ON 3-DIMENSIONAL $\alpha$-PARA KENMOTSU MANIFOLDS
Year 2017,
Volume: 5 Issue: 1, 11 - 23, 01.04.2017
KRISHANU Mandal
,
U.C. De
Abstract
The aim of the present paper is to study 3-dimensional alpha-para Kenmotsu manifolds. First we consider 3-dimensional Ricci semisymmetric $\alpha$-para Kenmotsu manifolds and obtain some equivalent conditions. Next we study cyclic parallel Ricci tensor in 3-dimensional $\alpha$-para Kenmotsu manifolds. Moreover, we investigate $\eta$-parallel Ricci tensor in 3-dimensional $\alpha$-para Kenmotsu manifolds. Continuing our study, we consider locally $\phi$-symmetric 3-dimensional alpha-para Kenmotsu manifolds. Next, we study gradient Ricci solitons in 3-dimensional $\alpha$-para Kenmotsu manifolds. Finally, we give an example of a 3-dimensional $\alpha$-para Kenmotsu manifold which veries some results.
References
- [1] T. Adati, Manifold of quasi-constant curvature II. quasi-umbilical hypersurfaces, TRU Math., 21(2)(1985), 221-226.
- [2] T. Adati and T. Miyazawa, On a Riemannian space with recurrent conformal curvature, Tensor N.S., 18(1967), 348-354.
- [3] T. Adati and Y. Wang, Manifolds of quasi-constant curvature I. A manifold of quasi-constant curvature and an S-manifold, TRU Math., 21(1)(1985), 95-103.
- [4] C.L. Bejan and M. Crasmareanu, Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry, Ann. Glob. Anal. Geom., 46(2014), 117-127.
- [5] A.M. Blaga, eta-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20(2015), 1-13.
- [6] Boeckx, E., Kowalski, O.and Vanhecke, L., Riemannian manifolds of conullity two, Singapore World Scientic Publishing, Singapore, 1996.
- [7] C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Soc. 33(2010), 361-368.
- [8] B.-Y. Chen and K. Yano, K., Hypersurfaces of a conformally at space, Tensor N.S., 26(1972), 318-322.
- [9] B. Chow and D. Knopf, The Ricci flow: An introduction, Mathematical surveys and Monographs, Amer. Math. Soc. 110(2004).
- [10] P. Dacko, On almost para-cosymplectic manifolds, Tsukuba J. Math., 28(2004), 193-213.
- [11] U.C. De and S.K. Ghosh, Some properties of Riemannian spaces of quasi-constant curvature, Bull. Cal. Math. Soc., 93(2001), 27-32.
- [12] A. Derdzinski, Compact Ricci solitons, Preprint.
- [13] S. Erdem, On almost (para)contact (hyperbolic) metric manifolds and harmonicity of (eta; eta_0)- holomorphic maps between them, Houston J. Math., 28(2002), 21-45.
- [14] A. Gray, Two classes of Riemannian manifolds, Geom. Dedicata 7(1978), 259-280.
- [15] R.S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math. 71, Amer. Math. Soc.,(1988), 237-262.
- [16] T. Ivey, Ricci solitons on compact 3-manifolds, Di. Geom. Appl. 3(1993), 301-307.
- [17] U.-H. Ki and H. Nakagawa, A characterization of the cartan hypersurfaces in a sphere, Tohoku Math. J. 39(1987), 27-40.
- [18] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219(1976), 277-290.
- [19] O. Kowalski, An explicit classication of 3-dimensional Riemannian spaces satisfying R(X; Y ) R = 0, Czech. Math. J., 46(1996), 427-474.
- [20] M. Manev and M. Staikova, On almost paracontact Riemannian manifolds of type (n; n), J. Geom., 72(2001), 108-114.
- [21] V.A. Mirzoyan, Structure theorems on Riemannian Ricci semisymmetic spaces (Russian), Izv. Vyssh. Uchebn. Zaved. Mat.,6(1992), 80-89.
- [22] A.L. Mocanu, Les varietes a courbure quasi-constant de type Vranceanu, Lucr. Conf. Nat. de. Geom. Si Top., Tirgoviste, (1987).
- [23] G. Nakova and S. Zamkovoy, Almost paracontact manifolds, (2009, reprint) arXiv:0806.3859v2.
- [24] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Preprint, http://arxiv.org/abs/math.DG/02111159.
- [25] K. Srivastava and S.K. Srivastava, On a class of -Para Kenmotsu Manifolds, Mediterr. J. Math., 13 (2016), 391-399.
- [26] Z.I. Szabo, Structure theorems on Riemannian spaces satisfying R(X; Y ) R = 0, the local version, J. Di. Geom., 17(1982), 531-582.
- [27] T. Takahashi, Sasakian -symmetric spaces, Tohoku Math. J. 29(1977), 91-113.
- [28] G. Vranceanu, Leconsdes Geometrie Dierential, Ed.de l'Academie, Bucharest, 4(1968).
- [29] Y. Wang, On some properties of Riemannian spaces of quasi-constant curvature, Tensor N.S., 35(1981), 173-176.
- [30] J. Welyczko, On Legendre curves in 3-dimensional normal almost paracontact metric manifolds, Result. Math., 54(2009), 377-387.
- [31] J. Welyczko, Slant curves in 3-dimensional normal almost paracontact metric manifolds, Mediterr. J. Math., 11(2014), 965-978.
- [32] A. Yildiz, U.C. De and M. Turan, On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Math. J. 65(2013), 684-693.
- [33] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36(2009), 37-60.
Year 2017,
Volume: 5 Issue: 1, 11 - 23, 01.04.2017
KRISHANU Mandal
,
U.C. De
References
- [1] T. Adati, Manifold of quasi-constant curvature II. quasi-umbilical hypersurfaces, TRU Math., 21(2)(1985), 221-226.
- [2] T. Adati and T. Miyazawa, On a Riemannian space with recurrent conformal curvature, Tensor N.S., 18(1967), 348-354.
- [3] T. Adati and Y. Wang, Manifolds of quasi-constant curvature I. A manifold of quasi-constant curvature and an S-manifold, TRU Math., 21(1)(1985), 95-103.
- [4] C.L. Bejan and M. Crasmareanu, Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry, Ann. Glob. Anal. Geom., 46(2014), 117-127.
- [5] A.M. Blaga, eta-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20(2015), 1-13.
- [6] Boeckx, E., Kowalski, O.and Vanhecke, L., Riemannian manifolds of conullity two, Singapore World Scientic Publishing, Singapore, 1996.
- [7] C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Soc. 33(2010), 361-368.
- [8] B.-Y. Chen and K. Yano, K., Hypersurfaces of a conformally at space, Tensor N.S., 26(1972), 318-322.
- [9] B. Chow and D. Knopf, The Ricci flow: An introduction, Mathematical surveys and Monographs, Amer. Math. Soc. 110(2004).
- [10] P. Dacko, On almost para-cosymplectic manifolds, Tsukuba J. Math., 28(2004), 193-213.
- [11] U.C. De and S.K. Ghosh, Some properties of Riemannian spaces of quasi-constant curvature, Bull. Cal. Math. Soc., 93(2001), 27-32.
- [12] A. Derdzinski, Compact Ricci solitons, Preprint.
- [13] S. Erdem, On almost (para)contact (hyperbolic) metric manifolds and harmonicity of (eta; eta_0)- holomorphic maps between them, Houston J. Math., 28(2002), 21-45.
- [14] A. Gray, Two classes of Riemannian manifolds, Geom. Dedicata 7(1978), 259-280.
- [15] R.S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math. 71, Amer. Math. Soc.,(1988), 237-262.
- [16] T. Ivey, Ricci solitons on compact 3-manifolds, Di. Geom. Appl. 3(1993), 301-307.
- [17] U.-H. Ki and H. Nakagawa, A characterization of the cartan hypersurfaces in a sphere, Tohoku Math. J. 39(1987), 27-40.
- [18] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219(1976), 277-290.
- [19] O. Kowalski, An explicit classication of 3-dimensional Riemannian spaces satisfying R(X; Y ) R = 0, Czech. Math. J., 46(1996), 427-474.
- [20] M. Manev and M. Staikova, On almost paracontact Riemannian manifolds of type (n; n), J. Geom., 72(2001), 108-114.
- [21] V.A. Mirzoyan, Structure theorems on Riemannian Ricci semisymmetic spaces (Russian), Izv. Vyssh. Uchebn. Zaved. Mat.,6(1992), 80-89.
- [22] A.L. Mocanu, Les varietes a courbure quasi-constant de type Vranceanu, Lucr. Conf. Nat. de. Geom. Si Top., Tirgoviste, (1987).
- [23] G. Nakova and S. Zamkovoy, Almost paracontact manifolds, (2009, reprint) arXiv:0806.3859v2.
- [24] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Preprint, http://arxiv.org/abs/math.DG/02111159.
- [25] K. Srivastava and S.K. Srivastava, On a class of -Para Kenmotsu Manifolds, Mediterr. J. Math., 13 (2016), 391-399.
- [26] Z.I. Szabo, Structure theorems on Riemannian spaces satisfying R(X; Y ) R = 0, the local version, J. Di. Geom., 17(1982), 531-582.
- [27] T. Takahashi, Sasakian -symmetric spaces, Tohoku Math. J. 29(1977), 91-113.
- [28] G. Vranceanu, Leconsdes Geometrie Dierential, Ed.de l'Academie, Bucharest, 4(1968).
- [29] Y. Wang, On some properties of Riemannian spaces of quasi-constant curvature, Tensor N.S., 35(1981), 173-176.
- [30] J. Welyczko, On Legendre curves in 3-dimensional normal almost paracontact metric manifolds, Result. Math., 54(2009), 377-387.
- [31] J. Welyczko, Slant curves in 3-dimensional normal almost paracontact metric manifolds, Mediterr. J. Math., 11(2014), 965-978.
- [32] A. Yildiz, U.C. De and M. Turan, On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Math. J. 65(2013), 684-693.
- [33] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36(2009), 37-60.