Year 2020,
Volume: 8 Issue: 1, 70 - 78, 15.04.2020
M.d. Siddiqi
S. K. Chaubey
References
- [1] S. R. Ashoka, C. S. Bagewadi and G. Ingalahlli, A geometry on Ricci soliton in (LCS)n-manifolds, Differential Geometry-Dynamical System, 16,
(2014), 50-62.
- [2] N. Basu and A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Global Journal of Advanced Research on Classical and Modern
Geometries, 4, (2015), 159-621.
- [3] A. M. Blaga, h-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat, 30 (2), (2016), 489-496.
- [4] A. M. Blaga, h-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20, (2015), 1-13.
- [5] C. S. Bagewadi and G. Ingalahalli, Ricci Solitons in Lorentzian a-Sasakian Manifolds, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 28 (1), (2012),
59-68.
- [6] A. Bhattacharyya and N. Basu, Some curvature identities on Gradient Shrinking Conformal Ricci Soliton, Analele Stiintice Ale Universitatii Al.I.Cuza
Din Iasi (S.N) Mathematica, 61 (1), (2015), 245-252.
- [7] X. Cao, Compact Gradient Shrinking Ricci Solitons with positive curvature operator, J. Geom. Anal., 17 (3), (2007), 425-433.
- [8] C. Calin and M. Crasmareanu, h-Ricci solitons on Hopf Hypersurfaces in complex space forms, Rev. Roumaine Math. Pures Appl., 57 (1), (2012),
55-63.
- [9] S. K. Chaubey, On special weakly Ricci-symmetric and generalized Ricci-recurrent trans-Sasakian manifolds, Thai Journal of Mathematics, 18 (3),
(2018), 693-707.
- [10] S. K. Chaubey, K. K. Baishya and M. Danish Siddiqi, Existence of some classes of N(k)-quasi Einstein manifolds, Bol. Soc. Paran. Mat.,
doi:10.5269/bspm.41450.
- [11] S. K. Chaubey, Certain results on N(k)-quasi Einstein manifolds, Afrika Matematika, 30 (1-2), (2019), 113-127.
- [12] S. K. Chaubey, Existence of N(k)-quasi Einstein manifolds, Facta Universitatis (NIS) Ser. Math. Inform., 32 (3), (2017), 369-385.
- [13] S. K. Chaubey, Trans-Sasakian manifolds satisfying certain conditions, TWMS J. App. Eng. Math. 9 (2) (2019), 305-314.
- [14] S. K. Chaubey and A. Yildiz, On Ricci tensor in the generalized Sasakian-space-forms, International Journal of Maps in Mathematics, 2 (1), (2019),
131-147.
- [15] S. K. Chaubey and S. K. Yadav, W-semisymmetric generalized Sasakian-space-forms, Adv. Pure Appl. Math., 10 (4), (2019), 427-436.
- [16] S. K. Chaubey and A. A. Shaikh, On 3-dimensional Lorentzian concircular structure manifolds, Commun. Korean Math. Soc., 34 (1), (2019), 303–319.
- [17] S. K. Chaubey, Generalized Robertson-Walker space-times withW1-curvature tensor, J. Phys. Math., 10 (2), (2019), 1000303.
- [18] J. T. Cho and M. Kimura, Ricci solitons and Real hypersurfaces in a complex space form, Tohoku Math. J., 61, (2009), 205-212.
- [19] U. C. De, Y. J. Suh, S. K. Chaubey and S. Shenawy, On pseudo H -symmetric Lorentzian manifolds with applications to relativity, Filomat, (2020)
(Accepted).
- [20] T. Dutta, N. Basu and A. Bhattacharyya, Conformal Ricci soliton in Lorentzian a-Sasakian manifolds, Acta Univ. Palacki. Olomuc., Fac. rer. nat.,
Math., 55 (2), (2016), 57-70.
- [21] A. E. Fischer, An introduction to conformal Ricci flow, class. Quantum Grav., 21, (2004), S171-S218.
- [22] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, (Santa Cruz. CA, 1986), Contemp. Math. 71, Amer. Math. Soc., (1988),
237-262.
- [23] S. K. Hui and D. Chakraborty, Some types of Ricci solitons on (LCS)n-manifolds, J. Math. Sciences: Advances and Applications, 37, (2016), 1-17.
- [24] S. K. Hui, S. K. Yadav and S. K. Chaubey, h-Ricci soliton on 3-dimensional f-Kenmotsu manifolds, Appl. Appl. Math., 13 (2), (2018), 933-951.
- [25] S. K. Hui and D. Chakrobarty, h-Ricci solitons on h-Einstein (LCS)n-manifolds, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 55 (2),
(2016), 101-109.
- [26] H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Ann. Math., 27 (2), (1925), 91-98.
- [27] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci., 12 (2), (1989), 151–156.
- [28] B. O’. Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
- [29] S. Pigola, M. Rigoli, M. Rimoldi and A. G. Setti, Ricci almost solitons, arXiv:1003.2945v1, (2010).
- [30] G. P. Pokhariyal, S. Yadav and S. K. Chaubey, Ricci solitons on trans-Sasakian manifolds, Differential Geometry-Dynamical Systems, 20, (2018),
138-158.
- [31] A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J., 43 (2), (2003), 305-314.
- [32] A. A. Shaikh and T. Q. Binh, On weakly symmetric (LCS)n-manifolds, J. Adv. Math. Studies, 2, (2009), 75-90.
- [33] A. A. Shaikh, Some results on (LCS)n-manifolds, J. Korean Math. Soc., 46 (3), (2009), 449-461.
- [34] R. Sharma, Almost Ricci solitons and K-contact geometry, Monatshefte f ¨ ur MathematikMonatsh Math., 175 (4), (2014), 621-628.
- [35] R. Sharma, Certain results on K-contact and (k;m)-contact manifolds, J. Geom., 89 (1-2), (2008), 138-147.
- [36] M. D. Siddiqi, Ricci r-soliton and geometrical structure in a dust fluid and viscous fluid spacetime, Bulg. J. Phys., 46, (2019), 163-173.
- [37] M. D. Siddiqi, Conformal h-Ricci solitons in d-Lorentzian trans-Sasakian manifolds, Int. J. Maps Math., 1, (2018), 15-34.
- [38] M. Turan, C. Yetim and S. K. Chaubey, On quasi-Sasakian 3-manifolds admitting h-Ricci solitons, Filomat, 33 (15), (2019), 4923-4930.
- [39] S. K. Yadav, S. K. Chaubey and D. L. Suthar, Some geometric properties of h-Ricci solitons and gradient Ricci solitons on (LCS)n-manifolds, Cubo a
Mathematical Journal, 2 (19), (2017), 33-48.
- [40] S. K. Yadav, S. K. Chaubey and D. L. Suthar, Some results of h-Ricci soliton on (LCS)n- manifolds, Surveys in Mathematics and its Applications 13
(2018), 237-250.
- [41] S. K. Yadav, S. K. Chaubey and D. L. Suthar, Certain results on almost Kenmotsu (k;m;n)-spaces, Konuralp Journal of Mathematics, 6 (1), (2018),
128-133.
- [42] S. K. Yadav, S. K. Chaubey and D. L. Suthar, Certain geometric properties of h-Ricci solitons on h-Einstein para-Kenmotsu manifolds, Palestine
Journal of Mathematics, 9 (1), (2020), 237-244.
- [43] S. K. Yadav, S. K. Chaubey and S. K. Hui, On the Perfect Fluid Lorentzian Para-Sasakian Spacetimes, Bulg. J. Phys., 46, (2019), 1-15.
Almost Conformal $\eta$-Ricci Solitons in Three-Dimensional Lorentzian Concircular Structures
Year 2020,
Volume: 8 Issue: 1, 70 - 78, 15.04.2020
M.d. Siddiqi
S. K. Chaubey
Abstract
The object of the present paper is to study the properties of three-dimensional Lorentzian concircular structure ($(LCS)_{3}$-)manifolds admitting the almost conformal $\eta$-Ricci solitons and gradient shrinking $\eta$-Ricci solitons. It is proved that an $(LCS)_3$-manifold with either an almost conformal $\eta$-Ricci soliton or a gradient shrinking $\eta$-Ricci soliton is a quasi-Einstein manifold. Also, the example of an almost conformal $\eta$-Ricci soliton in an $(LCS)_{3}$-manifold is provided in the region where $(LCS)_{3}$-manifold is expanding.
References
- [1] S. R. Ashoka, C. S. Bagewadi and G. Ingalahlli, A geometry on Ricci soliton in (LCS)n-manifolds, Differential Geometry-Dynamical System, 16,
(2014), 50-62.
- [2] N. Basu and A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Global Journal of Advanced Research on Classical and Modern
Geometries, 4, (2015), 159-621.
- [3] A. M. Blaga, h-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat, 30 (2), (2016), 489-496.
- [4] A. M. Blaga, h-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20, (2015), 1-13.
- [5] C. S. Bagewadi and G. Ingalahalli, Ricci Solitons in Lorentzian a-Sasakian Manifolds, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 28 (1), (2012),
59-68.
- [6] A. Bhattacharyya and N. Basu, Some curvature identities on Gradient Shrinking Conformal Ricci Soliton, Analele Stiintice Ale Universitatii Al.I.Cuza
Din Iasi (S.N) Mathematica, 61 (1), (2015), 245-252.
- [7] X. Cao, Compact Gradient Shrinking Ricci Solitons with positive curvature operator, J. Geom. Anal., 17 (3), (2007), 425-433.
- [8] C. Calin and M. Crasmareanu, h-Ricci solitons on Hopf Hypersurfaces in complex space forms, Rev. Roumaine Math. Pures Appl., 57 (1), (2012),
55-63.
- [9] S. K. Chaubey, On special weakly Ricci-symmetric and generalized Ricci-recurrent trans-Sasakian manifolds, Thai Journal of Mathematics, 18 (3),
(2018), 693-707.
- [10] S. K. Chaubey, K. K. Baishya and M. Danish Siddiqi, Existence of some classes of N(k)-quasi Einstein manifolds, Bol. Soc. Paran. Mat.,
doi:10.5269/bspm.41450.
- [11] S. K. Chaubey, Certain results on N(k)-quasi Einstein manifolds, Afrika Matematika, 30 (1-2), (2019), 113-127.
- [12] S. K. Chaubey, Existence of N(k)-quasi Einstein manifolds, Facta Universitatis (NIS) Ser. Math. Inform., 32 (3), (2017), 369-385.
- [13] S. K. Chaubey, Trans-Sasakian manifolds satisfying certain conditions, TWMS J. App. Eng. Math. 9 (2) (2019), 305-314.
- [14] S. K. Chaubey and A. Yildiz, On Ricci tensor in the generalized Sasakian-space-forms, International Journal of Maps in Mathematics, 2 (1), (2019),
131-147.
- [15] S. K. Chaubey and S. K. Yadav, W-semisymmetric generalized Sasakian-space-forms, Adv. Pure Appl. Math., 10 (4), (2019), 427-436.
- [16] S. K. Chaubey and A. A. Shaikh, On 3-dimensional Lorentzian concircular structure manifolds, Commun. Korean Math. Soc., 34 (1), (2019), 303–319.
- [17] S. K. Chaubey, Generalized Robertson-Walker space-times withW1-curvature tensor, J. Phys. Math., 10 (2), (2019), 1000303.
- [18] J. T. Cho and M. Kimura, Ricci solitons and Real hypersurfaces in a complex space form, Tohoku Math. J., 61, (2009), 205-212.
- [19] U. C. De, Y. J. Suh, S. K. Chaubey and S. Shenawy, On pseudo H -symmetric Lorentzian manifolds with applications to relativity, Filomat, (2020)
(Accepted).
- [20] T. Dutta, N. Basu and A. Bhattacharyya, Conformal Ricci soliton in Lorentzian a-Sasakian manifolds, Acta Univ. Palacki. Olomuc., Fac. rer. nat.,
Math., 55 (2), (2016), 57-70.
- [21] A. E. Fischer, An introduction to conformal Ricci flow, class. Quantum Grav., 21, (2004), S171-S218.
- [22] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, (Santa Cruz. CA, 1986), Contemp. Math. 71, Amer. Math. Soc., (1988),
237-262.
- [23] S. K. Hui and D. Chakraborty, Some types of Ricci solitons on (LCS)n-manifolds, J. Math. Sciences: Advances and Applications, 37, (2016), 1-17.
- [24] S. K. Hui, S. K. Yadav and S. K. Chaubey, h-Ricci soliton on 3-dimensional f-Kenmotsu manifolds, Appl. Appl. Math., 13 (2), (2018), 933-951.
- [25] S. K. Hui and D. Chakrobarty, h-Ricci solitons on h-Einstein (LCS)n-manifolds, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 55 (2),
(2016), 101-109.
- [26] H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Ann. Math., 27 (2), (1925), 91-98.
- [27] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci., 12 (2), (1989), 151–156.
- [28] B. O’. Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
- [29] S. Pigola, M. Rigoli, M. Rimoldi and A. G. Setti, Ricci almost solitons, arXiv:1003.2945v1, (2010).
- [30] G. P. Pokhariyal, S. Yadav and S. K. Chaubey, Ricci solitons on trans-Sasakian manifolds, Differential Geometry-Dynamical Systems, 20, (2018),
138-158.
- [31] A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J., 43 (2), (2003), 305-314.
- [32] A. A. Shaikh and T. Q. Binh, On weakly symmetric (LCS)n-manifolds, J. Adv. Math. Studies, 2, (2009), 75-90.
- [33] A. A. Shaikh, Some results on (LCS)n-manifolds, J. Korean Math. Soc., 46 (3), (2009), 449-461.
- [34] R. Sharma, Almost Ricci solitons and K-contact geometry, Monatshefte f ¨ ur MathematikMonatsh Math., 175 (4), (2014), 621-628.
- [35] R. Sharma, Certain results on K-contact and (k;m)-contact manifolds, J. Geom., 89 (1-2), (2008), 138-147.
- [36] M. D. Siddiqi, Ricci r-soliton and geometrical structure in a dust fluid and viscous fluid spacetime, Bulg. J. Phys., 46, (2019), 163-173.
- [37] M. D. Siddiqi, Conformal h-Ricci solitons in d-Lorentzian trans-Sasakian manifolds, Int. J. Maps Math., 1, (2018), 15-34.
- [38] M. Turan, C. Yetim and S. K. Chaubey, On quasi-Sasakian 3-manifolds admitting h-Ricci solitons, Filomat, 33 (15), (2019), 4923-4930.
- [39] S. K. Yadav, S. K. Chaubey and D. L. Suthar, Some geometric properties of h-Ricci solitons and gradient Ricci solitons on (LCS)n-manifolds, Cubo a
Mathematical Journal, 2 (19), (2017), 33-48.
- [40] S. K. Yadav, S. K. Chaubey and D. L. Suthar, Some results of h-Ricci soliton on (LCS)n- manifolds, Surveys in Mathematics and its Applications 13
(2018), 237-250.
- [41] S. K. Yadav, S. K. Chaubey and D. L. Suthar, Certain results on almost Kenmotsu (k;m;n)-spaces, Konuralp Journal of Mathematics, 6 (1), (2018),
128-133.
- [42] S. K. Yadav, S. K. Chaubey and D. L. Suthar, Certain geometric properties of h-Ricci solitons on h-Einstein para-Kenmotsu manifolds, Palestine
Journal of Mathematics, 9 (1), (2020), 237-244.
- [43] S. K. Yadav, S. K. Chaubey and S. K. Hui, On the Perfect Fluid Lorentzian Para-Sasakian Spacetimes, Bulg. J. Phys., 46, (2019), 1-15.