Research Article
BibTex RIS Cite

Farklı Sıcaklıklarda Kurutulan Değişik Kavun Çekirdeği Yağlarının Fizikokimyasal Özellikleri

Year 2024, Volume: 14 Issue: 2, 970 - 981, 18.06.2024
https://doi.org/10.31466/kfbd.1466809

Abstract

Bu çalışmada, kurutma işleminin farklı kavun çekirdeklerinden elde edilen yağların kalitesine etkisi araştırılmıştır. İki farklı kavun çeşidinin (Kırkağaç, Hasanbey) tohumları ayrılarak farklı sıcaklıklarda etüvde kurutulmuştur. Kurutma sıcaklığı olarak 30, 50, 70°C, kavunlarda Kırkağaç ve Hasanbey çeşitleri kullanılmıştır. Nem, 1000 tane ağırlığı, en, boy, kalınlık, yağ verimi, serbest yağ asitliği, peroksit değeri, renk değerleri (L*, a*, b*) ve toplam fenolik madde miktarları ile yağ asidi kompozisyonu incelenmiştir. Başlangıç nem değerlerinin ortalaması %6,42 ve %5,48 olarak belirlenmiştir. Kurutma işlemi kavun tohumlarının nem oranı %1'e ulaşana kadar gerçekleştirilmiştir. Çekirdeklerin en değerlerinin ortalaması 4,55-5,16 mm, boyu 12,82-13,18 mm, kalınlığı 1,21-1,38 mm ve 1000 tane ağırlıkları 52,40-45,70 g olarak değişmiştir. Toplam fenolik madde miktarı Kırkağaç kavun çekirdeği yağı 584-691 mg GAE/kg, Hasanbey kavun çekirdeği yağı 780-840 mgGAE/kg aralığında bulunmuştur. Toplam fenolik madde miktarı uygulanan ısıl işlem ile azalmıştır. Kırkağaç ve Hasanbey çekirdeklerinden elde edilen yağların meqO2/kg cinsinden peroksit değerleri sırasıyla 6,9-8,4 ve 7,2-9,1 arasında değişmiştir. Her iki çeşitte de en yüksek peroksit değeri 70°C'de kurutulan fasulyelerden elde edilen yağda gözlenmiştir. Yağ asidi kompozisyonu diğer yağ asitleri ile kıyaslandığında oleik ve palmitik asidin linoleik asit tarafından takip edildiği görülmüştür. Elde edilen sonuçlara göre verim ve kalite açısından en etkili kurutma sıcaklığının 50°C olduğu tespit edilmiştir.

Ethical Statement

The author declares that this study complies with Research and Publication Ethics.

References

  • Aksoy, U., (1991). Kuru İncir Üretiminde Kaliteyi Etkileyen Faktörler, İncirde Verimlilik Paneli MPM, Aydın.
  • Amaro A.L., Oliveira A., and Almeida D.P.F. (2015). Biologically Active Compounds in Melon: Modulation by Preharvest, Post-harvest, and Processing Factors. In: Preedy, V., Ed. Processing and Impact on Active Components in Food. Academic Press, London.
  • Anonymous, (1989). American Oil Chemists’ Society Peroxide Value Offical Method Cd 853 (93) Volume-1
  • Anonymous, (2007). TS-1073 Kavun Standardı, Türk Standartları Enstitüsü, Ankara,
  • Anwar, F., Naseer, R., Bhanger, M.I., Ashraf, S., Talpur, F.N., and Aladedunye, F.A. (2008). Physico-chemical characteristics of citrus seeds and seed oils from Pakistan. Journal of the American Oil Chemists’ Society, 85 (4), 321-330.
  • AOAC, (2000). Official Methods of Analysis. Virginia, USA.
  • AOCS, (2006). Official Methods and Recommended Practices of the American Oil Chemists Society, 4th ed, edited by AOCS. Champaign, IL Official Method Ai 2 75.
  • Badifu, G. I. O. (2001). Effect of processing on proximate composition, antinutritional and toxic contents of kernels from Cucurbitaceae species grown in Nigeria. Journal of Food Composition and Analysis, 14(2), 153-161.
  • Besong, S.A., Ezekwe, M.O., Fosung, C.N., and Senwo, Z.N. (2011). Evaluation of nutrient composition of African melon oilseed (Cucumeropsis mannii Naudin) for human nutrition. International Journal of Nutrition and Metabolism, 3(8), 103-108.
  • da Silva A.C., and Jorge N. (2017). Bioactive Compounds of Oils Extracted from Fruits Seeds 70 Obtained from Agroindustrial Waste. European Journal of Lipid Science and Technology, 119, 1-5.
  • de Mello, M.L., Bora, P.S., and Narain, N. (2001). Fatty and amino acids composition of melon (Cucumis melo var. saccharinus) seeds. Journal of Food Composition and Analysis, 14(1), 69-74.
  • El-Adawy, T.A., Rahma, E.H., El-Bedawy, A.A. ve Gafar, A. M., (1999). Properties of some citrus seeds Part 3, Evaluation as a new source of protein and oil, Nahrung, 43, 385-391.
  • Eşiyok, D., Bozokalfa, M. K., Boztok, K. (2005). Bazı Kavun (Cucumismelo L.) Çeşitlerinin Verim ve Kalite Özelliklerinin Belirlenmes., Ege Üniversitesi Ziraat Fakültesi Dergisi, 42(1), 25-33.
  • FAO, (2018). The Food and Agriculture Organization Corporate Statistical Database.
  • Hemavathy, J. (1992). Lipid composition of melon (Cucumis melo) kernel. Journal of Food Composition and Analysis. 5, 90-95.
  • Imbs, A.B., and Pham, L.Q. (1995). Lipid composition of ten seed species from North Vietnam. The Journal of the American Oil Chemists' Society, 72(8), 957-961.
  • Katan, M.B., Grundy, S.M., Jones, P., Law, M., Miettinen, T., and Paoletti R. (2003). Efficacy and Safety of Plant Stanols and Sterols in the Management of Blood Cholesterol Levels. Mayo Clinic Proceedings, 78, 965-978.
  • Khoshnam, F., Namjoo, M., Golbkhshi, H., and Dowlati, M., (2016). Physical and Mechanical Changes in Ripening Melon Fruits. Yuzuncu Yıl University Journal of Agricultural Sciences, 26(2), 135-144.
  • Lija, M., and Beevy, S.S. (2021). A review on the diversity of Melon. Plant Science Today, 8, 995-1003.
  • Mallek-Ayadi, S., Bahloul, N., and Kechaou, N. (2018). Chemical composition and bioactive compounds of Cucumis melo L. seeds: Potential source for new trends of plant oils. Process Safety and Environmental Protection, 113, 68-77.
  • Mansouri A., Mirzabe A.H., Raufi A., 2017. Physical properties and mathematical modeling of melon (Cucumis melo L.) seeds and kernels. Journal of the Saudi Society of Agricultural Sciences, 16: 218-226.
  • Milovanović, M., and Pićurić, J.K. (2005). Characteristics and composition of melon seed oil. Journal of Agricultural Sciences (Belgrade), 50(1), 41-47.
  • Petkova, Z.Y., Antova, G.A., Nikolova, K.T., and Eftimov, T.A. (2014). Physicochemical characteristic of seed oils of Bulgarian species pumpkin and melon. Bulgarian Chemical Communications, 46, 57-62.
  • Ramadan, M.F., Sharanabasappa, G., Seetharam, Y.N., Seshagiri, M. and Moersel, J.T. (2006). Characterization of fatty acid and bioactive compounds of kachnar (Bauhinia purpurea L.) seed oil, Food Chemistry, (98), 359-365.
  • Rolim, P.M., Seabra, L. M.J., and de Macedo, G.R. (2019). Melon by-products: Biopotential in human health and food processing. Food Reviews International, 1-24.
  • Salunkhe, D. K., ad Kadam, S S. (1998). Handbook of vegetable science and technology: production, composition, storage, and processing. CRC press.
  • Schaffer, A.A, and Paris, H.S., (2003). Melons, Squashes, and Gourds. In: Caballero, B., Ed. Encyclopedia of Food Science and Nutrition. Academic Press, London.
  • Silva, M.A., Albuquerque, T.G., Alves, R.C., Oliveira, M.B.P., and Costa, H.S. (2020). Melon (Cucumis melo L.) by-products: Potential food ingredients for novel functional foods? Trends in Food Science & Technology, 98, 181-189.
  • Slinkard, K., Singleton, V.L., (1977). Total phenol analyses: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49-55
  • TUİK, (2018). Türkiye’de Kavun yetiştiriciliği ve Kavun üretim miktarları, (27.08.2018), http://www.tuik.gov.tr/PreTablo.do?alt_id=1001.
  • TUİK, (2023). Türkiye’de Kavun yetiştiriciliği ve Kavun üretim miktarları, (25.04.2024), http://www.tuik.gov.tr/PreTablo.do?alt_id=1556.
  • Wahle, K.W.J., Heys, S.D., Rotondo, D. (2015). Authorized EU Health Claims for the Essential Fatty Acids: n-6 Linoleic (18:2n-6) and n-3 a-Linolenic (18:3n-3) Acids. In: Sadler, M., Ed. Foods, Nutrients and Food Ingredients with Authorised EU Health Claims: Woodhead Publishing, Cambridge, UK.
  • Vega-Galvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., Lopez, J., and Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, color and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647-653.
  • Vinha, A.F., Ferreres, F., Silva, B.M., Valentao, P., Gonçalves, A., Pereira, J.A., Andrade, P.B. (2005). Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chemistry, 89(4), 561-568.
  • Yılmaz, N., Kaya, N., Pınar, H., Hancı, F., and Uzun, A. (2021). Detailed morphological and molecular characterizations of melon (Cucumis melo L.) accessions collected from Northern Cyprus and Turkey. Horticultural Science and Technology, 39,471-481
  • Zia, S., Moazzam, R.K.., Muhammad, Z.S., and Rana, M.A. (2021). An update on functional, nutraceutical and industrial applications of watermelon by-products: A comprehensive review. Trends in Food Science and Technology, 114, 275-291.

Physicochemical Properties of Different Melon Seed Oils Dried at Different Temperatures

Year 2024, Volume: 14 Issue: 2, 970 - 981, 18.06.2024
https://doi.org/10.31466/kfbd.1466809

Abstract

In this study, the effect of the drying process on the quality of oils obtained from different melon seeds was investigated. The seeds of two different melon varieties (Kırkağaç, Hasanbey) were separated and dried in the oven at different temperatures (30, 50 and 70 °C). Moisture, 1000 grain weight, width, length, thickness, oil yield, free fatty acidity, peroxide value, color values (L*, a*, b*), and total phenolic substance amounts and fatty acid composition were examined. The average of initial moisture values was 6.42% and 5.48%. The drying process was carried out until the moisture rate of melon seeds reached 1%. The average of most values of the cores varied from 4.55-5.16 mm, length 12.82-13.18 mm, thickness 1.21-1.38 mm and 1000 grain weights varied from 52.40-45.70 g. The amount of total phenolic substances of Kırkağaç melon seed oil was found in the range of 584-691 mg GAE /kg, and Hasanbey melon seed oil in the range 780-840 mgGAE / kg. The amount of total phenolic substance decreased with the applied heat treatment. The peroxide values of the oil obtained from Kırkağaç and Hasanbey beans in terms of meqO2 / kg varied between 6.9-8.4 and 7.2-9.1, respectively. The highest peroxide value was observed in oil obtained from beans dried at 70°C in both varieties. It has been observed that oleic and palmitic acids are also followed by linoleic acid compared to fatty acid composition compared to other fatty acids. According to the results obtained, it was determined that the most effective drying temperature was 50°C in terms of efficiency and quality.

References

  • Aksoy, U., (1991). Kuru İncir Üretiminde Kaliteyi Etkileyen Faktörler, İncirde Verimlilik Paneli MPM, Aydın.
  • Amaro A.L., Oliveira A., and Almeida D.P.F. (2015). Biologically Active Compounds in Melon: Modulation by Preharvest, Post-harvest, and Processing Factors. In: Preedy, V., Ed. Processing and Impact on Active Components in Food. Academic Press, London.
  • Anonymous, (1989). American Oil Chemists’ Society Peroxide Value Offical Method Cd 853 (93) Volume-1
  • Anonymous, (2007). TS-1073 Kavun Standardı, Türk Standartları Enstitüsü, Ankara,
  • Anwar, F., Naseer, R., Bhanger, M.I., Ashraf, S., Talpur, F.N., and Aladedunye, F.A. (2008). Physico-chemical characteristics of citrus seeds and seed oils from Pakistan. Journal of the American Oil Chemists’ Society, 85 (4), 321-330.
  • AOAC, (2000). Official Methods of Analysis. Virginia, USA.
  • AOCS, (2006). Official Methods and Recommended Practices of the American Oil Chemists Society, 4th ed, edited by AOCS. Champaign, IL Official Method Ai 2 75.
  • Badifu, G. I. O. (2001). Effect of processing on proximate composition, antinutritional and toxic contents of kernels from Cucurbitaceae species grown in Nigeria. Journal of Food Composition and Analysis, 14(2), 153-161.
  • Besong, S.A., Ezekwe, M.O., Fosung, C.N., and Senwo, Z.N. (2011). Evaluation of nutrient composition of African melon oilseed (Cucumeropsis mannii Naudin) for human nutrition. International Journal of Nutrition and Metabolism, 3(8), 103-108.
  • da Silva A.C., and Jorge N. (2017). Bioactive Compounds of Oils Extracted from Fruits Seeds 70 Obtained from Agroindustrial Waste. European Journal of Lipid Science and Technology, 119, 1-5.
  • de Mello, M.L., Bora, P.S., and Narain, N. (2001). Fatty and amino acids composition of melon (Cucumis melo var. saccharinus) seeds. Journal of Food Composition and Analysis, 14(1), 69-74.
  • El-Adawy, T.A., Rahma, E.H., El-Bedawy, A.A. ve Gafar, A. M., (1999). Properties of some citrus seeds Part 3, Evaluation as a new source of protein and oil, Nahrung, 43, 385-391.
  • Eşiyok, D., Bozokalfa, M. K., Boztok, K. (2005). Bazı Kavun (Cucumismelo L.) Çeşitlerinin Verim ve Kalite Özelliklerinin Belirlenmes., Ege Üniversitesi Ziraat Fakültesi Dergisi, 42(1), 25-33.
  • FAO, (2018). The Food and Agriculture Organization Corporate Statistical Database.
  • Hemavathy, J. (1992). Lipid composition of melon (Cucumis melo) kernel. Journal of Food Composition and Analysis. 5, 90-95.
  • Imbs, A.B., and Pham, L.Q. (1995). Lipid composition of ten seed species from North Vietnam. The Journal of the American Oil Chemists' Society, 72(8), 957-961.
  • Katan, M.B., Grundy, S.M., Jones, P., Law, M., Miettinen, T., and Paoletti R. (2003). Efficacy and Safety of Plant Stanols and Sterols in the Management of Blood Cholesterol Levels. Mayo Clinic Proceedings, 78, 965-978.
  • Khoshnam, F., Namjoo, M., Golbkhshi, H., and Dowlati, M., (2016). Physical and Mechanical Changes in Ripening Melon Fruits. Yuzuncu Yıl University Journal of Agricultural Sciences, 26(2), 135-144.
  • Lija, M., and Beevy, S.S. (2021). A review on the diversity of Melon. Plant Science Today, 8, 995-1003.
  • Mallek-Ayadi, S., Bahloul, N., and Kechaou, N. (2018). Chemical composition and bioactive compounds of Cucumis melo L. seeds: Potential source for new trends of plant oils. Process Safety and Environmental Protection, 113, 68-77.
  • Mansouri A., Mirzabe A.H., Raufi A., 2017. Physical properties and mathematical modeling of melon (Cucumis melo L.) seeds and kernels. Journal of the Saudi Society of Agricultural Sciences, 16: 218-226.
  • Milovanović, M., and Pićurić, J.K. (2005). Characteristics and composition of melon seed oil. Journal of Agricultural Sciences (Belgrade), 50(1), 41-47.
  • Petkova, Z.Y., Antova, G.A., Nikolova, K.T., and Eftimov, T.A. (2014). Physicochemical characteristic of seed oils of Bulgarian species pumpkin and melon. Bulgarian Chemical Communications, 46, 57-62.
  • Ramadan, M.F., Sharanabasappa, G., Seetharam, Y.N., Seshagiri, M. and Moersel, J.T. (2006). Characterization of fatty acid and bioactive compounds of kachnar (Bauhinia purpurea L.) seed oil, Food Chemistry, (98), 359-365.
  • Rolim, P.M., Seabra, L. M.J., and de Macedo, G.R. (2019). Melon by-products: Biopotential in human health and food processing. Food Reviews International, 1-24.
  • Salunkhe, D. K., ad Kadam, S S. (1998). Handbook of vegetable science and technology: production, composition, storage, and processing. CRC press.
  • Schaffer, A.A, and Paris, H.S., (2003). Melons, Squashes, and Gourds. In: Caballero, B., Ed. Encyclopedia of Food Science and Nutrition. Academic Press, London.
  • Silva, M.A., Albuquerque, T.G., Alves, R.C., Oliveira, M.B.P., and Costa, H.S. (2020). Melon (Cucumis melo L.) by-products: Potential food ingredients for novel functional foods? Trends in Food Science & Technology, 98, 181-189.
  • Slinkard, K., Singleton, V.L., (1977). Total phenol analyses: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49-55
  • TUİK, (2018). Türkiye’de Kavun yetiştiriciliği ve Kavun üretim miktarları, (27.08.2018), http://www.tuik.gov.tr/PreTablo.do?alt_id=1001.
  • TUİK, (2023). Türkiye’de Kavun yetiştiriciliği ve Kavun üretim miktarları, (25.04.2024), http://www.tuik.gov.tr/PreTablo.do?alt_id=1556.
  • Wahle, K.W.J., Heys, S.D., Rotondo, D. (2015). Authorized EU Health Claims for the Essential Fatty Acids: n-6 Linoleic (18:2n-6) and n-3 a-Linolenic (18:3n-3) Acids. In: Sadler, M., Ed. Foods, Nutrients and Food Ingredients with Authorised EU Health Claims: Woodhead Publishing, Cambridge, UK.
  • Vega-Galvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., Lopez, J., and Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, color and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647-653.
  • Vinha, A.F., Ferreres, F., Silva, B.M., Valentao, P., Gonçalves, A., Pereira, J.A., Andrade, P.B. (2005). Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chemistry, 89(4), 561-568.
  • Yılmaz, N., Kaya, N., Pınar, H., Hancı, F., and Uzun, A. (2021). Detailed morphological and molecular characterizations of melon (Cucumis melo L.) accessions collected from Northern Cyprus and Turkey. Horticultural Science and Technology, 39,471-481
  • Zia, S., Moazzam, R.K.., Muhammad, Z.S., and Rana, M.A. (2021). An update on functional, nutraceutical and industrial applications of watermelon by-products: A comprehensive review. Trends in Food Science and Technology, 114, 275-291.
There are 36 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

H. Ayla Sarı 0000-0003-4282-3294

Mustafa Otağ 0000-0001-5450-1546

Publication Date June 18, 2024
Submission Date April 8, 2024
Acceptance Date June 2, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Sarı, H. A., & Otağ, M. (2024). Physicochemical Properties of Different Melon Seed Oils Dried at Different Temperatures. Karadeniz Fen Bilimleri Dergisi, 14(2), 970-981. https://doi.org/10.31466/kfbd.1466809