Research Article
BibTex RIS Cite

Boletus edulis Biyokütlesi ile Direct Blue 2 Boyar Maddesinin Giderimi: Sorpsiyon Kinetikleri ve İzoterm Karakteristiği

Year 2024, Volume: 14 Issue: 4, 1679 - 1693, 15.12.2024
https://doi.org/10.31466/kfbd.1418198

Abstract

Bu çalışmada, Boletus edulis biyokütlesi ile sulu çözeltilerden Direct Blue 2 boyar maddesinin giderimi çalışılmıştır. Bu amaçla biyosorbent olarak hazırlanan B. edulis biyokütlesi ile farklı koşullarda DB2 giderim çalışmaları gerçekleştirilmiştir. Biyosorbent miktarı, başlangıç DB2 derişimi, pH, biyosorpsiyon sıcaklığı ve sürenin optimizasyonunun ardından izoterm, kinetik ve termodinamik parametreler hesaplanmıştır. Elde edilen verilere göre, 0,02 g/0,02 L biyosorbent miktarının kullanıldığı koşullarda biyosorpsiyon kapasitesi pH:3,0’te 25 ⁰C’de 200 mg/L başlangıç DB2 derişimi için 136,149±0,801 mg/g bulunmuştur. Biyosorpsiyon prosesinin yalancı ikinci derece kinetik modele ve Freundlich izoterm modeline uyumlu, biyosorpsiyonun ekzotermik karakterde olduğu bulunmuştur.

References

  • Adel, M., Ahmed, M.A., Mohamed, A.A. (2021). Effective removal of indigo carmine dye from wastewaters by adsorption onto mesoporous magnesium ferrite nanoparticles. Environmental Nanotechnology, Monitoring & Management, 65, 100550.
  • Aracagök, Y.D. (2022). Biosorption of lead by a soil isolate Aspergillus neoalliaceus. Archives of Microbiology, 204, 547.
  • Asliyüce, S. (2023). Screening the heavy metal removal capacity of magnetically modified fungal biosorbent, Chemical Papers, https://doi.org/10.1007/s11696-023-02782-8.
  • Başkan, G., Açıkel, Ü., Levent, M. (2023). Removal of oxytetracycline hydrochloride from aqueous solutions using natural zeolite, Journal of the Faculty of Engineering and Architecture of Gazi University, 38(3), 1505-1517.
  • Bayramoğlu, G. ve Arica, M. Y. (2008). Removal of heavy mercury (II), cadmium (II) and zinc (II) metal ions by live and heat inactivated Lentinus edodes pellets. Chemical Engineering Journal, 143, 133– 140.
  • Bayramoğlu, G., Gursel, I., Tunali, Y., Arica, M. Y. (2009). Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets. Bioresource Technology, 100, 2685-2691.
  • Bonyandi, Z., Nasoudari, E., Ameri, M., Ghavami, V., Shams, M., Sillanpaa, M. (2022). Biosorption of malachite green dye over Spirulina platensis mass: process modeling, factors optimization, kinetic, and isotherm studies. Applied Water Science, 12, 167.
  • Bouras, H.D., Isik, Z., Arikan, E.B., Yeddou, A.R., Bouras, N., Chergui, A., Favier, L., Amrane, A., Dizge, N. (2021). Biosorption characteristics of methylene blue dye by two fungal biomasses. International Journal of Environmental Studies, 78,(3), 365-381.
  • Cüce, H. ve Temel, F.A. (2021a). Classical-fenton and photo-fenton oxidation of wastewater arising from cosmetic automobile care products. Environmental Progress & Sustainable Energy, 40(6), e13701.
  • Cüce, H. ve Temel, F.A. (2021b). Reuse of agro-wastes to treat wastewater containing dyestuff: sorption process with potato and pumpkin seed wastes. International Journal of Global Warming, 24(1), 14-37.
  • Cüce, H. ve Temel, F.A. (2023). Efficient removal performance of COD in real laundry wastewater via conventional and photo-fenton degradation systems: a comparative study on oxidants and operating time by H2O2/Fe2+. Arabian Journal for Science and Engineering, 48, 15823-15835.
  • Dehghani, M.H., Karri, R.R., Yeganeh, Z.T., Mahvi, A.H., Nourmoradi, H., Salari, M., Zarei, A., Sillanpää, M. (2020). Statistical modelling of endocrine disrupting compounds adsorption onto activated carbon prepared from wood using CCD-RSM and DE hybrid evolutionary optimization framework: Comparison of linear vs non-linear isotherm and kinetic parameters. Journal of Molecular Liquids, 302, 112526.
  • Dubinin, M.M. ve Radushkevich, L.V. (1947). The equation of the characteristic curve of activated charcoal. Proceeding of the Academy of Sciences, Physical Chemistry Section, 55, 331.
  • Erdem, F., Tosun, A., Ergun, M. (2016). Biosorption of Remazol Yellow (RR) by Saccharomyces cerevisiae in a batch system. Journal of Faculty of Engineering and Architecture of Gazi University, 31(4), 971-978.
  • Erdoğdular, A.O. ve Kılıç Apar D. (2021). Biosorption of reactive dye Remazol Ultra Red RGB by metabolically active kefir biomass. Journal of Faculty of Engineering and Architecture of Gazi University, 36(2), 1055-1073.
  • Freundlich, H. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57, 385.
  • Göçenoğlu Sarıkaya, A. (2021). Kinetic and thermodynamic studies of the biosorption of Cr (VI) in aqueous solutions by Agaricus campestris. Environmental Technology, 42(1), 72-80.
  • Göçenoğlu Sarıkaya, A. (2022). Biosorption of Remazol Marine Blue textile dye by Lactarius salmonicolor biomass: Kinetic, isothermal and thermodynamic parameters. Journal of the Faculty of Engineering and Architecture of Gazi University, 37(2), 1121-1137.
  • Göçenoğlu Sarıkaya, A. ve Erden E. (2020). Direct Blue 2 tekstil boyar maddesinin Agaricus campestris biyokütlesi tarafından biyosorpsiyonu: Kinetik, İzotermal ve Termodinamik çalışmalar. Erzincan University Journal of Science and Technology, 13(1), 258-273.
  • Gürel, L. (2017). Applications of the biosorption process for nickel removal from aqueous solutions- a review. Chemical Engineering Communications, 204(6), 711-722.
  • Ho, Y.S. ve McKay G. (1998). Sorption of dye from aqueous solution by peat, Chemical Engineering Journal, 70, 115- 124.
  • Jia, M., Wang, F., Bian, Y., Jin, X., Song, Y., Kengara, F. O., Xu, R., Jiang, X. (2013). Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresource Technology, 136, 87-93.
  • Karagöz, R. (2015). Manyetik Lactarius salmonicolor biyokütlesi ile Reaktif sarı 2 biyosorpsiyonunun istatistiksel tasarımı. Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir.
  • Karagöz, R., Tunali Akar, S., Turkyilmaz, S., Celik, S., Akar, T. (2018). Process design and potential use of a regenerable biomagsorbent for effective decolorization process. Journal of the Taiwan Institue of Chemical Engineers, 93, 554-565.
  • Karthik, V., Sivarajasekar, N., Padmanaban, V.C., Nakkeeran, E., Selvaraju, N. (2019). Biosorption of xenobiotic Reactive Black B onto metabolically inactive T. harzianum biomass: optimization and equilibrium studies. International Journal of Environmental Science and Technology, 16, 3625-3636.
  • Lacerda, E.C.M., Baltazar, M.P.G., dos Reis, T.A., do Nascimento, C.A.O., Correa, B., Gimenes, L.J. (2019). Copper biosorption from an aqueous solution by the dead biomass of Penicillium ochrochloron. Environmental Monitoring and Assessment, 191, 247.
  • Lagergren, S. (1898). Zur theorie der Sogenannten Adsorption Gelöster Stoffe, Kungliga svenska vetenskapsakademiens, Handlingar, 24(4), 1-39.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 40, 1361-1403.
  • Li, H.-h., Wang, Y.-t., Wang, Y., Wang, H.-x., Sun, K.-k., Lu, Z.-m. (2019). Bacterial degradation of anthraquinone dyes. Journal of Zhejiang University-SCIENCE B, 20(6), 528-540.
  • Mazloomi, S., Ghodsei, S., Amraei, P., Bonyadi, Z. (2018). Data on the removal of turbidity from aqueous solutions using polyaluminum chloride. Data Brief, 20, 371–374.
  • Mutlu, H. ve Kılıç Apar, D. (2023). Conventional and sonication-assisted biosorption of Remazol Orange RGB dye by active kefir biomass. Journal of the Faculty of Engineering and Architecture of Gazi University, 38(4), 1979-1993.
  • Namal, O.O, Kalipci, E. (2020). Adsorption kinetics of methylene blue removal from aqueous solutions using potassium hydroxide (KOH) modified apricot kernel shells. International Journal of Environmental Analytical Chemistry, 100(14), 1549-1565.
  • Puchana-Rosero, A.J., Lima, E.C., Ortiz-Monsalve, S., Mella, B., da Costa, D., Poll, E., Gutterres, M. (2017). Fungal biomass as biosorbent for the removal of acid Blue 161 dye in aqueous solution. Environmental Science and Pollution Research, 24, 4200–4209.
  • Raja, C.P., Jacob, J.M., Balakrishnan, R.M. (2015). Selenium biosorption and recovery by marine Aspergillus terreus in an upflow bioreactor. Journal of Environmental Engineering, 142, C4015008.
  • Ramavandi, B., Najafpoor, A.A., Alidadi, H., Bonyadi, Z. (2019). Alizarin red-S removal from aqueous solutions using Saccharomyces cerevisiae: kinetic and equilibrium study. Desalination and Water Treatment, 144, 286–291.
  • Sarikurkcu, C., Tepe, B., Yamac, M. (2008). Evaluation of the antioxidant activity of four edible mushroom from the Central Anatolia, Eskisehir-Turkey: Lactarius deterrimus, Suillus collitinus, Boletus edulis, Xerocomus chrysenteron, Bioresource Technology, 99(14), 6651-6655.
  • Sen, T.K., Afroze, S., Ang, H. (2011). Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air and Soil Pollution, 218(1), 499–515.
  • Sinha, A.K., Sasmal, A.K., Pal, A., Pal, D., Pal, T. (2021). Ammonium phosphomolybdate [(NH4)3PMo12O40] an inorganic ion exchanger for environmental application for purification of dye contaminant wastewater. Journal of Photochemistry and Photobiology A: Chemistry, 418, 113427.
  • Tan, Y., Zeng, N.-K., Xu, B. (2022). Chemical profiles and health-promoting effects of porcini mushroom (Boletus edulis): a narrative review. Food Chemistry, 390, 133199.
  • Tuncay, D., Yagar, H. (2020). Decolorization of Reactive blue-19 textile dye by Boletus edulis laccase immobilized onto rice husks. International Journal of Environmental Science and Technology, 17, 3177-3188.
  • Weber, W. ve Morris, J. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31-60.

Removal of Direct Blue 2 Dyestuff by Boletus edulis Biomass

Year 2024, Volume: 14 Issue: 4, 1679 - 1693, 15.12.2024
https://doi.org/10.31466/kfbd.1418198

Abstract

In this study, the removal of Direct Blue 2 dyestuff from aqueous solutions by Boletus edulis biomass was investigated. For this purpose, DB2 removal was investigated under different conditions with B. edulis biomass prepared as biosorbent. After optimization of biosorbent amount, initial DB2 concentration, pH, temperature and time, isotherm, kinetics and thermodynamics were calculated. According to the obtained data, the biosorption capacity was found to be 136.149±0,801 mg/g for 200 mg/L initial DB2 concentration at 25 ⁰C at pH: 3.0 under conditions where 0.02 g biosorbent amount was used. The biosorption process was fitted with the pseudo-second order kinetic model and Freundlich isotherm model, and the biosorption was found to be exothermic.

References

  • Adel, M., Ahmed, M.A., Mohamed, A.A. (2021). Effective removal of indigo carmine dye from wastewaters by adsorption onto mesoporous magnesium ferrite nanoparticles. Environmental Nanotechnology, Monitoring & Management, 65, 100550.
  • Aracagök, Y.D. (2022). Biosorption of lead by a soil isolate Aspergillus neoalliaceus. Archives of Microbiology, 204, 547.
  • Asliyüce, S. (2023). Screening the heavy metal removal capacity of magnetically modified fungal biosorbent, Chemical Papers, https://doi.org/10.1007/s11696-023-02782-8.
  • Başkan, G., Açıkel, Ü., Levent, M. (2023). Removal of oxytetracycline hydrochloride from aqueous solutions using natural zeolite, Journal of the Faculty of Engineering and Architecture of Gazi University, 38(3), 1505-1517.
  • Bayramoğlu, G. ve Arica, M. Y. (2008). Removal of heavy mercury (II), cadmium (II) and zinc (II) metal ions by live and heat inactivated Lentinus edodes pellets. Chemical Engineering Journal, 143, 133– 140.
  • Bayramoğlu, G., Gursel, I., Tunali, Y., Arica, M. Y. (2009). Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets. Bioresource Technology, 100, 2685-2691.
  • Bonyandi, Z., Nasoudari, E., Ameri, M., Ghavami, V., Shams, M., Sillanpaa, M. (2022). Biosorption of malachite green dye over Spirulina platensis mass: process modeling, factors optimization, kinetic, and isotherm studies. Applied Water Science, 12, 167.
  • Bouras, H.D., Isik, Z., Arikan, E.B., Yeddou, A.R., Bouras, N., Chergui, A., Favier, L., Amrane, A., Dizge, N. (2021). Biosorption characteristics of methylene blue dye by two fungal biomasses. International Journal of Environmental Studies, 78,(3), 365-381.
  • Cüce, H. ve Temel, F.A. (2021a). Classical-fenton and photo-fenton oxidation of wastewater arising from cosmetic automobile care products. Environmental Progress & Sustainable Energy, 40(6), e13701.
  • Cüce, H. ve Temel, F.A. (2021b). Reuse of agro-wastes to treat wastewater containing dyestuff: sorption process with potato and pumpkin seed wastes. International Journal of Global Warming, 24(1), 14-37.
  • Cüce, H. ve Temel, F.A. (2023). Efficient removal performance of COD in real laundry wastewater via conventional and photo-fenton degradation systems: a comparative study on oxidants and operating time by H2O2/Fe2+. Arabian Journal for Science and Engineering, 48, 15823-15835.
  • Dehghani, M.H., Karri, R.R., Yeganeh, Z.T., Mahvi, A.H., Nourmoradi, H., Salari, M., Zarei, A., Sillanpää, M. (2020). Statistical modelling of endocrine disrupting compounds adsorption onto activated carbon prepared from wood using CCD-RSM and DE hybrid evolutionary optimization framework: Comparison of linear vs non-linear isotherm and kinetic parameters. Journal of Molecular Liquids, 302, 112526.
  • Dubinin, M.M. ve Radushkevich, L.V. (1947). The equation of the characteristic curve of activated charcoal. Proceeding of the Academy of Sciences, Physical Chemistry Section, 55, 331.
  • Erdem, F., Tosun, A., Ergun, M. (2016). Biosorption of Remazol Yellow (RR) by Saccharomyces cerevisiae in a batch system. Journal of Faculty of Engineering and Architecture of Gazi University, 31(4), 971-978.
  • Erdoğdular, A.O. ve Kılıç Apar D. (2021). Biosorption of reactive dye Remazol Ultra Red RGB by metabolically active kefir biomass. Journal of Faculty of Engineering and Architecture of Gazi University, 36(2), 1055-1073.
  • Freundlich, H. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57, 385.
  • Göçenoğlu Sarıkaya, A. (2021). Kinetic and thermodynamic studies of the biosorption of Cr (VI) in aqueous solutions by Agaricus campestris. Environmental Technology, 42(1), 72-80.
  • Göçenoğlu Sarıkaya, A. (2022). Biosorption of Remazol Marine Blue textile dye by Lactarius salmonicolor biomass: Kinetic, isothermal and thermodynamic parameters. Journal of the Faculty of Engineering and Architecture of Gazi University, 37(2), 1121-1137.
  • Göçenoğlu Sarıkaya, A. ve Erden E. (2020). Direct Blue 2 tekstil boyar maddesinin Agaricus campestris biyokütlesi tarafından biyosorpsiyonu: Kinetik, İzotermal ve Termodinamik çalışmalar. Erzincan University Journal of Science and Technology, 13(1), 258-273.
  • Gürel, L. (2017). Applications of the biosorption process for nickel removal from aqueous solutions- a review. Chemical Engineering Communications, 204(6), 711-722.
  • Ho, Y.S. ve McKay G. (1998). Sorption of dye from aqueous solution by peat, Chemical Engineering Journal, 70, 115- 124.
  • Jia, M., Wang, F., Bian, Y., Jin, X., Song, Y., Kengara, F. O., Xu, R., Jiang, X. (2013). Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresource Technology, 136, 87-93.
  • Karagöz, R. (2015). Manyetik Lactarius salmonicolor biyokütlesi ile Reaktif sarı 2 biyosorpsiyonunun istatistiksel tasarımı. Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir.
  • Karagöz, R., Tunali Akar, S., Turkyilmaz, S., Celik, S., Akar, T. (2018). Process design and potential use of a regenerable biomagsorbent for effective decolorization process. Journal of the Taiwan Institue of Chemical Engineers, 93, 554-565.
  • Karthik, V., Sivarajasekar, N., Padmanaban, V.C., Nakkeeran, E., Selvaraju, N. (2019). Biosorption of xenobiotic Reactive Black B onto metabolically inactive T. harzianum biomass: optimization and equilibrium studies. International Journal of Environmental Science and Technology, 16, 3625-3636.
  • Lacerda, E.C.M., Baltazar, M.P.G., dos Reis, T.A., do Nascimento, C.A.O., Correa, B., Gimenes, L.J. (2019). Copper biosorption from an aqueous solution by the dead biomass of Penicillium ochrochloron. Environmental Monitoring and Assessment, 191, 247.
  • Lagergren, S. (1898). Zur theorie der Sogenannten Adsorption Gelöster Stoffe, Kungliga svenska vetenskapsakademiens, Handlingar, 24(4), 1-39.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 40, 1361-1403.
  • Li, H.-h., Wang, Y.-t., Wang, Y., Wang, H.-x., Sun, K.-k., Lu, Z.-m. (2019). Bacterial degradation of anthraquinone dyes. Journal of Zhejiang University-SCIENCE B, 20(6), 528-540.
  • Mazloomi, S., Ghodsei, S., Amraei, P., Bonyadi, Z. (2018). Data on the removal of turbidity from aqueous solutions using polyaluminum chloride. Data Brief, 20, 371–374.
  • Mutlu, H. ve Kılıç Apar, D. (2023). Conventional and sonication-assisted biosorption of Remazol Orange RGB dye by active kefir biomass. Journal of the Faculty of Engineering and Architecture of Gazi University, 38(4), 1979-1993.
  • Namal, O.O, Kalipci, E. (2020). Adsorption kinetics of methylene blue removal from aqueous solutions using potassium hydroxide (KOH) modified apricot kernel shells. International Journal of Environmental Analytical Chemistry, 100(14), 1549-1565.
  • Puchana-Rosero, A.J., Lima, E.C., Ortiz-Monsalve, S., Mella, B., da Costa, D., Poll, E., Gutterres, M. (2017). Fungal biomass as biosorbent for the removal of acid Blue 161 dye in aqueous solution. Environmental Science and Pollution Research, 24, 4200–4209.
  • Raja, C.P., Jacob, J.M., Balakrishnan, R.M. (2015). Selenium biosorption and recovery by marine Aspergillus terreus in an upflow bioreactor. Journal of Environmental Engineering, 142, C4015008.
  • Ramavandi, B., Najafpoor, A.A., Alidadi, H., Bonyadi, Z. (2019). Alizarin red-S removal from aqueous solutions using Saccharomyces cerevisiae: kinetic and equilibrium study. Desalination and Water Treatment, 144, 286–291.
  • Sarikurkcu, C., Tepe, B., Yamac, M. (2008). Evaluation of the antioxidant activity of four edible mushroom from the Central Anatolia, Eskisehir-Turkey: Lactarius deterrimus, Suillus collitinus, Boletus edulis, Xerocomus chrysenteron, Bioresource Technology, 99(14), 6651-6655.
  • Sen, T.K., Afroze, S., Ang, H. (2011). Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air and Soil Pollution, 218(1), 499–515.
  • Sinha, A.K., Sasmal, A.K., Pal, A., Pal, D., Pal, T. (2021). Ammonium phosphomolybdate [(NH4)3PMo12O40] an inorganic ion exchanger for environmental application for purification of dye contaminant wastewater. Journal of Photochemistry and Photobiology A: Chemistry, 418, 113427.
  • Tan, Y., Zeng, N.-K., Xu, B. (2022). Chemical profiles and health-promoting effects of porcini mushroom (Boletus edulis): a narrative review. Food Chemistry, 390, 133199.
  • Tuncay, D., Yagar, H. (2020). Decolorization of Reactive blue-19 textile dye by Boletus edulis laccase immobilized onto rice husks. International Journal of Environmental Science and Technology, 17, 3177-3188.
  • Weber, W. ve Morris, J. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31-60.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Physical Chemistry (Other)
Journal Section Articles
Authors

Emre Erden 0000-0002-6641-4367

Publication Date December 15, 2024
Submission Date January 11, 2024
Acceptance Date June 21, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Erden, E. (2024). Boletus edulis Biyokütlesi ile Direct Blue 2 Boyar Maddesinin Giderimi: Sorpsiyon Kinetikleri ve İzoterm Karakteristiği. Karadeniz Fen Bilimleri Dergisi, 14(4), 1679-1693. https://doi.org/10.31466/kfbd.1418198