Conference Paper
BibTex RIS Cite

NİCELİK KISITLI ORTALAMA VARYANS ÇARPIKLIK BASIKLIK PORTFÖY MODELİ: BULANIK SEZGİSEL BİR YAKLAŞIM

Year 2019, Volume: 11 Issue: 21, 386 - 397, 28.11.2019
https://doi.org/10.20990/kilisiibfakademik.536454

Abstract

Finansal
kriterler temelinde hisse senetleri arasından belirli oranlarda seçim yapılarak
yatırımcı için en iyi portföyü oluşturma işlemi, portföy optimizasyonu olarak
adlandırılmaktadır. Portföy getiri ve
risk unsurları ilk defa normallik varsayımına dayanan ortalama varyans modeli
bir arada değerlendirilmiştir. Fakat çoğunlukla piyasalarda yer alan hisse
senetlerinin tarihsel getiri serileri normal dağılmamaktadır. Çarpıklık ve
basıklık gibi yüksek dereceden momentlerin portföy seçim modeline dahil
edilmesi normallik varsayımı sağlanmadığında anlamlı hale gelmektedir. Portföyde
yer alacak hisse senedi sayısı kısıtlandığı durumda portföy seçim problemi
Nicelik Kısıtlı Portföy Optimizasyonu haline gelmektedir. Çalışmada,
önerilen Bulanık Parçacık Sürü Optimizasyonu algoritması, üç farklı Parçacık Sürü
Optimizasyonu algoritmasıyla, Nicelik Kısıtlı Portföy Optimizasyonu probleminde
kıyaslanmıştır. Farklı nicelik kısıt değerleri ve yüksek dereceden momentleri
içeren çeşitli amaç fonksiyonlarına göre portföyler elde edilmiştir. Sonuçlar,
önerilen algoritmanın problemin çözümündeki etkinliğini ortaya koymaktadır.

References

  • AKSARAYLI, M., PALA, O. (2018). “A polynomial goal programming model for portfolio optimization based on entropy and higher moments”, Expert Systems with Applications, (94): 185-192.
  • ALADAĞ, C. H., YOLCU, U., EGRİOĞLU, E. ve DALAR, A. Z. (2012). “A new time invariant fuzzy time series forecasting method based on particle swarm optimization”, Applied Soft Computing, 12(10): 3291-3299.
  • BRİTO, R. P., SEBASTİÃO, H., ve GODİNHO, P. (2017). “Portfolio management with higher moments: the cardinality impact”, International Transactions in Operational Research, (e-journal), http://dx.doi.org/10.1111/itor.12404
  • CURA, T. (2009). “Particle swarm optimization approach to portfolio optimization”, Nonlinear analysis: Real world applications, 10(4): 2396-2406.
  • DENG, G. F., LİN, W. T. ve LO, C. C. (2012). “Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization”, Expert Systems with Applications, 39(4): 4558-4566.
  • EBERHART, R. ve KENNEDY, J. (1995). “A new optimizer using particle swarm theory”, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, (39-43). IEEE.
  • GOLMAKANİ, H. R. ve FAZEL, M. (2011). “Constrained portfolio selection using particle swarm optimization”, Expert Systems with Applications, 38(7): 8327-8335.
  • KENDAL, G. ve SU, Y. (2005). “A Particle Swarm Optimization Approach in the Construction of Optimal Risky Portfolios”, IASTED International Multi Conference Artificial Intelligence and Applications Journal, (23): 14-16.
  • KENNETH FRENCH İNTERNET SİTESİ. Çevrimiçi Adres :http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html (erişim tarihi 1 Ağustos 2018)
  • KONNO, H., SHİRAKAWA, H. ve YAMAZAKİ, H. (1993). “A mean-absolute deviation-skewness portfolio optimization model”, Annals of Operations Research, 45(1): 205-220.
  • MARKOWİTZ, H. (1952). “Portfolio selection”, The journal of finance, 7(1): 77-91.
  • MARKOWİTZ, H. M. (1991). “Foundations of portfolio theory”, The journal of finance, 46(2): 469-477.
  • NİKNAM, T. (2010). “A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem”, Applied Energy, 87(1): 327-339.
  • PÉZİER, J. ve WHİTE, A. (2008). “The relative merits of alternative investments in passive portfolios”, The Journal of Alternative Investments, 10(4): 37-49.
  • RAY, A. ve MAJUMDER, S. K. (2018). “Multi objective mean–variance–skewness model with Burg’s entropy and fuzzy return for portfolio optimization”, Opsearch, 55(1): 107-133.
  • SADİGH, A. N., MOKHTARİ, H., IRANPOOR, M. ve GHOMİ, S. M. T. (2012). “Cardinality constrained portfolio optimization using a hybrid approach based on particle swarm optimization and Hopfield neural network”, Advanced Science Letters, 17(1): 11-20.
  • SHARPE, W. F. (1966). “Mutual fund performance”, The Journal of business, 39(1): 119-138.
  • SHİ, Y. ve EBERHART, R. C. (1999). “Empirical study of particle swarm optimization”, Proceedings of the Congress on Evolutionary Computation (1945-1950). IEEE.
  • SHİ, Y. ve EBERHART, R. C. (2001). “Fuzzy adaptive particle swarm optimization”, Proceedings of the Congress on Evolutionary Computation (101-106). IEEE.
  • YUE, W. ve WANG, Y. (2017). “A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios”, Physica A: Statistical Mechanics and its Applications, (465): 124-140.
  • ZAKAMOULİNE, V. ve KOEKEBAKKER, S. (2009). “Portfolio performance evaluation with generalized Sharpe ratios: Beyond the mean and variance”, Journal of Banking & Finance, 33(7): 1242-1254.
  • ZHU, H., WANG, Y., WANG, K. ve CHEN, Y. (2011). “Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem”, Expert Systems with Applications, 38(8): 10161-10169.
Year 2019, Volume: 11 Issue: 21, 386 - 397, 28.11.2019
https://doi.org/10.20990/kilisiibfakademik.536454

Abstract

References

  • AKSARAYLI, M., PALA, O. (2018). “A polynomial goal programming model for portfolio optimization based on entropy and higher moments”, Expert Systems with Applications, (94): 185-192.
  • ALADAĞ, C. H., YOLCU, U., EGRİOĞLU, E. ve DALAR, A. Z. (2012). “A new time invariant fuzzy time series forecasting method based on particle swarm optimization”, Applied Soft Computing, 12(10): 3291-3299.
  • BRİTO, R. P., SEBASTİÃO, H., ve GODİNHO, P. (2017). “Portfolio management with higher moments: the cardinality impact”, International Transactions in Operational Research, (e-journal), http://dx.doi.org/10.1111/itor.12404
  • CURA, T. (2009). “Particle swarm optimization approach to portfolio optimization”, Nonlinear analysis: Real world applications, 10(4): 2396-2406.
  • DENG, G. F., LİN, W. T. ve LO, C. C. (2012). “Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization”, Expert Systems with Applications, 39(4): 4558-4566.
  • EBERHART, R. ve KENNEDY, J. (1995). “A new optimizer using particle swarm theory”, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, (39-43). IEEE.
  • GOLMAKANİ, H. R. ve FAZEL, M. (2011). “Constrained portfolio selection using particle swarm optimization”, Expert Systems with Applications, 38(7): 8327-8335.
  • KENDAL, G. ve SU, Y. (2005). “A Particle Swarm Optimization Approach in the Construction of Optimal Risky Portfolios”, IASTED International Multi Conference Artificial Intelligence and Applications Journal, (23): 14-16.
  • KENNETH FRENCH İNTERNET SİTESİ. Çevrimiçi Adres :http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html (erişim tarihi 1 Ağustos 2018)
  • KONNO, H., SHİRAKAWA, H. ve YAMAZAKİ, H. (1993). “A mean-absolute deviation-skewness portfolio optimization model”, Annals of Operations Research, 45(1): 205-220.
  • MARKOWİTZ, H. (1952). “Portfolio selection”, The journal of finance, 7(1): 77-91.
  • MARKOWİTZ, H. M. (1991). “Foundations of portfolio theory”, The journal of finance, 46(2): 469-477.
  • NİKNAM, T. (2010). “A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem”, Applied Energy, 87(1): 327-339.
  • PÉZİER, J. ve WHİTE, A. (2008). “The relative merits of alternative investments in passive portfolios”, The Journal of Alternative Investments, 10(4): 37-49.
  • RAY, A. ve MAJUMDER, S. K. (2018). “Multi objective mean–variance–skewness model with Burg’s entropy and fuzzy return for portfolio optimization”, Opsearch, 55(1): 107-133.
  • SADİGH, A. N., MOKHTARİ, H., IRANPOOR, M. ve GHOMİ, S. M. T. (2012). “Cardinality constrained portfolio optimization using a hybrid approach based on particle swarm optimization and Hopfield neural network”, Advanced Science Letters, 17(1): 11-20.
  • SHARPE, W. F. (1966). “Mutual fund performance”, The Journal of business, 39(1): 119-138.
  • SHİ, Y. ve EBERHART, R. C. (1999). “Empirical study of particle swarm optimization”, Proceedings of the Congress on Evolutionary Computation (1945-1950). IEEE.
  • SHİ, Y. ve EBERHART, R. C. (2001). “Fuzzy adaptive particle swarm optimization”, Proceedings of the Congress on Evolutionary Computation (101-106). IEEE.
  • YUE, W. ve WANG, Y. (2017). “A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios”, Physica A: Statistical Mechanics and its Applications, (465): 124-140.
  • ZAKAMOULİNE, V. ve KOEKEBAKKER, S. (2009). “Portfolio performance evaluation with generalized Sharpe ratios: Beyond the mean and variance”, Journal of Banking & Finance, 33(7): 1242-1254.
  • ZHU, H., WANG, Y., WANG, K. ve CHEN, Y. (2011). “Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem”, Expert Systems with Applications, 38(8): 10161-10169.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Finance
Journal Section CONFERENCE PAPERS
Authors

Osman Pala 0000-0002-2634-2653

Mehmet Aksaraylı 0000-0003-1590-4582

Publication Date November 28, 2019
Published in Issue Year 2019 Volume: 11 Issue: 21

Cite

APA Pala, O., & Aksaraylı, M. (2019). NİCELİK KISITLI ORTALAMA VARYANS ÇARPIKLIK BASIKLIK PORTFÖY MODELİ: BULANIK SEZGİSEL BİR YAKLAŞIM. Akademik Araştırmalar Ve Çalışmalar Dergisi (AKAD), 11(21), 386-397. https://doi.org/10.20990/kilisiibfakademik.536454
AMA Pala O, Aksaraylı M. NİCELİK KISITLI ORTALAMA VARYANS ÇARPIKLIK BASIKLIK PORTFÖY MODELİ: BULANIK SEZGİSEL BİR YAKLAŞIM. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD). November 2019;11(21):386-397. doi:10.20990/kilisiibfakademik.536454
Chicago Pala, Osman, and Mehmet Aksaraylı. “NİCELİK KISITLI ORTALAMA VARYANS ÇARPIKLIK BASIKLIK PORTFÖY MODELİ: BULANIK SEZGİSEL BİR YAKLAŞIM”. Akademik Araştırmalar Ve Çalışmalar Dergisi (AKAD) 11, no. 21 (November 2019): 386-97. https://doi.org/10.20990/kilisiibfakademik.536454.
EndNote Pala O, Aksaraylı M (November 1, 2019) NİCELİK KISITLI ORTALAMA VARYANS ÇARPIKLIK BASIKLIK PORTFÖY MODELİ: BULANIK SEZGİSEL BİR YAKLAŞIM. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD) 11 21 386–397.
IEEE O. Pala and M. Aksaraylı, “NİCELİK KISITLI ORTALAMA VARYANS ÇARPIKLIK BASIKLIK PORTFÖY MODELİ: BULANIK SEZGİSEL BİR YAKLAŞIM”, Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD), vol. 11, no. 21, pp. 386–397, 2019, doi: 10.20990/kilisiibfakademik.536454.
ISNAD Pala, Osman - Aksaraylı, Mehmet. “NİCELİK KISITLI ORTALAMA VARYANS ÇARPIKLIK BASIKLIK PORTFÖY MODELİ: BULANIK SEZGİSEL BİR YAKLAŞIM”. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD) 11/21 (November 2019), 386-397. https://doi.org/10.20990/kilisiibfakademik.536454.
JAMA Pala O, Aksaraylı M. NİCELİK KISITLI ORTALAMA VARYANS ÇARPIKLIK BASIKLIK PORTFÖY MODELİ: BULANIK SEZGİSEL BİR YAKLAŞIM. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD). 2019;11:386–397.
MLA Pala, Osman and Mehmet Aksaraylı. “NİCELİK KISITLI ORTALAMA VARYANS ÇARPIKLIK BASIKLIK PORTFÖY MODELİ: BULANIK SEZGİSEL BİR YAKLAŞIM”. Akademik Araştırmalar Ve Çalışmalar Dergisi (AKAD), vol. 11, no. 21, 2019, pp. 386-97, doi:10.20990/kilisiibfakademik.536454.
Vancouver Pala O, Aksaraylı M. NİCELİK KISITLI ORTALAMA VARYANS ÇARPIKLIK BASIKLIK PORTFÖY MODELİ: BULANIK SEZGİSEL BİR YAKLAŞIM. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD). 2019;11(21):386-97.