Research Article
BibTex RIS Cite

The Effect of Vermicompost Enriched with Ulva Lactuca on Germination of Cucumber Seeds

Year 2024, Volume: 14 Issue: 1, 326 - 338, 15.03.2024
https://doi.org/10.31466/kfbd.1414251

Abstract

Vermicompost was obtained from farmyard manure compost enriched with sea lettuce (Ulva lactuca), which grows naturally on the Ordu coast, and its effects on the germination of cucumber seeds were investigated. The seaweeds collected from the sea and dried and composted in the natural environment together in 5 different groups with cattle manure after grinding. Eisenia fetida, known as Red California Worm, was used as worm species.The composts obtained were fed to earthworms according to different dose ratios. These dose ratios were determined as G1 group 9000 gr 100 % Ç.G (farm manure), G2 group 8100 gr Ç.G + 900 gr U.L (Ulva lactuca), G3 group 7200 gr Ç.G + 1800 gr U.L, G4 group 6300 gr Ç.G + 2700 gr U.L. and G5 group 5400 gr Ç.G + 3600 gr. U.L. The vermicompost was applied directly to the soil. The experiment was designed according to the randomised plots experimental design with one control and three replicates. The experiment was carried out with local Cucumis sativus (cucumber) seeds in plastic containers in open field. Including the control group, 15 saddles were used. Sowing was done by hand at a depth of 5-6 cm with 7 seeds/saddle. The 6-day development process of the seeds was observed and germination rates were analysed. At the end of the study, significant differences were found between the groups.

Project Number

FEN-BAP-C-301221-05

References

  • Adiloğlu, A., Açikgöz, F. E., Adiloğlu, S., & Solmaz, Y. (2016). Artan Miktarlarda Akuakültür Atığı Uygulamasının Salata (Lactuca sativa L. var. crispa) Bitkisinin Bazı Makro ve Mikro Bitki Besin Elementi İçerikleri Üzerine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 13(2), 96-101.
  • Ananthavalli, R., Ramadas, V., Paul, J. A. J., Selvi, B. K., & Karmegam, N. (2019). Seaweeds as bioresources for vermicompost production using the earthworm, Perionyx excavatus (Perrier). Bioresource technology, 275, 394-401.
  • Arancon, N. Q., Edwards, C. A., Babenko, A., Cannon, J., Galvis, P., & Metzger, J. D. (2008). Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Applied soil ecology, 39(1), 91-99.
  • Atiyeh, R.M., Arancon, N.Q., Edwards, C.A. and Metzger, J.D. (2000b). Influence of earthworm- processed pig manure on the growth and yield of green house tomatoes. Bioresource Technology, 75, 175-180.
  • Barley, K.P., 1961. Plant nutrition levels of vermicast. Advences in Agronomy, 13, pp.251.
  • Bhunia, S., Bhowmik, A., Mallick, R., & Mukherjee, J. (2021). Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: A review. Agronomy, 11(5), 823.
  • Cortez, J., Billes, G., & Bouché, M. B. (2000). Effect of climate, soil type and earthworm activity on nitrogen transfer from a nitrogen-15-labelled decomposing material under field conditions. Biology and Fertility of Soils, 30, 318-327.
  • Dizikısa, T., Yıldız, N., & Parlak, K. U. Ağrı-Eleşkirt Yöresi Tarım Topraklarına Vermikompost İlavesinin Mısır Bitkisinde Gelişme ve Makro Elementi İçeriğine Etkisi. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 12(2), 93-108.
  • Dyo, Y. M., & Purton, S. (2018). The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology, 164(2), 113-121.
  • Edwards, C.A., Burrows, I., 1988. The potential of earthworm composts as plant growth media. In: Edwards, C.A., Neuhauser, E. (Eds.), Earthworms in Waste and Environmental Management. SPB Academic Press, The Hague, The Netherlands, pp. 21-32
  • Göksu, G. A., & Kuzucu, C. Ö. (2017). Karpuzda (Citrullus lanatus Thunb cv. Crimson Sweet) farklı dozlardaki vermikompost uygulamalarının verim ve bazı kalite parametrelerine etkisi. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(2), 48-58.
  • Hınıslı, N., 2014. Vermikompost Gübresinin Kıvırcık Bitkisinin Gelişmesi Üzerine Etkisinin Belirlenmesi ve Diğer Bazı Organik Kaynaklı Gübrelerle Karşılaştırılması, Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü Toprak Bilimi ve Bitki Besleme Anabilim Dalı, Yüksek Lisans Tezi, Tekirdağ.
  • Hoehne, L., de Lima, C. V., Martini, M. C., Altmayer, T., Brietzke, D. T., Finatto, J., ... & Granada, C. E. (2016). Addition of vermicompost to heavy metal-contaminated soil increases the ability of black oat (Avena strigosa Schreb) plants to remove Cd, Cr, and Pb. Water, Air, & Soil Pollution, 227, 1-8.
  • Jadia, C. D., & Fulekar, M. H. (2008). Vermicomposting of vegetable waste: A bio-physicochemical process based on hydrooperating bioreactor. African journal of biotechonology, 7, 3726-3733.
  • Karmegam, N., Alagumalai, K. and Daniel, T. (1999). Effect of vermicompost on the growth and yield of green gram (Phaseolus aureus Roxb.). Tropical Agriculture, 76, 143-146.
  • Gamze, K. A. Y. A. (2008). Tohum Uygulamaları (Priming)’nın Tohum Yağ Asitleri Kompozisyonuna Etkisi ve Tohum Kalitesi ile İliskisi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 17(1-2).
  • Lauritano, C., Helland, K., Riccio, G., Andersen, J. H., Ianora, A., & Hansen, E. H. (2020). Lysophosphatidylcholines and chlorophyll-derived molecules from the diatom Cylindrotheca closterium with anti-inflammatory activity. Marine drugs, 18(3), 166.
  • Lazcano, C., Gómez-Brandón, M., & Domínguez, J. (2008). Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72(7), 1013-1019.
  • Lazcano, C., Sampedro, L., Zas, R. and Domínguez, J. (2010a). Vermicompost enhances germination of the maritime pine (Pinus pinaster Ait.). New Forest, 39, 387-400.
  • Lim, S. L., Wu, T. Y., Lim, P. N., & Shak, K. P. Y. (2015). The use of vermicompost in organic farming: overview, effects on soil and economics. Journal of the Science of Food and Agriculture, 95(6), 1143-1156.
  • Maboeta MS, Van Rensburg L: Vermicomposting of industrially produced wood chips and sewage sludge utilizing Ecotoxicology and Environmental safety, 56(2), 265-270.
  • Pathma, J., & Sakthivel, N. (2012). Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus, 1(1), 1-19.
  • Riccio, G., & Lauritano, C. (2019). Microalgae with immunomodulatory activities. Marine drugs, 18(1), 2.
  • Rosales-Mendoza, S., Solís-Andrade, K. I., Márquez-Escobar, V. A., González-Ortega, O., & Bañuelos-Hernandez, B. (2020). Current advances in the algae-made biopharmaceuticals field. Expert Opinion on Biological Therapy, 20(7), 751-766.
  • Rostami, R., Nabaey, A., & Eslami, A. K. B. A. R. (2009). Survey of optimal temperature and moisture for worms growth and operating vermicompost production of food wastes. Iranian Journal of Health and Environment, 1(2), 105-112.
  • Sallaku, G., Babaj, I., Kaciu, S., & Balliu, A. (2009). The influence of vermicompost on plant growth characteristics of cucumber (Cucumis sativus L.) seedlings under saline conditions. Journal of Food, Agriculture and Environment, 7(3-4), 869-872.
  • Silva, S. C., Ferreira, I. C., Dias, M. M., & Barreiro, M. F. (2020). Microalgae-derived pigments: A 10-year bibliometric review and industry and market trend analysis. Molecules, 25(15), 3406.
  • Sönmez, S., & Özen, N. (2019). Farklı inkübasyon dönemlerine ve vermikompost uygulamalarına bağlı olarak toprakların bitki besin maddesi içeriklerindeki değişim. Mediterranean Agricultural Sciences, 32, 121-125.
  • Tchobanoglous, G., Theisen, H., & Vigil, S. A. (1993). Integrated solid waste management: engineering principles and management issues. (No Title).
  • Theunissen, J.; Ndakidemi, P.A.; Laubscher, C.P. (2010). Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. International Journal of the Physical Sciences, 5, 1964–1973.
  • Türkmen, A., & Kütük, Y. (2017). Effects of chemical fertilizer, algea compost and zeolite on green bean yield. Turkish Journal of Agriculture-Food Science and Technology, 5(3), 289-293.
  • Türkmen, M., & Su, A. (2019). The effect of sea lettuce (Ulva lactuca) liquid fertilizer and zeolite combinations on the development of cucumber (Cucumis sativus). Turkish Journal of Agriculture-Food Science and Technology, 7(7), 1021-1027.
  • Turkmen, M., & Aydin, T. (2021). Seasonal and spatial accumulation of heavy metals in Cystoseira barbata C. Agardh 1820 from Northeastern black sea coast. INDIAN JOURNAL OF GEO-MARINE SCIENCES, 50(4), 339-342.
  • Türkmen, A., & Akyurt, İ. (2021). Mikroalglerin Antiviral Etkileri. Turkish Journal of Agriculture-Food Science and Technology, 9(2), 412-419.
  • Türkmen, M., & Duran, K. (2021). The Effect of Brown Seaweed and Cattle Manure Combinations on The Properties of Eisenia fetida‘s Organic Fertilizer. Turkish Journal of Agriculture-Food Science and Technology, 9(6), 1070-1075.
  • Werner, M., 1997. Earthworm Team Up With Yard Trimmings in Orchards. Biocycle, 38 (6): 64-65.
  • Yatoo, A. M., Ali, M. N., Baba, Z. A., & Hassan, B. (2021). Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review. Agronomy for Sustainable Development, 41, 1-26.
  • Yurtsever, N. (1984). Deneysel istatistik metotları. Köy Hizmetleri Genel Müdürlüğü Yayınları, Genel Yayın, 121.
  • Zaller, J. G. (2007). Vermicompost as a substitute for peat in potting media: Effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Scientia Horticulturae, 112(2), 191-199.

Salatalık Tohumunun Çimlenmesinde Ulva Lactuca İle Zenginleştirilmiş Solucan Gübresinin Etkisi

Year 2024, Volume: 14 Issue: 1, 326 - 338, 15.03.2024
https://doi.org/10.31466/kfbd.1414251

Abstract

Ordu sahillerinde doğal olarak yetişen ve deniz marulu (Ulva lactuca) ile zenginleştirilmiş çiftlik gübresi kompostundan solucan gübresi (vermikompost) elde edilmiştir ve salatalık tohumlarının çimlenmesi üzerindeki etkileri araştırılmıştır. Denizden toplanıp kurutulan yosunlar kıyılma işleminden sonra sığır gübresi ile birlikte 5 farklı grup olacak şekilde doğal ortamda kompostlaştırılmıştır. Solucan türü olarak Kırmızı Kaliforniya Solucanı olarak bilinen Eisenia fetida kullanılmıştır. Elde edilen kompostlar belirlenen farklı doz oranlarına göre solucanlara mama olarak verilmiştir. Bu doz oranları G1 grubu 9000 gr % 100 Ç.G (çiftlik gübresi), G2 grubu 8100 gr Ç.G + 900 gr U.L (Ulva lactuca), G3 grubu 7200 gr Ç.G + 1800 gr U.L, G4 grubu 6300 gr Ç.G + 2700 gr U.L. ve G5 grubu 5400 gr Ç.G + 3600 gr. U.L. olarak belirlenmiştir. Oluşan vermikompost doğrudan toprağa uygulanmıştır. Tesadüf parselleri deneme düzenine göre tek kontrollü ve üçer tekerrürlü olarak tasarlanmıştır. Deneme, yerli salatalık tohumu ile açık alanda plastik deneme selelerinde yürütülmüştür. Kontrol grubu dahil 15 adet sele kullanılmıştır. Ekim elle 5-6 cm derinliğe 7 tohum/sele gelecek şekilde yapılmıştır. Tohumların 6 günlük gelişim süreci gözlemlenmiş ve çimlenme oranları incelenmiştir. Çalışma sonunda gruplar arasında önemli farklılıklar bulunmuştur.

Supporting Institution

Giresun University BAP Coordination Office

Project Number

FEN-BAP-C-301221-05

References

  • Adiloğlu, A., Açikgöz, F. E., Adiloğlu, S., & Solmaz, Y. (2016). Artan Miktarlarda Akuakültür Atığı Uygulamasının Salata (Lactuca sativa L. var. crispa) Bitkisinin Bazı Makro ve Mikro Bitki Besin Elementi İçerikleri Üzerine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 13(2), 96-101.
  • Ananthavalli, R., Ramadas, V., Paul, J. A. J., Selvi, B. K., & Karmegam, N. (2019). Seaweeds as bioresources for vermicompost production using the earthworm, Perionyx excavatus (Perrier). Bioresource technology, 275, 394-401.
  • Arancon, N. Q., Edwards, C. A., Babenko, A., Cannon, J., Galvis, P., & Metzger, J. D. (2008). Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Applied soil ecology, 39(1), 91-99.
  • Atiyeh, R.M., Arancon, N.Q., Edwards, C.A. and Metzger, J.D. (2000b). Influence of earthworm- processed pig manure on the growth and yield of green house tomatoes. Bioresource Technology, 75, 175-180.
  • Barley, K.P., 1961. Plant nutrition levels of vermicast. Advences in Agronomy, 13, pp.251.
  • Bhunia, S., Bhowmik, A., Mallick, R., & Mukherjee, J. (2021). Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: A review. Agronomy, 11(5), 823.
  • Cortez, J., Billes, G., & Bouché, M. B. (2000). Effect of climate, soil type and earthworm activity on nitrogen transfer from a nitrogen-15-labelled decomposing material under field conditions. Biology and Fertility of Soils, 30, 318-327.
  • Dizikısa, T., Yıldız, N., & Parlak, K. U. Ağrı-Eleşkirt Yöresi Tarım Topraklarına Vermikompost İlavesinin Mısır Bitkisinde Gelişme ve Makro Elementi İçeriğine Etkisi. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 12(2), 93-108.
  • Dyo, Y. M., & Purton, S. (2018). The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology, 164(2), 113-121.
  • Edwards, C.A., Burrows, I., 1988. The potential of earthworm composts as plant growth media. In: Edwards, C.A., Neuhauser, E. (Eds.), Earthworms in Waste and Environmental Management. SPB Academic Press, The Hague, The Netherlands, pp. 21-32
  • Göksu, G. A., & Kuzucu, C. Ö. (2017). Karpuzda (Citrullus lanatus Thunb cv. Crimson Sweet) farklı dozlardaki vermikompost uygulamalarının verim ve bazı kalite parametrelerine etkisi. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(2), 48-58.
  • Hınıslı, N., 2014. Vermikompost Gübresinin Kıvırcık Bitkisinin Gelişmesi Üzerine Etkisinin Belirlenmesi ve Diğer Bazı Organik Kaynaklı Gübrelerle Karşılaştırılması, Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü Toprak Bilimi ve Bitki Besleme Anabilim Dalı, Yüksek Lisans Tezi, Tekirdağ.
  • Hoehne, L., de Lima, C. V., Martini, M. C., Altmayer, T., Brietzke, D. T., Finatto, J., ... & Granada, C. E. (2016). Addition of vermicompost to heavy metal-contaminated soil increases the ability of black oat (Avena strigosa Schreb) plants to remove Cd, Cr, and Pb. Water, Air, & Soil Pollution, 227, 1-8.
  • Jadia, C. D., & Fulekar, M. H. (2008). Vermicomposting of vegetable waste: A bio-physicochemical process based on hydrooperating bioreactor. African journal of biotechonology, 7, 3726-3733.
  • Karmegam, N., Alagumalai, K. and Daniel, T. (1999). Effect of vermicompost on the growth and yield of green gram (Phaseolus aureus Roxb.). Tropical Agriculture, 76, 143-146.
  • Gamze, K. A. Y. A. (2008). Tohum Uygulamaları (Priming)’nın Tohum Yağ Asitleri Kompozisyonuna Etkisi ve Tohum Kalitesi ile İliskisi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 17(1-2).
  • Lauritano, C., Helland, K., Riccio, G., Andersen, J. H., Ianora, A., & Hansen, E. H. (2020). Lysophosphatidylcholines and chlorophyll-derived molecules from the diatom Cylindrotheca closterium with anti-inflammatory activity. Marine drugs, 18(3), 166.
  • Lazcano, C., Gómez-Brandón, M., & Domínguez, J. (2008). Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72(7), 1013-1019.
  • Lazcano, C., Sampedro, L., Zas, R. and Domínguez, J. (2010a). Vermicompost enhances germination of the maritime pine (Pinus pinaster Ait.). New Forest, 39, 387-400.
  • Lim, S. L., Wu, T. Y., Lim, P. N., & Shak, K. P. Y. (2015). The use of vermicompost in organic farming: overview, effects on soil and economics. Journal of the Science of Food and Agriculture, 95(6), 1143-1156.
  • Maboeta MS, Van Rensburg L: Vermicomposting of industrially produced wood chips and sewage sludge utilizing Ecotoxicology and Environmental safety, 56(2), 265-270.
  • Pathma, J., & Sakthivel, N. (2012). Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus, 1(1), 1-19.
  • Riccio, G., & Lauritano, C. (2019). Microalgae with immunomodulatory activities. Marine drugs, 18(1), 2.
  • Rosales-Mendoza, S., Solís-Andrade, K. I., Márquez-Escobar, V. A., González-Ortega, O., & Bañuelos-Hernandez, B. (2020). Current advances in the algae-made biopharmaceuticals field. Expert Opinion on Biological Therapy, 20(7), 751-766.
  • Rostami, R., Nabaey, A., & Eslami, A. K. B. A. R. (2009). Survey of optimal temperature and moisture for worms growth and operating vermicompost production of food wastes. Iranian Journal of Health and Environment, 1(2), 105-112.
  • Sallaku, G., Babaj, I., Kaciu, S., & Balliu, A. (2009). The influence of vermicompost on plant growth characteristics of cucumber (Cucumis sativus L.) seedlings under saline conditions. Journal of Food, Agriculture and Environment, 7(3-4), 869-872.
  • Silva, S. C., Ferreira, I. C., Dias, M. M., & Barreiro, M. F. (2020). Microalgae-derived pigments: A 10-year bibliometric review and industry and market trend analysis. Molecules, 25(15), 3406.
  • Sönmez, S., & Özen, N. (2019). Farklı inkübasyon dönemlerine ve vermikompost uygulamalarına bağlı olarak toprakların bitki besin maddesi içeriklerindeki değişim. Mediterranean Agricultural Sciences, 32, 121-125.
  • Tchobanoglous, G., Theisen, H., & Vigil, S. A. (1993). Integrated solid waste management: engineering principles and management issues. (No Title).
  • Theunissen, J.; Ndakidemi, P.A.; Laubscher, C.P. (2010). Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. International Journal of the Physical Sciences, 5, 1964–1973.
  • Türkmen, A., & Kütük, Y. (2017). Effects of chemical fertilizer, algea compost and zeolite on green bean yield. Turkish Journal of Agriculture-Food Science and Technology, 5(3), 289-293.
  • Türkmen, M., & Su, A. (2019). The effect of sea lettuce (Ulva lactuca) liquid fertilizer and zeolite combinations on the development of cucumber (Cucumis sativus). Turkish Journal of Agriculture-Food Science and Technology, 7(7), 1021-1027.
  • Turkmen, M., & Aydin, T. (2021). Seasonal and spatial accumulation of heavy metals in Cystoseira barbata C. Agardh 1820 from Northeastern black sea coast. INDIAN JOURNAL OF GEO-MARINE SCIENCES, 50(4), 339-342.
  • Türkmen, A., & Akyurt, İ. (2021). Mikroalglerin Antiviral Etkileri. Turkish Journal of Agriculture-Food Science and Technology, 9(2), 412-419.
  • Türkmen, M., & Duran, K. (2021). The Effect of Brown Seaweed and Cattle Manure Combinations on The Properties of Eisenia fetida‘s Organic Fertilizer. Turkish Journal of Agriculture-Food Science and Technology, 9(6), 1070-1075.
  • Werner, M., 1997. Earthworm Team Up With Yard Trimmings in Orchards. Biocycle, 38 (6): 64-65.
  • Yatoo, A. M., Ali, M. N., Baba, Z. A., & Hassan, B. (2021). Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review. Agronomy for Sustainable Development, 41, 1-26.
  • Yurtsever, N. (1984). Deneysel istatistik metotları. Köy Hizmetleri Genel Müdürlüğü Yayınları, Genel Yayın, 121.
  • Zaller, J. G. (2007). Vermicompost as a substitute for peat in potting media: Effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Scientia Horticulturae, 112(2), 191-199.
There are 39 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Ayşe Su 0000-0001-6792-5858

Mustafa Türkmen 0000-0001-6700-5947

Hüseyin Cüce 0000-0002-3590-681X

Project Number FEN-BAP-C-301221-05
Publication Date March 15, 2024
Submission Date January 3, 2024
Acceptance Date March 6, 2024
Published in Issue Year 2024 Volume: 14 Issue: 1

Cite

APA Su, A., Türkmen, M., & Cüce, H. (2024). The Effect of Vermicompost Enriched with Ulva Lactuca on Germination of Cucumber Seeds. Karadeniz Fen Bilimleri Dergisi, 14(1), 326-338. https://doi.org/10.31466/kfbd.1414251