Review
BibTex RIS Cite

Use of Encapsulation Technology in Meat Industry

Year 2019, Volume: 10 Issue: 1, 102 - 110, 29.07.2019
https://doi.org/10.29048/makufebed.530102

Abstract

Encapsulation technology used in food science area is the process of
coating food components, flavors, sweeteners, colorants, vitamins, minerals,
enzymes and microorganisms with different techniques using a coating material.
Studies in this area started with the addition of encapsulated vitamins to
infant formula and accelerated by the use of encapsulated fish oils in
different food matrices. Due to the differences in technological, geographic
and microbiological conditions, there are always problems in producing meat products
with the same quality and reliability.
In addition,
inhibition of lactic acid bacteria in heat-treated products causes some quality
defects such as inadequate taste and aroma formation.
Thus, using encapsulation technology in fermentation process
increase the efficiency and specific product characteristics development in
meat products provided.
Studies have
shown that heat-treated meat products produced by using encapsulated cultures
provided desired taste and flavor, and stable bacteria count during processing
and storage of production.

References

  • Ahmadi, H. (2017). Thermal stability of encapsulated Listeria bacteriophage and its efficacy against Listeria monocytogenes in ready-to-eat meats (PhD thesis). University of Guelph.
  • Alves, D., Marques, A., Milho, C., Costa, M. J., Pastrana, L. M., Cerqueira, M. A., & Sillankorva, S. M. (2019). Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. International journal of food microbiology, 291: 121-127.
  • Arana-S´anchez, A., Estarr´on-Espinosa, M., E. N. Obledo- V´azquez, E. Padilla-Camberos, R. Silva-V´azquez, and E. Lugo- Cervantes. (2010). Antimicrobial and antioxidant activities of Mexican oregano essential oils (Lippia graveolens H. B. K.) with different composition when microencapsulated in 𝛽-cyclodextrin, Letters in Applied Microbiology, 50: 585–590.
  • Baik, M. Y., Suhendro, E. L., Nawar, W. W., McClements, D. J., Decker, E. A., & Chinachoti, P. (2004). Effects of antioxidants and humidity on the oxidative stability of microencapsulated fish oil. Journal of the American Oil Chemists' Society, 81: 355-360.
  • Barbosa, M. S., Todorov, S. D., Jurkiewicz, C. H., & Franco, B. D. (2015). Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control, 47: 147-153.
  • Bilenler, T., Karabulut, I., & Candogan, K. (2017). Effects of encapsulated starter cultures on microbial and physicochemical properties of traditionally produced and heat treated sausages (sucuks). LWT-Food Science and Technology, 75: 425-433.
  • Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: from laboratory scale to industrial applications. Journal of Food Engineering, 104: 467-483.
  • Cavalheiro, C. P., Menezes, C. R., Fries, L. L. M., Ruiz-Capillas, C., Herrero, A. M., Jimeenez-Colmenero, F., et al. (2015). Alginate beads to improve viability of Lactobacillus plantarum to heat stress. Journal of Food Processing and Technology, 6: 126.
  • Champagne, C. P., Lee, B. H., & Saucier, L. (2010). Immobilization of cells and enzymes for fermented dairy or meat products. In N. J. Zuidam, & V. A. Nedović (Eds.), Encapsulation technologies for active food ingredients and food processing (pp. 345–365). London: Springer.Claus, J., Du, C., & Kılıç, B. (2016). Inhibition of lipid oxidation in ground turkey breasts by encapsulated Polyphosphates as influenced by postmortem pH. Meat Science, (112), 129.
  • Comunian, A., Thomazini, M., Gambagorte, V. F., Trindade, M. A., & Favaro-Trindade, C. S. (2014). Effect of incorporating free or encapsulated ascorbic acid in chicken frankfurters on physicochemical and sensory stability. J. Food Sci. Eng, 167-175.
  • Corbo, M. R., Bevilacqua, A., Speranza, B., Maggio, B. D., Gallo, M., & Sinigaglia, M. (2016). Use of alginate beads as carriers for lactic acid bacteria in a structured system and preliminary validation in a meat product. Meat Science, 111: 198-203.
  • Corona-Hernandez, R. I., Alvarez-Parilla, E., Lizardi-Mendoza, J., Islas-Rubio, A. R., de la Rosa, A., & Wall-Medrano, A. (2013). Structural stability and viability of microencapsulated probiotic bacteria: A review. Comprehensive Reviews in Food Science and Food Safety, 12: 614-628.
  • Cui, H., Yuan, L., Ma, C., Li, C., & Lin, L. (2017). Effect of nianoliposome‐encapsulated thyme oil on growth of Salmonella Enteritidis in chicken. Journal of Food Processing and Preservation, 41: 13299.
  • De Prisco, A., & Mauriello, G. (2016). Probiotication of foods: A focus on microencapsulation tool. Trends in Food Science & Technology. 48: 27-39.
  • Desai, K. G. H., & Park, H. J. (2005). Recent developments in microencapsulation of food ingredients. Drying Technology, 23: 1361-1394.
  • dos Reis, A. S., Diedrich, C., de Moura, C., Pereira, D., de Flório Almeida, J., da Silva, L. D., ... & Carpes, S. T. (2017). Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at− 15° C. LWT-Food Science and Technology, 76: 306-313.
  • Du, C., & Claus, J. R. (2015). Inhibition of lipid oxidation in ground turkey with encapsulated phosphates as affected by meat age, phosphate type, and temperature release point. Meat Science, (101), 110.
  • Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols – a review. Trends in Food Science & Technology, 21: 510-523.
  • Gökmen, S., Palamutoğlu, R., Sarıçoban, C. (2012). Applications of Encapsulation in Food Industry. Electronic Journal of Food Technologies 7: 36-50.
  • Hadian, M., Rajaei, A., Mohsenifar, A., & Tabatabaei, M. (2017). Encapsulation of Rosmarinus officinalis essential oils in chitosan-benzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella Ttyphimurium during refrigerated storage. LWT-Food Science and Technology, 84: 394-401.
  • Hammes,W. P. (2012). Metabolism of nitrate in fermented meats: the characteristic feature of a specific group of fermented foods. Food Microbiology, 29: 151-156.
  • Heidebach, T., F€orst, P., & Kulozik, U. (2012). Microencapsulation of probiotic cells for food applications. Critical Reviews in Food Science and Nutrition, 52: 291-311.
  • Hill, E. L., Gomes, C., & Taylor, M. T. (2013). Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT-Food Science and Technology, 51: 86-93.
  • Hu, J., Wang, X., Xiao, Z., & Bi, W. (2015). Effect of chitosan nanoparticles loaded with cinnamon essential oil on the quality of chilled pork. LWT-Food Science and Technology, 63: 519-526
  • Huq, T., Vu, K. D., Riedl, B., Bouchard, J., & Lacroix, M. (2015). Synergistic effect of gamma (γ)-irradiation and microencapsulated antimicrobials against Listeria monocytogenes on ready-to-eat (RTE) meat. Food Microbiology, 46: 507–514.
  • Idris, A., & Suzana,W. (2006). Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochemistry, 41: 1117-1123.
  • Kearney, L., Upton, M., & McLoughlin, A. (1990). Meat fermentations with immobilized lactic acid bacteria. Applied Microbiology and Biotechnology, 33: 648e651.
  • Kılıç, B., Şimşek, A., Claus, J. R., & Atılgan, E. (2016a). Melting release point of encapsulated phosphates and heating rate effects on control of lipid oxidation in cooked ground meat. LWT-Food Science and Technology, 66: 398-405.
  • Kılıç, B., Şimşek, A., Claus, J. R., Atılgan, E., & Bilecen, D. (2016b). Impact of Added Encapsulated Phosphate Level on Lipid Oxidation Inhibition during the Storage of Cooked Ground Meat. Journal of food science, 81(2), C359-C368.
  • Kılıç, B., Şimşek, A., Claus, J. R., Karaca, E., & Bilecen, D. (2018a). Improving lipid oxidation inhibition in cooked beef hamburger patties during refrigerated storage with encapsulated polyphosphate incorporation. LWT-Food Science and Technology, 92: 290-296.
  • Kılıç, B., Şimşek, A., Claus, J. R., Karaca, E., & Bilecen, D. (2018b). Inhibition of Lipid Oxidation by Using a Combination of Encapsulated and Unencapsulated Polyphosphates in Cooked Ground Meat during Storage. Meat and Muscle Biology, 1: 21-21.
  • Koç, M., Met, A., Sakin, M., & Kaymak-Ertekin, F. (2008). Balık yağının dondurarak kurutma yöntemiyle mikroenkapsüle edilmesi. 10. Gıda Kongresi; 21-23 Mayıs 2008, Erzurum, Türkiye, 10, 21-23.
  • Krasaekoopt, W., & Watcharapoka, S. (2014). Effect of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT-Food Science and Technology, 57: 761-766.
  • Krasaekoopt, W., Bhandari, B., & Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal, 13: 3-13.
  • Krasaekoopt, W., Bhandari, B., & Deeth, H. (2004). The influence of coating material on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14: 737-743.
  • Lee, D. H., Jin, B. H., Hwang, Y. I., & Lee, S. C. (2000). Encapsulation of bromelain in liposome. Journal of food science and nutrition, 5: 81-85.
  • Mandal, S., Puniya, A. K., & Singh, K. (2006). Effect of alginate concentration on survival of microencapsulated Lactobacillus casei NCDC-298. International Dairy Journal, 16: 1190-1195.
  • Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., & Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science and Emerging Technologies, 27: 15-25.
  • McClements D. & Lesmes U, (2009). Structure-function relationships to guide rational design and fabrication of particulate food delivery systems. Trends Food Sci Technol; 20: 448-57.
  • Mills, S., Stanton, C., Hill, C., & Ross, R. P. (2011). New developments and applications of bacteriocins and peptides in foods. Annual Reviews in Food Science and Technology, 2: 299-329.
  • Muthukumarasamy, P., & Holley, R. A. (2006). Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology, 111: 164-169.
  • Muthukumarasamy, P., & Holley, R. A. (2007). Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria. Food Microbiology, 24: 82-88.
  • Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1: 1806-1815.
  • Ojha, K. S., Perussello, C. A., García, C. Á., Kerry, J. P., Pando, D., & Tiwari, B. K. (2017). Ultrasonic-assisted incorporation of Nano-encapsulated omega-3 fatty acids to enhance the fatty acid profile of pork meat. Meat science, 132: 99-106.
  • Öztürk, B., Urgu, M., & Serdaroğlu, M. (2016). Egg white powder‐stabilised multiple (water‐in‐olive oil‐in‐water) emulsions as beef fat replacers in model system meat emulsions. Journal of the Science of Food and Agriculture (Basılmamış).
  • Özvural, E. B., Huang, Q., & Chikindas, M. L. (2016). The comparison of quality and microbiological characteristic of hamburger patties enriched with green tea extract using three techniques: Direct addition, edible coating and encapsulation. LWT-Food Science and Technology, 68: 385-390.
  • Pavlík, Z., Saláková, A., Kameník, J., Pospíšil, J., Králová, M., & Steinhauserová, I. (2014). Effect of micro-encapsulated n-3 fatty acids on quality properties of two types of dry sausages. Acta Veterinaria Brno, 83: 163–169.
  • Pereira, J. O., Soares, J., Monteiro, M. J., Gomes, A., & Pintado, M. (2018). Impact of whey protein coating incorporated with Bifidobacterium and Lactobacillus on sliced ham properties. Meat science, 139: 125-133.
  • Pérez-Chabela, M. L., Lara-Labastida, R., Rodriguez-Huezo, E., & Totosaus, A. (2013). Effect of spray drying encapsulation of thermotolerant lactic acid bacteria on meat batters properties. Food and Bioprocess Technology, 6: 1505-1515.
  • Radünz, M., da Trindade, M. L. M., Camargo, T. M., Radünz, A. L., Borges, C. D., Gandra, E. A., & Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food chemistry, 276: 180-186.
  • Rathore, S., Desai, P. M., Liew, C. V., Chan, L. W., & Heng, P. W. S. (2013). Microencapsulation of microbial cells. Journal of Food Engineering, 116: 369-381.
  • Saloko, S., Darmadji, P., Setiaji, B., & Pranoto, Y. (2014). Antioxidative and antimicrobial activities of liquid smoke nanocapsules using chitosan and maltodextrin and its application on tuna fish preservation. Food Bioscience, 7: 71-79.
  • Sidira, M., Galanis, A., Nikolau, A., Kanellaki, M., & Kourkoutas, Y. (2014b). Evaluation of Lactobacillus casei ATCC 393 protective effect against spoilage of probiotic dry-fermented sausages. Food Control, 42: 315-320.
  • Sidira, M., Kandylis, P., Kanellaki, M., & Kourkoutas, Y. (2015). Effect of immobilized Lactobacillus casei on the evolution of flavor compounds in probiotic dry fermented sausages during ripening. Meat Science, 100: 41-51.
  • Sidira, M., Karapetsas, A., Galanis, A., Kanellaki, M., & Kourkoutas, Y. (2014a). Effective survival of immobilized Lactobacillus casei during ripening and heat treatment of probiotic dry-fermented sausages and investigation of the microbial dynamics. Meat science, 96: 948-955.
  • Sjofjan, O., Adiansah, I., & Sholiha, K. (2019, January). Effect of supplementation of either powdered or encapsulated probiotic on carcass percentage, giblets and small intestinal morphometric of local duck. In Journal of Physics: Conference Series (Vol. 1146, No. 1, p. 012039). IOP Publishing.
  • Song, M. Y., Van-Ba, H., Park, W. S., Yoo, J. Y., Kang, H. B., Kim, J. H., ... & Ham, J. S. (2018). Quality Characteristics of Functional Fermented Sausages Added with Encapsulated Probiotic Bifidobacterium longum KACC 91563. Korean journal for food science of animal resources, 38: 981.
  • Triki M, Herrero AM, Rodríguez-Salas L, Jiménez-Colmenero F, Ruiz-Capillas C 2013: Chilled storage characteristics of low-fat, n-3 PUFA-enriched dry fermented sausage reformulated with a healthy oil combination stabilized in a konjac matrix. Food Control 31: 158-165.
  • Turhan, E. U., Erginkaya, Z., Polat, S., & Ozer, E. A. (2017). Design of probiotic dry fermented sausage (sucuk) production with microencapsulated and free cells of Lactobacillus rhamnosus. Turkish Journal of Veterinary and Animal Sciences, 41: 598-603.
  • Wang, S. Y., Ho, Y. F., Chen, Y. P., & Chen, M. J. (2015). Effects of a novel encapsulating technique on the temperature tolerance and anti-colitis activity of the probiotic bacterium Lactobacillus kefiranofaciens M1. Food Microbiology, 46: 494-500.
  • Warriss, P. D. Meat Science: An Introductory Text, CAB International Publishers, New York, NY, USA, 2010.
  • Wrona, M., Nerín, C., Alfonso, M. J., & Caballero, M. Á. (2017). Antioxidant packaging with encapsulated green tea for fresh minced meat. Innovative Food Science & Emerging Technologies, 41: 307-313.
  • Zain, N. A. M., Suhaimi, M. S., & Idris, A. (2011). Development and modification of PVA-alginate as a suitable immobilization matrix. Process Biochemistry, 46: 2122-2129.
  • Zou, Y., Lee, H.-Y., Seo, Y.-C., & Ahn, J. (2012). Enhanced antimicrobial activity of nisin-loaded liposomal nanoparticles against foodborne pathogens. Journal of Food Science, 77: 165-170.

Et Ürünlerinde Enkapsülasyon Teknolojisinin Kullanımı

Year 2019, Volume: 10 Issue: 1, 102 - 110, 29.07.2019
https://doi.org/10.29048/makufebed.530102

Abstract

Gıda bilimi açısından enkapsülasyon teknolojisi gıda bileşenleri, aroma maddeleri, tatlandırıcılar, renklendiriciler,
vitaminler, mineraller, enzimler ve mikroorganizmaların bir kaplama materyali
kullanılarak farklı teknikler ile kaplanması işlemidir.
Bebek mamalarına
enkapsüle vitaminlerin ilavesiyle başlayan bu alandaki çalışmalar, balık
yağlarının enkapsüle edilerek farklı gıda matrislerinde kullanılmasıyla hız
kazanmıştır. Teknolojik, coğrafik ve mikrobiyolojik şartlardaki farklılıklardan
dolayı her zaman aynı kalite ve güvenilirlikte et ürünü üretilmesinde sıkıntılar
oluşmaktadır. Ayrıca ısıl işlem uygulanan ürünlerde laktik asit bakterilerinin
inhibe olması, yetersiz tat ve aroma oluşumu gibi bazı kalite kusurlarının
ortaya çıkmasına sebep olmaktadır. Bu kapsamda enkapsülasyon teknolojisinin et
ürünlerinde kullanılmasıyla fermantasyon işleminin etkinliği arttırabilmekte ve
spesifik ürün karakteristiği sağlanabilmektedir. Enkapsüle edilmiş kültürler
kullanılarak üretilen ısıl işlem görmüş et ürünlerinde işleme sırasında
istenilen tat ve aromanın oluştuğu ve depolama süresi boyunca enkapsüle bakteri
sayısının stabil olduğu yapılan çalışmalarla kanıtlanmıştır. Ayrıca et
ürünlerine ilave edilen esansiyel yağların enkapsülasyonu ile oksidasyon hızı
yavaşlatılarak ürünlerin raf ömrünün uzatılabileceği gözlemlenmiştir. Bu çalışmada
et ve et ürünlerinde enkapsülasyon teknolojisinin kullanımı hakkında bilgi
verilmiştir.

References

  • Ahmadi, H. (2017). Thermal stability of encapsulated Listeria bacteriophage and its efficacy against Listeria monocytogenes in ready-to-eat meats (PhD thesis). University of Guelph.
  • Alves, D., Marques, A., Milho, C., Costa, M. J., Pastrana, L. M., Cerqueira, M. A., & Sillankorva, S. M. (2019). Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. International journal of food microbiology, 291: 121-127.
  • Arana-S´anchez, A., Estarr´on-Espinosa, M., E. N. Obledo- V´azquez, E. Padilla-Camberos, R. Silva-V´azquez, and E. Lugo- Cervantes. (2010). Antimicrobial and antioxidant activities of Mexican oregano essential oils (Lippia graveolens H. B. K.) with different composition when microencapsulated in 𝛽-cyclodextrin, Letters in Applied Microbiology, 50: 585–590.
  • Baik, M. Y., Suhendro, E. L., Nawar, W. W., McClements, D. J., Decker, E. A., & Chinachoti, P. (2004). Effects of antioxidants and humidity on the oxidative stability of microencapsulated fish oil. Journal of the American Oil Chemists' Society, 81: 355-360.
  • Barbosa, M. S., Todorov, S. D., Jurkiewicz, C. H., & Franco, B. D. (2015). Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control, 47: 147-153.
  • Bilenler, T., Karabulut, I., & Candogan, K. (2017). Effects of encapsulated starter cultures on microbial and physicochemical properties of traditionally produced and heat treated sausages (sucuks). LWT-Food Science and Technology, 75: 425-433.
  • Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: from laboratory scale to industrial applications. Journal of Food Engineering, 104: 467-483.
  • Cavalheiro, C. P., Menezes, C. R., Fries, L. L. M., Ruiz-Capillas, C., Herrero, A. M., Jimeenez-Colmenero, F., et al. (2015). Alginate beads to improve viability of Lactobacillus plantarum to heat stress. Journal of Food Processing and Technology, 6: 126.
  • Champagne, C. P., Lee, B. H., & Saucier, L. (2010). Immobilization of cells and enzymes for fermented dairy or meat products. In N. J. Zuidam, & V. A. Nedović (Eds.), Encapsulation technologies for active food ingredients and food processing (pp. 345–365). London: Springer.Claus, J., Du, C., & Kılıç, B. (2016). Inhibition of lipid oxidation in ground turkey breasts by encapsulated Polyphosphates as influenced by postmortem pH. Meat Science, (112), 129.
  • Comunian, A., Thomazini, M., Gambagorte, V. F., Trindade, M. A., & Favaro-Trindade, C. S. (2014). Effect of incorporating free or encapsulated ascorbic acid in chicken frankfurters on physicochemical and sensory stability. J. Food Sci. Eng, 167-175.
  • Corbo, M. R., Bevilacqua, A., Speranza, B., Maggio, B. D., Gallo, M., & Sinigaglia, M. (2016). Use of alginate beads as carriers for lactic acid bacteria in a structured system and preliminary validation in a meat product. Meat Science, 111: 198-203.
  • Corona-Hernandez, R. I., Alvarez-Parilla, E., Lizardi-Mendoza, J., Islas-Rubio, A. R., de la Rosa, A., & Wall-Medrano, A. (2013). Structural stability and viability of microencapsulated probiotic bacteria: A review. Comprehensive Reviews in Food Science and Food Safety, 12: 614-628.
  • Cui, H., Yuan, L., Ma, C., Li, C., & Lin, L. (2017). Effect of nianoliposome‐encapsulated thyme oil on growth of Salmonella Enteritidis in chicken. Journal of Food Processing and Preservation, 41: 13299.
  • De Prisco, A., & Mauriello, G. (2016). Probiotication of foods: A focus on microencapsulation tool. Trends in Food Science & Technology. 48: 27-39.
  • Desai, K. G. H., & Park, H. J. (2005). Recent developments in microencapsulation of food ingredients. Drying Technology, 23: 1361-1394.
  • dos Reis, A. S., Diedrich, C., de Moura, C., Pereira, D., de Flório Almeida, J., da Silva, L. D., ... & Carpes, S. T. (2017). Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at− 15° C. LWT-Food Science and Technology, 76: 306-313.
  • Du, C., & Claus, J. R. (2015). Inhibition of lipid oxidation in ground turkey with encapsulated phosphates as affected by meat age, phosphate type, and temperature release point. Meat Science, (101), 110.
  • Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols – a review. Trends in Food Science & Technology, 21: 510-523.
  • Gökmen, S., Palamutoğlu, R., Sarıçoban, C. (2012). Applications of Encapsulation in Food Industry. Electronic Journal of Food Technologies 7: 36-50.
  • Hadian, M., Rajaei, A., Mohsenifar, A., & Tabatabaei, M. (2017). Encapsulation of Rosmarinus officinalis essential oils in chitosan-benzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella Ttyphimurium during refrigerated storage. LWT-Food Science and Technology, 84: 394-401.
  • Hammes,W. P. (2012). Metabolism of nitrate in fermented meats: the characteristic feature of a specific group of fermented foods. Food Microbiology, 29: 151-156.
  • Heidebach, T., F€orst, P., & Kulozik, U. (2012). Microencapsulation of probiotic cells for food applications. Critical Reviews in Food Science and Nutrition, 52: 291-311.
  • Hill, E. L., Gomes, C., & Taylor, M. T. (2013). Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT-Food Science and Technology, 51: 86-93.
  • Hu, J., Wang, X., Xiao, Z., & Bi, W. (2015). Effect of chitosan nanoparticles loaded with cinnamon essential oil on the quality of chilled pork. LWT-Food Science and Technology, 63: 519-526
  • Huq, T., Vu, K. D., Riedl, B., Bouchard, J., & Lacroix, M. (2015). Synergistic effect of gamma (γ)-irradiation and microencapsulated antimicrobials against Listeria monocytogenes on ready-to-eat (RTE) meat. Food Microbiology, 46: 507–514.
  • Idris, A., & Suzana,W. (2006). Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochemistry, 41: 1117-1123.
  • Kearney, L., Upton, M., & McLoughlin, A. (1990). Meat fermentations with immobilized lactic acid bacteria. Applied Microbiology and Biotechnology, 33: 648e651.
  • Kılıç, B., Şimşek, A., Claus, J. R., & Atılgan, E. (2016a). Melting release point of encapsulated phosphates and heating rate effects on control of lipid oxidation in cooked ground meat. LWT-Food Science and Technology, 66: 398-405.
  • Kılıç, B., Şimşek, A., Claus, J. R., Atılgan, E., & Bilecen, D. (2016b). Impact of Added Encapsulated Phosphate Level on Lipid Oxidation Inhibition during the Storage of Cooked Ground Meat. Journal of food science, 81(2), C359-C368.
  • Kılıç, B., Şimşek, A., Claus, J. R., Karaca, E., & Bilecen, D. (2018a). Improving lipid oxidation inhibition in cooked beef hamburger patties during refrigerated storage with encapsulated polyphosphate incorporation. LWT-Food Science and Technology, 92: 290-296.
  • Kılıç, B., Şimşek, A., Claus, J. R., Karaca, E., & Bilecen, D. (2018b). Inhibition of Lipid Oxidation by Using a Combination of Encapsulated and Unencapsulated Polyphosphates in Cooked Ground Meat during Storage. Meat and Muscle Biology, 1: 21-21.
  • Koç, M., Met, A., Sakin, M., & Kaymak-Ertekin, F. (2008). Balık yağının dondurarak kurutma yöntemiyle mikroenkapsüle edilmesi. 10. Gıda Kongresi; 21-23 Mayıs 2008, Erzurum, Türkiye, 10, 21-23.
  • Krasaekoopt, W., & Watcharapoka, S. (2014). Effect of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT-Food Science and Technology, 57: 761-766.
  • Krasaekoopt, W., Bhandari, B., & Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal, 13: 3-13.
  • Krasaekoopt, W., Bhandari, B., & Deeth, H. (2004). The influence of coating material on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14: 737-743.
  • Lee, D. H., Jin, B. H., Hwang, Y. I., & Lee, S. C. (2000). Encapsulation of bromelain in liposome. Journal of food science and nutrition, 5: 81-85.
  • Mandal, S., Puniya, A. K., & Singh, K. (2006). Effect of alginate concentration on survival of microencapsulated Lactobacillus casei NCDC-298. International Dairy Journal, 16: 1190-1195.
  • Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., & Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science and Emerging Technologies, 27: 15-25.
  • McClements D. & Lesmes U, (2009). Structure-function relationships to guide rational design and fabrication of particulate food delivery systems. Trends Food Sci Technol; 20: 448-57.
  • Mills, S., Stanton, C., Hill, C., & Ross, R. P. (2011). New developments and applications of bacteriocins and peptides in foods. Annual Reviews in Food Science and Technology, 2: 299-329.
  • Muthukumarasamy, P., & Holley, R. A. (2006). Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology, 111: 164-169.
  • Muthukumarasamy, P., & Holley, R. A. (2007). Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria. Food Microbiology, 24: 82-88.
  • Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1: 1806-1815.
  • Ojha, K. S., Perussello, C. A., García, C. Á., Kerry, J. P., Pando, D., & Tiwari, B. K. (2017). Ultrasonic-assisted incorporation of Nano-encapsulated omega-3 fatty acids to enhance the fatty acid profile of pork meat. Meat science, 132: 99-106.
  • Öztürk, B., Urgu, M., & Serdaroğlu, M. (2016). Egg white powder‐stabilised multiple (water‐in‐olive oil‐in‐water) emulsions as beef fat replacers in model system meat emulsions. Journal of the Science of Food and Agriculture (Basılmamış).
  • Özvural, E. B., Huang, Q., & Chikindas, M. L. (2016). The comparison of quality and microbiological characteristic of hamburger patties enriched with green tea extract using three techniques: Direct addition, edible coating and encapsulation. LWT-Food Science and Technology, 68: 385-390.
  • Pavlík, Z., Saláková, A., Kameník, J., Pospíšil, J., Králová, M., & Steinhauserová, I. (2014). Effect of micro-encapsulated n-3 fatty acids on quality properties of two types of dry sausages. Acta Veterinaria Brno, 83: 163–169.
  • Pereira, J. O., Soares, J., Monteiro, M. J., Gomes, A., & Pintado, M. (2018). Impact of whey protein coating incorporated with Bifidobacterium and Lactobacillus on sliced ham properties. Meat science, 139: 125-133.
  • Pérez-Chabela, M. L., Lara-Labastida, R., Rodriguez-Huezo, E., & Totosaus, A. (2013). Effect of spray drying encapsulation of thermotolerant lactic acid bacteria on meat batters properties. Food and Bioprocess Technology, 6: 1505-1515.
  • Radünz, M., da Trindade, M. L. M., Camargo, T. M., Radünz, A. L., Borges, C. D., Gandra, E. A., & Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food chemistry, 276: 180-186.
  • Rathore, S., Desai, P. M., Liew, C. V., Chan, L. W., & Heng, P. W. S. (2013). Microencapsulation of microbial cells. Journal of Food Engineering, 116: 369-381.
  • Saloko, S., Darmadji, P., Setiaji, B., & Pranoto, Y. (2014). Antioxidative and antimicrobial activities of liquid smoke nanocapsules using chitosan and maltodextrin and its application on tuna fish preservation. Food Bioscience, 7: 71-79.
  • Sidira, M., Galanis, A., Nikolau, A., Kanellaki, M., & Kourkoutas, Y. (2014b). Evaluation of Lactobacillus casei ATCC 393 protective effect against spoilage of probiotic dry-fermented sausages. Food Control, 42: 315-320.
  • Sidira, M., Kandylis, P., Kanellaki, M., & Kourkoutas, Y. (2015). Effect of immobilized Lactobacillus casei on the evolution of flavor compounds in probiotic dry fermented sausages during ripening. Meat Science, 100: 41-51.
  • Sidira, M., Karapetsas, A., Galanis, A., Kanellaki, M., & Kourkoutas, Y. (2014a). Effective survival of immobilized Lactobacillus casei during ripening and heat treatment of probiotic dry-fermented sausages and investigation of the microbial dynamics. Meat science, 96: 948-955.
  • Sjofjan, O., Adiansah, I., & Sholiha, K. (2019, January). Effect of supplementation of either powdered or encapsulated probiotic on carcass percentage, giblets and small intestinal morphometric of local duck. In Journal of Physics: Conference Series (Vol. 1146, No. 1, p. 012039). IOP Publishing.
  • Song, M. Y., Van-Ba, H., Park, W. S., Yoo, J. Y., Kang, H. B., Kim, J. H., ... & Ham, J. S. (2018). Quality Characteristics of Functional Fermented Sausages Added with Encapsulated Probiotic Bifidobacterium longum KACC 91563. Korean journal for food science of animal resources, 38: 981.
  • Triki M, Herrero AM, Rodríguez-Salas L, Jiménez-Colmenero F, Ruiz-Capillas C 2013: Chilled storage characteristics of low-fat, n-3 PUFA-enriched dry fermented sausage reformulated with a healthy oil combination stabilized in a konjac matrix. Food Control 31: 158-165.
  • Turhan, E. U., Erginkaya, Z., Polat, S., & Ozer, E. A. (2017). Design of probiotic dry fermented sausage (sucuk) production with microencapsulated and free cells of Lactobacillus rhamnosus. Turkish Journal of Veterinary and Animal Sciences, 41: 598-603.
  • Wang, S. Y., Ho, Y. F., Chen, Y. P., & Chen, M. J. (2015). Effects of a novel encapsulating technique on the temperature tolerance and anti-colitis activity of the probiotic bacterium Lactobacillus kefiranofaciens M1. Food Microbiology, 46: 494-500.
  • Warriss, P. D. Meat Science: An Introductory Text, CAB International Publishers, New York, NY, USA, 2010.
  • Wrona, M., Nerín, C., Alfonso, M. J., & Caballero, M. Á. (2017). Antioxidant packaging with encapsulated green tea for fresh minced meat. Innovative Food Science & Emerging Technologies, 41: 307-313.
  • Zain, N. A. M., Suhaimi, M. S., & Idris, A. (2011). Development and modification of PVA-alginate as a suitable immobilization matrix. Process Biochemistry, 46: 2122-2129.
  • Zou, Y., Lee, H.-Y., Seo, Y.-C., & Ahn, J. (2012). Enhanced antimicrobial activity of nisin-loaded liposomal nanoparticles against foodborne pathogens. Journal of Food Science, 77: 165-170.
There are 64 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review Paper
Authors

Ali Soyuçok 0000-0003-2626-5827

Birol Kılıç 0000-0001-6575-4418

Gülden Başyiğit Kılıç 0000-0003-1211-0568

Publication Date July 29, 2019
Acceptance Date May 2, 2019
Published in Issue Year 2019 Volume: 10 Issue: 1

Cite

APA Soyuçok, A., Kılıç, B., & Başyiğit Kılıç, G. (2019). Et Ürünlerinde Enkapsülasyon Teknolojisinin Kullanımı. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1), 102-110. https://doi.org/10.29048/makufebed.530102