma H.S. (2017). Analysis of creatinine by potentiometric using electrode carbon paste modified by molecularly imprinted polymer as sensor. Rasayan Journal of Chemistry, 10(2), 450-453.
  • Davis, C. P., Shiel C. W. (2021, January 29). Creatinine (Low, High, Blood Test Results Explained). Retrieved from https://www.medicinenet.com/creatinine_blood_test/article.htm
  • Delaney T.P., Mirsky V.M. and Wolfbeis O.S., (2002). Capacitive creatinine sensor based on a photografted molecularly imprinted polymer. Electroanalysis, 14(3), 221-224.
  • Dybko A. (2001). Errors in Chemical Sensor Measurements. Sensors, (1), 29-37.
  • Elmosallamy M.A.F. (2006). New potentiometric sensors for creatinine. Analytica Chimica Acta, 564(2), 253-257.
  • Erenas M. M., Ortiz-Gómez I., Orbe-Payá I., Hernández-Alonso D., Ballester P., Blondeau P., Andrade F. J., Salinas-Castillo A. and Capitán-Vallvey L. F. (2019). Ionophore-based optical sensor for urine creatinine determination. ACS Sensors, 4, 421-426.
  • Ge S., Yan M., Cheng X., Zhang C., Yu J., Zhao P. and Gao W. (2010). On-line molecular imprinted solid-phase extraction flow-injection fluorescence sensor for determination of florfenicol in animal tissues. Journal of Pharmaceutical and Biomedical Analysis, 52(4), 615-619.
  • Horne M.M. and Swearingen P. L. (1993). Fluids, Electrolytes and Acid-Base Balance. (2nd ed.). Mosby, St Louis.
  • Hu J., Dai H., Zeng Y., Yang Y., Wang H., Zhu X., Li L., Zhou G., Chen R. and Guo L. (2019). A cross-linker-based poly(ionic liquid) for sensitive electrochemical detection of 4-nonylphenol. Nanomaterials, 9(4), 513.
  • Isildak I. and Covington A. K. (1993). Ion‐selective electrode potentiometric detection in ion‐chromatography. Electroanalysis, 5 (9‐10), 815-824.
  • Isildak, I.; Yolcu M.; Isildak O., Demirel N., Topal G. and Hosgoren H. (2004). All-solid-state PVC membrane Ag+-selective electrodes based on diaza-18-crown-6 compounds, Microchimica Acta, 144(1), 177-181.
  • Khasanah M., Handajani U. S., Widati A. A., Abdulloh A. and Rindarti R. R. (2018). Construction and performance of creatinine selective electrode based on carbon paste-imprinting zeolite. Analytical &Bioanalytical Electrochemistry. 10(4), 429-438.
  • Kintzel, P. E. (2001). Anticancer drug-induced kidney disorders incidence, prevention and management. Drug Safety, 24(1), 19-38.
  • Kryscio D. R. and Peppas N. A., (2012). Critical review and perspective of macromolecularly imprinted polymers. Acta Biomaterialia, 8(2), 461-473.
  • Mohammadi S. and Khayatian G. (2015). Highly selective and sensitive photometric creatinine assay using silver nanoparticles. Microchimica Acta, 182:1379-1386.
  • Royani I., Widayani, Abdullah M. and Khairurrijal (2014). An atrazine molecularly imprinted polymer synthesized using a cooling-heating method with repeated washing: Its physico-chemical characteristics and enhanced cavities. International Journal of Electrochemıcal Scıence, 9, 5651-5662.
  • Salgarello M., Visconti G. and Barone-Adesi L. (2013). Interlocking circumareolar suture with undyed polyamide thread: a personal experience, Aesthetic Plastic Surgery, 37(5), 1061-1062.
  • Sellergren B. and Lanza F., (2001). Molecularly Imprinted Polymers: Man-made mimics of antibodies and their application in analytical chemistry: Techniques and instrumentation in analytical chemistry, Amsterdam, Netherlands: Elsevier Science.
  • Sukhang M., Junkuy A., Buckley N., Mohamed F. and Wunnapuk K. (2020). An LC-MS/MS method for creatine and creatinine analysis in paraquat-intoxicated patients. Journal of Environmental Science and Health, Part B, 55(3), 273-282.
  • Tsikas D., Wolf A., Mitschke A., Gutzki F-M., Will W. and Bader M. (2010). GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1;878(27), 2582-2592.
  • Vitali L., Gonçalves S., Rodrigues V., Fávere V. T. and Micke G. A. (2017). Development of a fast method for simultaneous determination of hippuric acid, mandelic acid, and creatinine in urine by capillary zone electrophoresis using polymer multilayer-coated capillary. Analytical and Bioanalytical Chemistry, 409(7), 1943-1950.
  • Wanga Y., Zhang Z., Jain V., Yi J., Mueller S., Sokolov J., Liu Z., Levon K., Rigas B. and Rafailovich M. H. (2010). Potentiometric sensors based on surface molecular imprinting: detection of cancer biomarkers and viruses, Sensors and Actuators B: Chemical, 146(1), 381-387.
  • Wyss, M. and Kaddurah-Daouk, R., (2000). Creatine and creatinine metabolism. Physiological Reviews, 80(3), 1107-1213.
  • Yolcu M. and Dere N. (2018). All-solid-state potentiometric Cu(II)-selective sensor based on ion imprinted methacrylamide polymer, Electroanalysis, 30, 1147-1154.
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Nurşen Dere This is me 0000-0001-7964-7445

Zuhal Yolcu 0000-0001-7761-122X

Murat Yolcu 0000-0003-3477-3792

Project Number FEN-BAP-C-281119-81
Publication Date December 15, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Dere, N., Yolcu, Z., & Yolcu, M. (2021). Moleküler Baskılanmış Polimer Temelli Kreatinin-Seçici Katı-Hal Mikrosensör. Karadeniz Fen Bilimleri Dergisi, 11(2), 584-599. https://doi.org/10.31466/kfbd.956652