Research Article
BibTex RIS Cite

TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi

Year 2016, Volume: 4 Issue: 1, 275 - 281, 01.04.2016

Abstract

In this paper, we classify translation surfaces in the three dimen- sional simply isotropic space I13 satisfying some algebraic equations in terms of the coordinate functions and the Laplacian operators with respect to the third fundamental form of the surface. We also give explicit forms of these surfaces.

References

  • [1] L. J. Alias, A. Ferrandez and P. Lucas, Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying x = Ax + B, Paci c J. Math. 156 (1992), 201{208.
  • [2] M.E.Aydin, Classi cation results on surfaces in the isotropic 3-space, http://arxiv.org/pdf/1601.03190.pdf
  • [3] M.E.Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, J. Geom, DOI 10.1007/s00022-015-0292-0
  • [4] C.Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces,Rend. Sem. Math. Messina Ser. II 2(16) (1993), 31{42.
  • [5] M.Bekkar, Surfaces of Revolution in the 3-Dimensional Lorentz-Minkowski Space Satisfying xi = ixi;Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 24, 1173 - 1185
  • [6] M.Bekkar, B. Senoussi, Translation surfaces in the 3-dimensional space satisfying III ri = iri; J. Geom. 103 (2012), 367{374
  • [7] S.M.Choi, On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), 351{367.
  • [8] S.M.Choi, Y. H.Kim and D.W.Yoon, Some classi cation of surfaces of revolution in Minkowski 3-space, J. Geom. 104 (2013), 85{106
  • [9] B.Y. Chen, A report on submanifold of nite type, Soochow J. Math. 22 (1996),117{337.
  • [10] F. Dillen, J. Pas and L. Vertraelen, On surfaces of nite type in Euclidean 3-space,Kodai Math. J. 13 (1990), 10{21.
  • [11] F. Dillen, J. Pas and L. Vertraelen, On the Gauss map of surfaces of revolution,Bull. Inst. Math. Acad. Sinica 18 (1990), 239{246.
  • [12] O. J. Garay, An extension of Takahashi's theorem, Geom. Dedicata 34 (1990), 105{112.
  • [13] G. Kaimakamis, B. Papantoniou, K. Petoumenos, Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying IIIr = Ar, Bull.Greek Math. Soc. 50 (2005), 75-90.
  • [14] M.K.Karacan, D.W.Yonn and B.Bukcu, Translation surfaces in the three dimensional simply isotropic space I13 ;International Journal of Geometric Methods in Modern Physics, accepted.
  • [15] H. Sachs, Isotrope Geometrie des Raumes, Vieweg Verlag, Braunschweig, 1990.
  • [16] B.Senoussi, M. Bekkar, Helicoidal surfaces with J r = Ar in 3-dimensional Euclidean space,Stud. Univ. Babes-Bolyai Math. 60(2015), No. 3, 437-448
  • [17] Z.M. Sipus, Translation Surfaces of constant curvatures in a simply isotropic space,Period Math. Hung. (2014) 68:160{175.
  • [18] K. Strubecker, Di erentialgeometrie des isotropen Raumes III, Flachentheorie, Math. Zeitsch.48 (1942), 369-427.
  • [19] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan,18 (1966), 380{385.
  • [20] D.W.Yoon, Surfaces of Revolution in the three dimensional pseudo-galilean space,Glasnik Matematicki,Vol. 48 (68) (2013), 415 { 428.
  • [21] D.W.Yoon, Some Classi cation of Translation Surfaces in Galilean 3-Space, Int. Journal of Math. Analysis, 6(28) 2012,1355 - 1361.
Year 2016, Volume: 4 Issue: 1, 275 - 281, 01.04.2016

Abstract

References

  • [1] L. J. Alias, A. Ferrandez and P. Lucas, Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying x = Ax + B, Paci c J. Math. 156 (1992), 201{208.
  • [2] M.E.Aydin, Classi cation results on surfaces in the isotropic 3-space, http://arxiv.org/pdf/1601.03190.pdf
  • [3] M.E.Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, J. Geom, DOI 10.1007/s00022-015-0292-0
  • [4] C.Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces,Rend. Sem. Math. Messina Ser. II 2(16) (1993), 31{42.
  • [5] M.Bekkar, Surfaces of Revolution in the 3-Dimensional Lorentz-Minkowski Space Satisfying xi = ixi;Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 24, 1173 - 1185
  • [6] M.Bekkar, B. Senoussi, Translation surfaces in the 3-dimensional space satisfying III ri = iri; J. Geom. 103 (2012), 367{374
  • [7] S.M.Choi, On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), 351{367.
  • [8] S.M.Choi, Y. H.Kim and D.W.Yoon, Some classi cation of surfaces of revolution in Minkowski 3-space, J. Geom. 104 (2013), 85{106
  • [9] B.Y. Chen, A report on submanifold of nite type, Soochow J. Math. 22 (1996),117{337.
  • [10] F. Dillen, J. Pas and L. Vertraelen, On surfaces of nite type in Euclidean 3-space,Kodai Math. J. 13 (1990), 10{21.
  • [11] F. Dillen, J. Pas and L. Vertraelen, On the Gauss map of surfaces of revolution,Bull. Inst. Math. Acad. Sinica 18 (1990), 239{246.
  • [12] O. J. Garay, An extension of Takahashi's theorem, Geom. Dedicata 34 (1990), 105{112.
  • [13] G. Kaimakamis, B. Papantoniou, K. Petoumenos, Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying IIIr = Ar, Bull.Greek Math. Soc. 50 (2005), 75-90.
  • [14] M.K.Karacan, D.W.Yonn and B.Bukcu, Translation surfaces in the three dimensional simply isotropic space I13 ;International Journal of Geometric Methods in Modern Physics, accepted.
  • [15] H. Sachs, Isotrope Geometrie des Raumes, Vieweg Verlag, Braunschweig, 1990.
  • [16] B.Senoussi, M. Bekkar, Helicoidal surfaces with J r = Ar in 3-dimensional Euclidean space,Stud. Univ. Babes-Bolyai Math. 60(2015), No. 3, 437-448
  • [17] Z.M. Sipus, Translation Surfaces of constant curvatures in a simply isotropic space,Period Math. Hung. (2014) 68:160{175.
  • [18] K. Strubecker, Di erentialgeometrie des isotropen Raumes III, Flachentheorie, Math. Zeitsch.48 (1942), 369-427.
  • [19] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan,18 (1966), 380{385.
  • [20] D.W.Yoon, Surfaces of Revolution in the three dimensional pseudo-galilean space,Glasnik Matematicki,Vol. 48 (68) (2013), 415 { 428.
  • [21] D.W.Yoon, Some Classi cation of Translation Surfaces in Galilean 3-Space, Int. Journal of Math. Analysis, 6(28) 2012,1355 - 1361.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bahaddin Bukcu

Dae Won Yoon

Murat Kemal Karacan

Publication Date April 1, 2016
Submission Date July 10, 2014
Published in Issue Year 2016 Volume: 4 Issue: 1

Cite

APA Bukcu, B., Yoon, D. W., & Karacan, M. K. (2016). TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi. Konuralp Journal of Mathematics, 4(1), 275-281.
AMA Bukcu B, Yoon DW, Karacan MK. TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi. Konuralp J. Math. April 2016;4(1):275-281.
Chicago Bukcu, Bahaddin, Dae Won Yoon, and Murat Kemal Karacan. “TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi”. Konuralp Journal of Mathematics 4, no. 1 (April 2016): 275-81.
EndNote Bukcu B, Yoon DW, Karacan MK (April 1, 2016) TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi. Konuralp Journal of Mathematics 4 1 275–281.
IEEE B. Bukcu, D. W. Yoon, and M. K. Karacan, “TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi”, Konuralp J. Math., vol. 4, no. 1, pp. 275–281, 2016.
ISNAD Bukcu, Bahaddin et al. “TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi”. Konuralp Journal of Mathematics 4/1 (April 2016), 275-281.
JAMA Bukcu B, Yoon DW, Karacan MK. TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi. Konuralp J. Math. 2016;4:275–281.
MLA Bukcu, Bahaddin et al. “TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi”. Konuralp Journal of Mathematics, vol. 4, no. 1, 2016, pp. 275-81.
Vancouver Bukcu B, Yoon DW, Karacan MK. TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY ISOTROPIC SPACE I13 SATISFYING IIIxi = ixi. Konuralp J. Math. 2016;4(1):275-81.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.