Heavy Metal Quantity and Health Risk Assessments in Frozen Shrimp Samples
Year 2023,
Volume: 16 Issue: 3, 277 - 286, 30.09.2023
Halil Yalçın
,
Tuncer Çakmak
Abstract
In this study, it was aimed to determine the residual levels of toxic heavy metals cadmium (Cd), total mercury (THg), and lead (Pb) in a total of 48 frozen shrimp samples obtained from randomly selected sales points, and thus to evaluate the potential risks to public health associated with shrimp consumption. It was determined that the Cd level in the examined shrimp samples varied between
References
- Agah, H., Leermakers, M., Elskens, M., Fatemi, S. M. R., & Baeyens, W. (2009). Accumulation of trace metals in the muscle and liver tissues of five fish species from the Persian Gulf. Environmental Monitoring and Assessment, 157, 499-514. https://doi.org/10.1007/s10661-008-0551-8.
- Agency for Toxic Substance and Disease Rigestry (ATSDR) (2013). Priority List of Hazardous Substances that Will Be the Subject of Toxicological Profiles. p. 30333, Atlanta, Georgia, USA.
- Alves, R. N., Maulvault, A. L., Barbosa, V. L., Fernandez-Tejedor, M., Tediosi, A., Kotterman, M., ... & Marques, A. (2018). Oral bioaccessibility of toxic and essential elements in raw and cooked commercial seafood species available in European markets. Food Chemistry, 267, 15-27. https://doi.org/10.1016/j.foodchem.2017.11.045.
- Antoine, J. M., Fung, L. A. H., & Grant, C. N. (2017). Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicology Reports, 4, 181-187.
- Arisekar, U., Shakila, R. J., Shalini, R., Jeyasekaran, G., Padmavathy, P., Hari, M. S., & Sudhan, C. (2022). Accumulation potential of heavy metals at different growth stages of Pacific white leg shrimp, Penaeus vannamei farmed along the Southeast coast of Peninsular India: A report on ecotoxicology and human health risk assessment. Environmental Research, 212, 113105.
- Aytekin, T., Kargın, D., Çoğun, H. Y., Temiz, Ö., Varkal, H. S., & Kargın, F. (2019). Accumulation and health risk assessment of heavy metals in tissues of the shrimp and fish species from the Yumurtalik coast of Iskenderun Gulf, Turkey. Heliyon, 5(8), e02131. https://doi.org/10.1016/j.heliyon.2019.e02131.
- Canlı, M., & Atlı, G. (2003). The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution, 121(1), 129-136. https://doi.org/10.1016/S0269-7491(02)00194-X.
- Copat, C., Arena, G., Fiore, M., Ledda, C., Fallico, R., Sciacca, S., & Ferrante, M. (2013). Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: consumption advisories. Food and Chemical Toxicology, 53, 33-37. https://doi.org/10.1016/j.fct.2012.11.038.
- Copat, C., Vinceti, M., D'Agati, M. G., Arena, G., Mauceri, V., Grasso, A., ... & Ferrante, M. (2014). Mercury and selenium intake by seafood from the Ionian Sea: A risk evaluation. Ecotoxicology and Environmental Safety, 100, 87-92. https://doi.org/10.1016/j.ecoenv.2013.11.009.
- Çiftçi, H., Çalışkan, Ç. E., & Öztürk, K.. (2021). Bazı Balık Türlerinde İz ve Toksik Metal Düzeylerinin Belirlenmesi ve İnsan Sağlığı Riskinin Değerlendirilmesi. Journal of Advanced Research in Natural and Applied Sciences, 7(2), 219-233. https://doi.org/10.28979/jarnas.883611.
- Dang, F., & Wang, W. X. (2012). Why mercury concentration increases with fish size? Biokinetic explanation. Environmental Pollution, 163, 192-198. https://doi.org/10.1016/j.envpol.2011.12.026.
- European Commission (EC). (2014). Commission Regulation (EU) No 488/2014 of 12 May 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs (Text with EEA relevance). The Official Journal of the European Union.
- European Commission (EC). (2015). Commission Regulation (EU) 2015/1005 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of lead in certain foodstuffs (Text with EEA relevance). The Official Journal of the European Union.
- European Commission (EC). (2022). 2022/617 of 12 April 2022 amending Regulation (EC) No 1881/2006 as regards maximum levels of mercury in fish and salt (Text with EEA relevance). The Official Journal of the European Union.
- European Commission (EC). (2023). Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006 (Text with EEA relevance). The Official Journal of the European Union.
- European Food Safety Authority (EFSA). (2010). Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on Lead in Food. EFSA Journal, 8( 4):1570. [151 pp.]. doi:10.2903/j.efsa.2010.1570.
- European Food Safety Authority (EFSA). (2011). Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on tolerable weekly intake for cadmium. EFSA Journal, 9( 2):1975. [19 pp.] doi:10.2903/j.efsa.2011.1975.
- European Food Safety Authority (EFSA). (2012a). EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA Journal, 10( 12):2985. [241 pp.] doi:10.2903/j.efsa.2012.2985.
- European Food Safety Authority (EFSA). (2012b). EFSA Scientific Committee. Scientific panels and units in the absence of actual measured data. EFSA Journal, 2012; 10: 2579. doi: 10.2903/j.efsa.2012.2579.
- Ezemonye, L. I., Adebayo, P. O., Enuneku, A. A., Tongo, I., & Ogbomida, E. (2019). Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin River, Nigeria. Toxicology Reports, 6, 1-9. https://doi.org/10.1016/j.toxrep.2018.11.010.
- Herliwati, H., Rahman, M., Hidayat, A. S., Amri, U., & Sumantri, I. (2022). The Occurrences of Heavy Metals in Water, Sediment and Wild Shrimps Caught from Barito Estuary, South Kalimantan, Indonesia. HAYATI Journal of Biosciences, 29(5), 643-647. https://doi.org/10.4308/hjb.29.5.643-647.
- Hong, Y. S., Kim, Y. M., & Lee, K. E. (2012). Methylmercury exposure and health effects. Journal of Preventive Medicine and Public Health, 45(6), 353. 10.3961/jpmph.2012.45.6.353.
- International Agency for Research on Cancer (IARC) (2022). Agents Classified by the IARC Monographs, Volumes 1–132/. https://monographs.iarc.fr/agents-classified-by-the-iarc/.
- Joint FAO/WHO Expert Committee on Food Additives (JECFA) (2018). Joint FAO/WHO food standards programmed codex committee on contaminants in foods. 12th Session Utrecht, The Netherlands, 12-16 March 2018, CF/12 INF/1, 1-169.
- Miri, M., Akbari, E., Amrane, A., Jafari, S. J., Eslami, H., Hoseinzadeh, E., ... & Taghavi, M. (2017). Health risk assessment of heavy metal intake due to fish consumption in the Sistan region, Iran. Environmental Monitoring and Assessment, 189, 1-10. https://doi.org/10.1007/s10661-017-6286-7.
- Muhammad, S., & Ahmad, K. (2020). Heavy metal contamination in water and fish of the Hunza River and its tributaries in Gilgit–Baltistan: evaluation of potential risks and provenance. Environmental Technology & Innovation, 20, 101159. https://doi.org/10.1016/j.eti.2020.101159.
- Muhammad, S., Ullah, R., & Jadoon, I. A. (2019). Heavy metals contamination in soil and food and their evaluation for risk assessment in the Zhob and Loralai valleys, Baluchistan province, Pakistan. Microchemical Journal, 149, 103971. https://doi.org/10.1016/j.microc.2019.103971.
- Nabavi, S. F., Nabavi, S. M., Latifi, A. M., Eslami, S., & Ebrahimzadeh, M. A. (2012). Determination of trace elements level of pikeperch collected from the Caspian Sea. Bulletin of Environmental Contamination and Toxicology, 88, 401-405. https://doi.org/10.1007/s00128-011-0513-7.
- Nirmal, N. P., Santivarangkna, C., Rajput, M. S., & Benjakul, S. (2020). Trends in shrimp processing waste utilization: An industrial prospective. Trends in Food Science & Technology, 103, 20-35. https://doi.org/10.1016/j.tifs.2020.07.001.
- Omeragic, E., Marjanovic, A., Djedjibegovic, J., Turalic, A., Causevic, A., Niksic, H., ... & Sober, M. (2020). Arsenic, cadmium, mercury, and lead in date mussels from the Sarajevo fish market (Bosnia and Herzegovina): a preliminary study on the health risks. Turkish Journal of Veterinary & Animal Sciences, 44(2), 435-442. https://doi.org/10.3906/vet-1908-13.
- Sabir, M. A., Muhammad, S., Umar, M., Farooq, M., & Fardiullah, N. A. (2017). Water quality assessment for drinking and irrigation purposes in upper Indus basin, northern Pakistan. Fresenius Environ Bull, 26(6), 4180-4186.
- Solgi, E., Alipour, H., & Majnooni, F. (2019). Investigation of the concentration of metals in two economically important fish species from the Caspian Sea and assessment of potential risk to human health. Ocean Science Journal, 54, 503-514. https://doi.org/10.1007/s12601-019-0024-8.
- Sultana, S., Hossain, M. B., Choudhury, T. R., Yu, J., Rana, M. S., Noman, M. A., ... & Arai, T. (2022). Ecological and Human Health Risk Assessment of Heavy Metals in Cultured Shrimp and Aquaculture Sludge. Toxics, 10(4), 175. https://doi.org/10.3390/toxics10040175.
- Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü (TEPGE). (2022). Ürün Raporu, Su Ürünleri. TEPGE YAYIN NO: 355, Ankara.
- Tokatlı, C., Ustaoğlu, F. (2021). Meriç delta balıklarında toksik metal birikimlerinin değerlendirmesi: muhtemel insan sağlığı riskleri. Acta Aquatica Turcica, 17(1), 136-145. https://doi.org/10.22392/actaquatr.769656.
- Traina, A., Bono, G., Bonsignore, M., Falco, F., Giuga, M., Quinci, E. M., ... & Sprovieri, M. (2019). Heavy metals concentrations in some commercially key species from Sicilian coasts (Mediterranean Sea): Potential human health risk estimation. Ecotoxicology and Environmental Safety, 168, 466-478. https://doi.org/10.1016/j.ecoenv.2018.10.056.
- Türk Gıda Kodeksi (TGK). (2011). Türk Gıda Kodeksi Bulaşanlar Yönetmeliği. RG 29 Aralık 2011, 28157 (3. Mükerrer). Ankara.
- United State Environmental Protection Agency (USEPA). (1989). Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A) (p. 205). Interim Final. Office of Emergency and Remedial Response. EPA/540/1-89/002.
- United State Environmental Protection Agency (USEPA). (1991). Human health evaluation manual, supplemental guidance: “standard default exposure factors”. OSWER Directive. 1991;9285:6–03.
- United State Environmental Protection Agency (USEPA). (2000). Guidance for assessing chemical contaminant data for use in fish advisories, Volume 2: Risk assessment and fish consumption limits. (EPA 823-B-00–008). Third edition. United States Environmental Protection Agency, Washington, DC. November 2000.
- United State Environmental Protection Agency (USEPA). (2007). “Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils,” Revision 1. Washington, DC.
- United State Environmental Protection Agency (USEPA). (2011). Exposure Factors Handbook: 2011 Edition. National Center for Environmental Assessment, Washington, DC; EPA/600/R-09/052F. Available from the National Technical Information Service, Springfield, VA, and online at http://www.epa.gov/ncea/efh.
- United State Environmental Protection Agency (USEPA). (2016). Aquatic Life Ambient Water Quality Criteria. EPA-820-R-16-002, Office of Water, Washington DC, USA.
- United State Environmental Protection Agency (USEPA). (2021). Integrated Risk Information System. Regional Fish Consumption Screening Levels. https://www.epa.gov/risk/regional-fish-consumption-screening-levels-spring-2021.
- United State Environmental Protection Agency (USEPA). (2023a). Regional Screening Level (RSL) Summary Table (TR=1E-06, HQ=1) May 2023. [Erişim tarihi: 15.05.2023].
- United State Environmental Protection Agency (USEPA). (2023b). Regional screening levels (RSLs)–equations May 2023. https://www.epa.gov/risk/regional-screening-levels-rsls-equations#fish. [Erişim tarihi: 15.05.2023].
- Varol, M., Sünbül, M. R. (2020). Macroelements and toxic trace elements in muscle and liver of fish species from the largest three reservoirs in Turkey and human risk assessment based on the worst-case scenarios. Environmental Research, 184, 109298. https://doi.org/10.1016/j.envres.2020.109298
- Varol, M., Kaçar, E. (2023). Bioaccumulation of metals in various tissues of fish species in relation to fish size and gender and health risk assessment. Current Pollution Reports, 1-11. https://doi.org/10.1007/s40726-023-00263-w.
- Yildirim, Y., Gonulalan, Z., Narin, I., & Soylak, M. (2009). Evaluation of trace heavy metal levels of some fish species sold at retail in Kayseri, Turkey. Environmental Monitoring and Assessment, 149, 223-228. https://doi.org/10.1007/s10661-008-0196-7
- Yipel, M., Tekeli, İO (2022). Essential and non-essential metal concentrations in shrimps from Iskenderun bay, Türkiye. Harran Üniversitesi Veteriner Fakültesi Dergisi, 11(2), 257-262. https://doi.org/10.31196/huvfd.1197900.
- Yu, B., Wang, X., Dong, K. F., Xiao, G., & Ma, D. (2020). Heavy metal concentrations in aquatic organisms (fishes, shrimp and crabs) and health risk assessment in China. Marine Pollution Bulletin, 159, 111505. https://doi.org/10.1016/j.marpolbul.2020.111505.
Dondurulmuş Karides Örneklerinde Ağır Metal Miktarı ve Sağlık Risk Değerlendirmeleri
Year 2023,
Volume: 16 Issue: 3, 277 - 286, 30.09.2023
Halil Yalçın
,
Tuncer Çakmak
Abstract
Bu çalışmada; rasgele seçilmiş satış noktalarından temin edilen toplam 48 adet dondurulmuş karides örneğinde, toksik ağır metallerden olan kadmiyum (Cd), toplam cıva (THg) ve kurşun (Pb) kalıntı düzeylerinin belirlenmesi ve böylece karides tüketimi ile ilişkili halk sağlığına yönelik potansiyel risklerin değerlendirilmesi amaçlanmıştır. İncelenen karides örneklerinde Cd düzeyinin
References
- Agah, H., Leermakers, M., Elskens, M., Fatemi, S. M. R., & Baeyens, W. (2009). Accumulation of trace metals in the muscle and liver tissues of five fish species from the Persian Gulf. Environmental Monitoring and Assessment, 157, 499-514. https://doi.org/10.1007/s10661-008-0551-8.
- Agency for Toxic Substance and Disease Rigestry (ATSDR) (2013). Priority List of Hazardous Substances that Will Be the Subject of Toxicological Profiles. p. 30333, Atlanta, Georgia, USA.
- Alves, R. N., Maulvault, A. L., Barbosa, V. L., Fernandez-Tejedor, M., Tediosi, A., Kotterman, M., ... & Marques, A. (2018). Oral bioaccessibility of toxic and essential elements in raw and cooked commercial seafood species available in European markets. Food Chemistry, 267, 15-27. https://doi.org/10.1016/j.foodchem.2017.11.045.
- Antoine, J. M., Fung, L. A. H., & Grant, C. N. (2017). Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicology Reports, 4, 181-187.
- Arisekar, U., Shakila, R. J., Shalini, R., Jeyasekaran, G., Padmavathy, P., Hari, M. S., & Sudhan, C. (2022). Accumulation potential of heavy metals at different growth stages of Pacific white leg shrimp, Penaeus vannamei farmed along the Southeast coast of Peninsular India: A report on ecotoxicology and human health risk assessment. Environmental Research, 212, 113105.
- Aytekin, T., Kargın, D., Çoğun, H. Y., Temiz, Ö., Varkal, H. S., & Kargın, F. (2019). Accumulation and health risk assessment of heavy metals in tissues of the shrimp and fish species from the Yumurtalik coast of Iskenderun Gulf, Turkey. Heliyon, 5(8), e02131. https://doi.org/10.1016/j.heliyon.2019.e02131.
- Canlı, M., & Atlı, G. (2003). The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution, 121(1), 129-136. https://doi.org/10.1016/S0269-7491(02)00194-X.
- Copat, C., Arena, G., Fiore, M., Ledda, C., Fallico, R., Sciacca, S., & Ferrante, M. (2013). Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: consumption advisories. Food and Chemical Toxicology, 53, 33-37. https://doi.org/10.1016/j.fct.2012.11.038.
- Copat, C., Vinceti, M., D'Agati, M. G., Arena, G., Mauceri, V., Grasso, A., ... & Ferrante, M. (2014). Mercury and selenium intake by seafood from the Ionian Sea: A risk evaluation. Ecotoxicology and Environmental Safety, 100, 87-92. https://doi.org/10.1016/j.ecoenv.2013.11.009.
- Çiftçi, H., Çalışkan, Ç. E., & Öztürk, K.. (2021). Bazı Balık Türlerinde İz ve Toksik Metal Düzeylerinin Belirlenmesi ve İnsan Sağlığı Riskinin Değerlendirilmesi. Journal of Advanced Research in Natural and Applied Sciences, 7(2), 219-233. https://doi.org/10.28979/jarnas.883611.
- Dang, F., & Wang, W. X. (2012). Why mercury concentration increases with fish size? Biokinetic explanation. Environmental Pollution, 163, 192-198. https://doi.org/10.1016/j.envpol.2011.12.026.
- European Commission (EC). (2014). Commission Regulation (EU) No 488/2014 of 12 May 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs (Text with EEA relevance). The Official Journal of the European Union.
- European Commission (EC). (2015). Commission Regulation (EU) 2015/1005 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of lead in certain foodstuffs (Text with EEA relevance). The Official Journal of the European Union.
- European Commission (EC). (2022). 2022/617 of 12 April 2022 amending Regulation (EC) No 1881/2006 as regards maximum levels of mercury in fish and salt (Text with EEA relevance). The Official Journal of the European Union.
- European Commission (EC). (2023). Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006 (Text with EEA relevance). The Official Journal of the European Union.
- European Food Safety Authority (EFSA). (2010). Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on Lead in Food. EFSA Journal, 8( 4):1570. [151 pp.]. doi:10.2903/j.efsa.2010.1570.
- European Food Safety Authority (EFSA). (2011). Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on tolerable weekly intake for cadmium. EFSA Journal, 9( 2):1975. [19 pp.] doi:10.2903/j.efsa.2011.1975.
- European Food Safety Authority (EFSA). (2012a). EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA Journal, 10( 12):2985. [241 pp.] doi:10.2903/j.efsa.2012.2985.
- European Food Safety Authority (EFSA). (2012b). EFSA Scientific Committee. Scientific panels and units in the absence of actual measured data. EFSA Journal, 2012; 10: 2579. doi: 10.2903/j.efsa.2012.2579.
- Ezemonye, L. I., Adebayo, P. O., Enuneku, A. A., Tongo, I., & Ogbomida, E. (2019). Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin River, Nigeria. Toxicology Reports, 6, 1-9. https://doi.org/10.1016/j.toxrep.2018.11.010.
- Herliwati, H., Rahman, M., Hidayat, A. S., Amri, U., & Sumantri, I. (2022). The Occurrences of Heavy Metals in Water, Sediment and Wild Shrimps Caught from Barito Estuary, South Kalimantan, Indonesia. HAYATI Journal of Biosciences, 29(5), 643-647. https://doi.org/10.4308/hjb.29.5.643-647.
- Hong, Y. S., Kim, Y. M., & Lee, K. E. (2012). Methylmercury exposure and health effects. Journal of Preventive Medicine and Public Health, 45(6), 353. 10.3961/jpmph.2012.45.6.353.
- International Agency for Research on Cancer (IARC) (2022). Agents Classified by the IARC Monographs, Volumes 1–132/. https://monographs.iarc.fr/agents-classified-by-the-iarc/.
- Joint FAO/WHO Expert Committee on Food Additives (JECFA) (2018). Joint FAO/WHO food standards programmed codex committee on contaminants in foods. 12th Session Utrecht, The Netherlands, 12-16 March 2018, CF/12 INF/1, 1-169.
- Miri, M., Akbari, E., Amrane, A., Jafari, S. J., Eslami, H., Hoseinzadeh, E., ... & Taghavi, M. (2017). Health risk assessment of heavy metal intake due to fish consumption in the Sistan region, Iran. Environmental Monitoring and Assessment, 189, 1-10. https://doi.org/10.1007/s10661-017-6286-7.
- Muhammad, S., & Ahmad, K. (2020). Heavy metal contamination in water and fish of the Hunza River and its tributaries in Gilgit–Baltistan: evaluation of potential risks and provenance. Environmental Technology & Innovation, 20, 101159. https://doi.org/10.1016/j.eti.2020.101159.
- Muhammad, S., Ullah, R., & Jadoon, I. A. (2019). Heavy metals contamination in soil and food and their evaluation for risk assessment in the Zhob and Loralai valleys, Baluchistan province, Pakistan. Microchemical Journal, 149, 103971. https://doi.org/10.1016/j.microc.2019.103971.
- Nabavi, S. F., Nabavi, S. M., Latifi, A. M., Eslami, S., & Ebrahimzadeh, M. A. (2012). Determination of trace elements level of pikeperch collected from the Caspian Sea. Bulletin of Environmental Contamination and Toxicology, 88, 401-405. https://doi.org/10.1007/s00128-011-0513-7.
- Nirmal, N. P., Santivarangkna, C., Rajput, M. S., & Benjakul, S. (2020). Trends in shrimp processing waste utilization: An industrial prospective. Trends in Food Science & Technology, 103, 20-35. https://doi.org/10.1016/j.tifs.2020.07.001.
- Omeragic, E., Marjanovic, A., Djedjibegovic, J., Turalic, A., Causevic, A., Niksic, H., ... & Sober, M. (2020). Arsenic, cadmium, mercury, and lead in date mussels from the Sarajevo fish market (Bosnia and Herzegovina): a preliminary study on the health risks. Turkish Journal of Veterinary & Animal Sciences, 44(2), 435-442. https://doi.org/10.3906/vet-1908-13.
- Sabir, M. A., Muhammad, S., Umar, M., Farooq, M., & Fardiullah, N. A. (2017). Water quality assessment for drinking and irrigation purposes in upper Indus basin, northern Pakistan. Fresenius Environ Bull, 26(6), 4180-4186.
- Solgi, E., Alipour, H., & Majnooni, F. (2019). Investigation of the concentration of metals in two economically important fish species from the Caspian Sea and assessment of potential risk to human health. Ocean Science Journal, 54, 503-514. https://doi.org/10.1007/s12601-019-0024-8.
- Sultana, S., Hossain, M. B., Choudhury, T. R., Yu, J., Rana, M. S., Noman, M. A., ... & Arai, T. (2022). Ecological and Human Health Risk Assessment of Heavy Metals in Cultured Shrimp and Aquaculture Sludge. Toxics, 10(4), 175. https://doi.org/10.3390/toxics10040175.
- Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü (TEPGE). (2022). Ürün Raporu, Su Ürünleri. TEPGE YAYIN NO: 355, Ankara.
- Tokatlı, C., Ustaoğlu, F. (2021). Meriç delta balıklarında toksik metal birikimlerinin değerlendirmesi: muhtemel insan sağlığı riskleri. Acta Aquatica Turcica, 17(1), 136-145. https://doi.org/10.22392/actaquatr.769656.
- Traina, A., Bono, G., Bonsignore, M., Falco, F., Giuga, M., Quinci, E. M., ... & Sprovieri, M. (2019). Heavy metals concentrations in some commercially key species from Sicilian coasts (Mediterranean Sea): Potential human health risk estimation. Ecotoxicology and Environmental Safety, 168, 466-478. https://doi.org/10.1016/j.ecoenv.2018.10.056.
- Türk Gıda Kodeksi (TGK). (2011). Türk Gıda Kodeksi Bulaşanlar Yönetmeliği. RG 29 Aralık 2011, 28157 (3. Mükerrer). Ankara.
- United State Environmental Protection Agency (USEPA). (1989). Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A) (p. 205). Interim Final. Office of Emergency and Remedial Response. EPA/540/1-89/002.
- United State Environmental Protection Agency (USEPA). (1991). Human health evaluation manual, supplemental guidance: “standard default exposure factors”. OSWER Directive. 1991;9285:6–03.
- United State Environmental Protection Agency (USEPA). (2000). Guidance for assessing chemical contaminant data for use in fish advisories, Volume 2: Risk assessment and fish consumption limits. (EPA 823-B-00–008). Third edition. United States Environmental Protection Agency, Washington, DC. November 2000.
- United State Environmental Protection Agency (USEPA). (2007). “Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils,” Revision 1. Washington, DC.
- United State Environmental Protection Agency (USEPA). (2011). Exposure Factors Handbook: 2011 Edition. National Center for Environmental Assessment, Washington, DC; EPA/600/R-09/052F. Available from the National Technical Information Service, Springfield, VA, and online at http://www.epa.gov/ncea/efh.
- United State Environmental Protection Agency (USEPA). (2016). Aquatic Life Ambient Water Quality Criteria. EPA-820-R-16-002, Office of Water, Washington DC, USA.
- United State Environmental Protection Agency (USEPA). (2021). Integrated Risk Information System. Regional Fish Consumption Screening Levels. https://www.epa.gov/risk/regional-fish-consumption-screening-levels-spring-2021.
- United State Environmental Protection Agency (USEPA). (2023a). Regional Screening Level (RSL) Summary Table (TR=1E-06, HQ=1) May 2023. [Erişim tarihi: 15.05.2023].
- United State Environmental Protection Agency (USEPA). (2023b). Regional screening levels (RSLs)–equations May 2023. https://www.epa.gov/risk/regional-screening-levels-rsls-equations#fish. [Erişim tarihi: 15.05.2023].
- Varol, M., Sünbül, M. R. (2020). Macroelements and toxic trace elements in muscle and liver of fish species from the largest three reservoirs in Turkey and human risk assessment based on the worst-case scenarios. Environmental Research, 184, 109298. https://doi.org/10.1016/j.envres.2020.109298
- Varol, M., Kaçar, E. (2023). Bioaccumulation of metals in various tissues of fish species in relation to fish size and gender and health risk assessment. Current Pollution Reports, 1-11. https://doi.org/10.1007/s40726-023-00263-w.
- Yildirim, Y., Gonulalan, Z., Narin, I., & Soylak, M. (2009). Evaluation of trace heavy metal levels of some fish species sold at retail in Kayseri, Turkey. Environmental Monitoring and Assessment, 149, 223-228. https://doi.org/10.1007/s10661-008-0196-7
- Yipel, M., Tekeli, İO (2022). Essential and non-essential metal concentrations in shrimps from Iskenderun bay, Türkiye. Harran Üniversitesi Veteriner Fakültesi Dergisi, 11(2), 257-262. https://doi.org/10.31196/huvfd.1197900.
- Yu, B., Wang, X., Dong, K. F., Xiao, G., & Ma, D. (2020). Heavy metal concentrations in aquatic organisms (fishes, shrimp and crabs) and health risk assessment in China. Marine Pollution Bulletin, 159, 111505. https://doi.org/10.1016/j.marpolbul.2020.111505.