Research Article
BibTex RIS Cite

Başkalaşabilen Sabit Kanatlı bir İnsansız Hava Aracında Sivrilen Kanat Ucunun Yanal ve Yön Kararlılık Katsayılarına Etkisi

Year 2023, Volume: 13 Issue: 4, 1540 - 1551, 15.12.2023
https://doi.org/10.31466/kfbd.1309152

Abstract

Son dönemlerde insansız hava aracı (İHA) teknolojilerindeki gelişim, başkalaşım uygulamalarının çeşitli hava aracı performans parametrelerinde iyileştirme elde edebilmek adına potansiyelini ortaya koymaktadır. Döner kanatlı İHA’larda uygulamalar genellikle pervane pal geometrisi ve rotor kolları üzerine odaklanmışken, sabit kanatlı İHA’larda ise girişimler özellikle kanat ve kuyruk geometrilerinde yoğunlaşmıştır. Her başkalaşım tasarımının kendine özgü avantaj ve dezavantajları olduğu bilinse de tüm uygulamaların aerodinamik, uçuş performansı, kontrol tutumu veya bunların bir kombinasyonu olan benzer ortak amaçlar çevresinde buluştuğu görülmektedir. Bu çerçevede, yeni başkalaşım tasarımı girişimlerinin özenli şekilde avantaj ve dezavantajlarının değerlendirilmesi gerekmektedir. Buradan hareketle, bu çalışmada, yeni bir başkalaşım senaryosu olarak ZANKA-I İHA kanat ucu konikleşme kabiliyetine sahip şekilde yeniden tasarlanmış ve yanal-yön kararlılığı açısından değerlendirilmiştir. Hava aracının yanal dinamik modeli oluşturulmuş ve bu süreçte ihtiyaç duyulan aerodinamik, geometrik ve ataletsel değişkenler analitik ve sayısal yöntemlerle elde edilmiştir. Yanal-yön kararlılığı katsayıları değerlendirildiğinde ise uygulamanın yanal kararlılıkta bir gelişme sağladığı görülmüş, fakat yön kararlılığında olumsuz etkilerin baskın olduğu görülmüştür.

References

  • Afonso, F., Vale, J., Lau, F., and Suleman, A. (2017). Performance based multidisciplinary design optimization of morphing aircraft. Aerospace Science and Technology, 67, 1-12.
  • Barbarino, S., Bilgen, O., Ajaj, R. M., Friswell, M. I., and Inman, D. J. (2011). A review of morphing aircraft. Journal of intelligent material systems and structures, 22(9), 823-877.
  • Chen, T., and Katz, J. (2004). Induced drag of high-aspect ratio wings. 42nd AIAA Aerospace Sciences Meeting and Exhibit (p. 38).
  • Dimino, I., Andreutti, G., Moens, F., Fonte, F., Pecora, R., and Concilio, A. (2021). Integrated design of a morphing winglet for active load control and alleviation of turboprop regional aircraft. Applied Sciences, 11(5), 2439.
  • Eguea, J.P., Bravo-Mosquera, P.D., and Catalano, F.M. (2021). Camber morphing winglet influence on aircraft drag breakdown and tip vortex structure. Aerospace Science and Technology, 119, p. 107148.
  • Jo, B.W., and Majid, T. (2023). Enhanced Range and Endurance Evaluation of a Camber Morphing Wing Aircraft. Biomimetics, 8(1), 34.
  • Liu, B., Liang, H., Han, Z. H., and Yang, G. (2022). Surrogate-based aerodynamic shape optimization of a morphing wing considering a wide Mach-number range. Aerospace Science and Technology, 124, 107557.
  • Millard, J., Booth, S., Rawther, C., and Hayashibara, S. (2022). XFLR5 as a Design Tool in Remotely Controlled Design-Build-Fly Applications. AIAA SCITECH 2022 Forum, 3.
  • Nelson, R.C. Flight Stability and Automatic Control, 2nd ed.; WCB/McGraw-Hill Companies, Singapore, 1998.
  • Oktay, T., Konar, M., Onay, M., Aydin, M., and Mohamed, M. A. (2016). Simultaneous small UAV and autopilot system design. Aircraft Engineering and Aerospace Technology, 88(6), 818-834.
  • Oktay T., and Köse O. (2019). Non Simultaneous Morphing System Design for Yaw Motion in Quadrotors. Journal of Aviation, 3(2), 81-88.
  • Parancheerivilakkathil, M. S., Haider, Z., Ajaj, R. M., and Amoozgar, M. (2022). A Polymorphing Wing Capable of Span Extension and Variable Pitch. Aerospace, 9, 205.
  • Raymer, D. (2012). Aircraft design: a conceptual approach. American Institute of Aeronautics and Astronautics, Inc., USA.

Impacts of Tapered Wingtip on Lateral-Directional Stability Coefficients of a Morphing Fixed-wing UAV

Year 2023, Volume: 13 Issue: 4, 1540 - 1551, 15.12.2023
https://doi.org/10.31466/kfbd.1309152

Abstract

Recent developments in unmanned aerial vehicle (UAV) technologies have shown the possibility of morphing applications to provide improvement in various performance metrics in the desired manner. In rotary-wing UAVs, applications mainly focused on propeller blades and rotor arms, while efforts on fixed-wing UAVs mainly concentrated on the main wing and tail geometries. Although every morphing design has its own advantages and disadvantages, all of the applications have similar common purposes to have improved aerodynamics, flight performance, control responses, or a combination of such objectives. In that context, new morphing design attempts require a precise investigation of their pros and cons. Thus, in this study, a new morphing scenario of tapering morphing wingtip is applied to ZANKA-I fixed-wing UAV and investigated in terms of lateral-directional stability considerations. The lateral dynamic model of the aircraft is constituted and necessary aerodynamic, geometric, and inertial assessments are numerically and analytically performed. The lateral-directional stability coefficients are discussed and an improvement in lateral stability is obtained, while directional stability is found to be affected negatively by the morphing application.

References

  • Afonso, F., Vale, J., Lau, F., and Suleman, A. (2017). Performance based multidisciplinary design optimization of morphing aircraft. Aerospace Science and Technology, 67, 1-12.
  • Barbarino, S., Bilgen, O., Ajaj, R. M., Friswell, M. I., and Inman, D. J. (2011). A review of morphing aircraft. Journal of intelligent material systems and structures, 22(9), 823-877.
  • Chen, T., and Katz, J. (2004). Induced drag of high-aspect ratio wings. 42nd AIAA Aerospace Sciences Meeting and Exhibit (p. 38).
  • Dimino, I., Andreutti, G., Moens, F., Fonte, F., Pecora, R., and Concilio, A. (2021). Integrated design of a morphing winglet for active load control and alleviation of turboprop regional aircraft. Applied Sciences, 11(5), 2439.
  • Eguea, J.P., Bravo-Mosquera, P.D., and Catalano, F.M. (2021). Camber morphing winglet influence on aircraft drag breakdown and tip vortex structure. Aerospace Science and Technology, 119, p. 107148.
  • Jo, B.W., and Majid, T. (2023). Enhanced Range and Endurance Evaluation of a Camber Morphing Wing Aircraft. Biomimetics, 8(1), 34.
  • Liu, B., Liang, H., Han, Z. H., and Yang, G. (2022). Surrogate-based aerodynamic shape optimization of a morphing wing considering a wide Mach-number range. Aerospace Science and Technology, 124, 107557.
  • Millard, J., Booth, S., Rawther, C., and Hayashibara, S. (2022). XFLR5 as a Design Tool in Remotely Controlled Design-Build-Fly Applications. AIAA SCITECH 2022 Forum, 3.
  • Nelson, R.C. Flight Stability and Automatic Control, 2nd ed.; WCB/McGraw-Hill Companies, Singapore, 1998.
  • Oktay, T., Konar, M., Onay, M., Aydin, M., and Mohamed, M. A. (2016). Simultaneous small UAV and autopilot system design. Aircraft Engineering and Aerospace Technology, 88(6), 818-834.
  • Oktay T., and Köse O. (2019). Non Simultaneous Morphing System Design for Yaw Motion in Quadrotors. Journal of Aviation, 3(2), 81-88.
  • Parancheerivilakkathil, M. S., Haider, Z., Ajaj, R. M., and Amoozgar, M. (2022). A Polymorphing Wing Capable of Span Extension and Variable Pitch. Aerospace, 9, 205.
  • Raymer, D. (2012). Aircraft design: a conceptual approach. American Institute of Aeronautics and Astronautics, Inc., USA.
There are 13 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Tuğrul Oktay 0000-0003-4860-2230

Yüksel Eraslan 0000-0002-5158-5171

Early Pub Date December 18, 2023
Publication Date December 15, 2023
Published in Issue Year 2023 Volume: 13 Issue: 4

Cite

APA Oktay, T., & Eraslan, Y. (2023). Impacts of Tapered Wingtip on Lateral-Directional Stability Coefficients of a Morphing Fixed-wing UAV. Karadeniz Fen Bilimleri Dergisi, 13(4), 1540-1551. https://doi.org/10.31466/kfbd.1309152