Research Article
BibTex RIS Cite

Change of Dielectric Constant of Highly Doped-Silica Glass Used in Optical Fibers with Frequency and Temperature Under the Effect of Polarization

Year 2024, Volume: 14 Issue: 1, 315 - 325, 15.03.2024
https://doi.org/10.31466/kfbd.1408377

Abstract

In this study, the variation of the dielectric constant, i.e. relative permittivity of highly doped-silica glass used in optical fibers with frequency and temperature under the effect of polarization has been investigated. In this context, simulations of the relationship between the dielectric constant and both frequency and temperature have been carried out in the Matlab environment. According to simulation and theoretical analysis, it has been concluded that the dielectric constant of highly doped-silica glass tends to increase with the increase of ambient temperature. On the other hand, as the frequency of the source increases linearly, the dielectric constant decreases. Hence, the variations of highly doped-silica glass with temperature and frequency have been found to be 2.884 × 10-5 (°K)-1 and – 7.50 × 10-15 (Hz)-1, respectively. Moreover, in response to the change in frequency between 1011 Hz and 1012 Hz, the dielectric constant has taken values between 2.085 and 2.070. Additionally, for dielectric constant variations in 2.070 – 2.085 range, values of the relative change in polarization have been obtained in the range of 9.4695 × 10-12 F/m – 9.6023 × 10-12 F/m.

References

  • Bansal, P.B and Doremus, R.H., (1986). Handbook of glass properties, Academic Press.
  • De Souza, K.R.C.P., (1999). Fiber optic distributed sensing based on spontaneous Brillouin scattering. PhD Dissertation, University of Southampton, UK.
  • Fontanella, J., Johnston, R.L., Sigel Jr, G.H., Andeen, C. (1979). The dielectric properties of as-received and gamma irradiated fused silica,” Journal of Non-Crystalline Solids, 31(3), 401–414. https://doi.org/10.1016/0022-3093(79)90153-4.
  • Gupta, K.M. and Gupta, N., (2015). Dielectric Materials: Properties and Behaviour”, Advanced Electrical and Electronics Materials Processes and Applications”, (Chp. 9, Sec. 9.4, pp. 304–305). Scrivener Publishing, Wiley.
  • Günday, A. (2018). Computational analysis of the core refractive index dependencies of Brillouin frequency shift and Brillouin power change in Brillouin coherent detection based distributed sensing systems. Optoelectronics and Advanced Materials, 12(9–10). 502–511.
  • Lie, L., Fang, Y., Xiao, Q., Wu, Y.J., Wang N. and Chen, X.M. (2014). Microwave Dielectric Properties of Fused Silica Prepared by Different Approaches. International Journal of Applied Ceramic Technology, 11, 93–199. https://doi.org/10.1111/j.1744-7402.2012.0 2846.x
  • Molla’, J., and Ibarra, A. (2004). Radiation effects on the dielectric properties of fused silica. Nuclear Instruments and Methods in Physics Research B, 218, 189–193. https://doi.org/10.1016/j.nimb.2004.01.012
  • Tan, C. and Arndt, J. (1994). Static dielectric constant and dielectric relaxation of densified SiO2 glass. Journal of Non-Crystalline Solids, 169(1–2), 143–149. https://doi.org/10.1016/0022-3093(94)90233-x
  • Travasso, F., Bosi, L., Dari, A., Gammaitoni, L., Vocca, H., Marcheson, F. (2009). Low-frequency losses in silica glass at low temperature. Materials Science and Engineering: A, (Vols. 521–522), 268–271. https://doi.org/10.1016/j.msea.2008.09.097
  • Zhi-Yong, W., Qi, Q., Shuang-Jin, S. (2014). Temperature dependence of the refractive index of optical fibers,” Chinese Physics. B, 23(3), pp. 0342011/5. https://doi.org/10.1088/1674-1056/23/3/034201

Optik Fiberlerde Kullanılan Yüksek Katkılı Silika Camın Dielektrik Sabitinin Polarizasyon Etkisi Altında Frekans ve Sıcaklıkla Değişimi

Year 2024, Volume: 14 Issue: 1, 315 - 325, 15.03.2024
https://doi.org/10.31466/kfbd.1408377

Abstract

Bu çalışmada, optik fiberlerde kullanılan yüksek katkılı silika camın dielektrik sabitinin yani bağıl geçirgenliğinin polarizasyon etkisi altında frekans ve sıcaklıkla değişimi incelenmiştir. Bu bağlamda dielektrik sabiti ile frekans ve sıcaklık arasındaki ilişkinin Matlab ortamında simülasyonları gerçekleştirilmiştir. Simülasyon ve teorik analizlere göre yüksek katkılı silika camın dielektrik sabitinin ortam sıcaklığının artmasıyla birlikte artma eğiliminde olduğu sonucuna varılmıştır. Diğer taraftan, kaynağın frekansı doğrusal olarak arttıkça dielektrik sabiti azalmaktadır. Dolayısıyla, yüksek katkılı silika camın sıcaklık ve frekansa göre değişimi, sırasıyla 2.884 × 10-5 (°K)-1 ve – 7.50 × 10-15 (Hz)-1 olarak bulunmuştur. Ayrıca, frekansın 1011 Hz ile 1012 Hz arasındaki değişimine karşılık dielektrik sabiti, 2,085 ile 2,070 arasında değerler almıştır. Bunun yanı sıra, 2,070 ile 2,085 aralığındaki dielektrik sabiti değişimleri için bağıl polarizasyon değişimi değerleri, 9.4695 × 10-12 F/m – 9.6023 × 10-12 F/m aralığında elde edilmiştir.

References

  • Bansal, P.B and Doremus, R.H., (1986). Handbook of glass properties, Academic Press.
  • De Souza, K.R.C.P., (1999). Fiber optic distributed sensing based on spontaneous Brillouin scattering. PhD Dissertation, University of Southampton, UK.
  • Fontanella, J., Johnston, R.L., Sigel Jr, G.H., Andeen, C. (1979). The dielectric properties of as-received and gamma irradiated fused silica,” Journal of Non-Crystalline Solids, 31(3), 401–414. https://doi.org/10.1016/0022-3093(79)90153-4.
  • Gupta, K.M. and Gupta, N., (2015). Dielectric Materials: Properties and Behaviour”, Advanced Electrical and Electronics Materials Processes and Applications”, (Chp. 9, Sec. 9.4, pp. 304–305). Scrivener Publishing, Wiley.
  • Günday, A. (2018). Computational analysis of the core refractive index dependencies of Brillouin frequency shift and Brillouin power change in Brillouin coherent detection based distributed sensing systems. Optoelectronics and Advanced Materials, 12(9–10). 502–511.
  • Lie, L., Fang, Y., Xiao, Q., Wu, Y.J., Wang N. and Chen, X.M. (2014). Microwave Dielectric Properties of Fused Silica Prepared by Different Approaches. International Journal of Applied Ceramic Technology, 11, 93–199. https://doi.org/10.1111/j.1744-7402.2012.0 2846.x
  • Molla’, J., and Ibarra, A. (2004). Radiation effects on the dielectric properties of fused silica. Nuclear Instruments and Methods in Physics Research B, 218, 189–193. https://doi.org/10.1016/j.nimb.2004.01.012
  • Tan, C. and Arndt, J. (1994). Static dielectric constant and dielectric relaxation of densified SiO2 glass. Journal of Non-Crystalline Solids, 169(1–2), 143–149. https://doi.org/10.1016/0022-3093(94)90233-x
  • Travasso, F., Bosi, L., Dari, A., Gammaitoni, L., Vocca, H., Marcheson, F. (2009). Low-frequency losses in silica glass at low temperature. Materials Science and Engineering: A, (Vols. 521–522), 268–271. https://doi.org/10.1016/j.msea.2008.09.097
  • Zhi-Yong, W., Qi, Q., Shuang-Jin, S. (2014). Temperature dependence of the refractive index of optical fibers,” Chinese Physics. B, 23(3), pp. 0342011/5. https://doi.org/10.1088/1674-1056/23/3/034201
There are 10 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Abdurrahman Günday 0000-0002-3262-3494

Publication Date March 15, 2024
Submission Date December 22, 2023
Acceptance Date March 13, 2024
Published in Issue Year 2024 Volume: 14 Issue: 1

Cite

APA Günday, A. (2024). Change of Dielectric Constant of Highly Doped-Silica Glass Used in Optical Fibers with Frequency and Temperature Under the Effect of Polarization. Karadeniz Fen Bilimleri Dergisi, 14(1), 315-325. https://doi.org/10.31466/kfbd.1408377