Research Article
BibTex RIS Cite

On the Algebra of Interval Vectors

Year 2023, , 67 - 79, 30.06.2023
https://doi.org/10.36753/mathenot.1117985

Abstract

In this study, we examine some important subspaces by showing that the set of n-dimensional interval vectors is a quasilinear space. By defining the concept of dimensions in these spaces, we show that the set of $n$-dimensional interval vectors is actually a $(n_{r},n_{s})$-dimensional quasilinear space and any quasilinear space is $\left( n_{r},0_{s}\right) $-dimensional if and only if it is $n$-dimensional linear space. We also give examples of $(2_{r},0_{s})$ and $(0_{r},2_{s})$-dimensional subspaces. We define the concept of dimension in a quasilinear space with natural number pairs. Further, we define an inner product on some spaces and talk about them as inner product quasilinear spaces. Further, we show that some of them have Hilbert quasilinear space structure.

References

  • [1] Aseev, S.M.: Quasilinear operators and their application in the theory of multivalued mappings. Proceedings of the Steklov Institute of Mathematics. Issue 2, 23-52 (1986).
  • [2] Moore, E. R., Kearfott, R. B., Cloud, M. J.: Introduction to Interval Analysis. SIAM. Philadelphia, (2009).
  • [3] Banazılı, H.K.: On quasilinear operators between quasilinear spaces. İnönü University, M.Sc. Thesis, Malatya, (2014).
  • [4] Bozkurt, H.: Quasilinear inner product spaces and some generalizations. İnönü University, PhD Thesis, Malatya, (2016).
  • [5] Yılmaz, Y., Çakan S., Aytekin, ¸S.: Topological Quasilinear Spaces. Abstract and Applied Analysis. Article ID 951374, 10 pages (2012).
  • [6] Çakan S., Yılmaz, Y.: Normed proper quasilinearmspaces. Journal of Nonlinear Science and Applications. 8, 816-836 (2015).
  • [7] Çakan S., Yılmaz, Y.: Riesz Lemma in Normed Quasilinear Spaces and Its an Application. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences. 88, (2), 231-239 (2018).
  • [8] Bozkurt, H., Yılmaz, Y.: Some new results on inner product quasilinear spaces. Cogents Mathematics3, 1194801 (2016).
  • [9] Yılmaz, Y., Bozkurt, H., Çakan S.: On ortonormal sets in inner product quasilinear spaces. Creative Mathematics and Informatics. 25, 229-239 (2016).
  • [10] Bozkurt, H., Yılmaz, Y.: New Inner Product Quasilinear Spaces on Interval Numbers. Journal of Function Spaces. Volume 2016, Article ID 2619271, 9 pages (2016).
  • [11] Dehghanizade, R., Modarres, S.M.S.: Quasi-algebra, aspecial sample of quasilinear spaces. arXiv preprint. arXiv:2010.08724, (2020).
  • [12] Dehghanizade, R., Modarres, S.M.S.: Quotient Spaces on Quasilinear Spaces. International Journal of Nonlinear Analysis and Applications. Vol.12, Special Issue, Winter and Spring, 781-792 2(2021).
  • [13] Farkas, J.: Theorie der einfachen Ungleichungen. Journal Reine Angewandte Mathematik. 124, 1-27 (1902).
  • [14] Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press. Cambridge, UK, (1990).
  • [15] Rohn, J.: Strong solvability of interval linear programming problems. Computing. 26, 79-82 (1981).
  • [16] Rohn, J.: Linear programming with inexact data is NP-hard. Journal of Applied Mathematics and Mechanics. 78, :(1), (3), 1051-1052 (1998).
  • [17] Rohn, J.: Systems of linear interval equations. Linear Algebra Applications. 126, 39-78 (1989).
  • [18] Rohn, J.: An existence theorem for systems of linear equations. Linear Multilinear Algebra. 29, 141-144 (1991).
  • [19] Rohn, J.: Solvability of systems of linear interval equations. Siam Journal of Matrix Analysis and Applications. 25, (1), 237-245 (2003).
  • [20] Levent, H., Yılmaz, Y.: Translation, modulation and dilation systems in set-valued signal processing. Carpathian Mathematical Publications. 10, (1), 143-164 (2018).
  • [21] Yılmaz, Y., Levent, H.: Inner-Product Quasilinear Spaces with Applications in Signal Processing. Euro-Tbilisi Mathematical Journal.14 (4), 125-146 (2021).
  • [22] Yılmaz, Y., Bozkurt, H., Levent, H., Çetinkaya, Ü.: Inner Product Fuzzy Quasilinear Spaces and Some Fuzzy Sequence Spaces. Journal of Mathematics. No.2466817, Accepted
Year 2023, , 67 - 79, 30.06.2023
https://doi.org/10.36753/mathenot.1117985

Abstract

References

  • [1] Aseev, S.M.: Quasilinear operators and their application in the theory of multivalued mappings. Proceedings of the Steklov Institute of Mathematics. Issue 2, 23-52 (1986).
  • [2] Moore, E. R., Kearfott, R. B., Cloud, M. J.: Introduction to Interval Analysis. SIAM. Philadelphia, (2009).
  • [3] Banazılı, H.K.: On quasilinear operators between quasilinear spaces. İnönü University, M.Sc. Thesis, Malatya, (2014).
  • [4] Bozkurt, H.: Quasilinear inner product spaces and some generalizations. İnönü University, PhD Thesis, Malatya, (2016).
  • [5] Yılmaz, Y., Çakan S., Aytekin, ¸S.: Topological Quasilinear Spaces. Abstract and Applied Analysis. Article ID 951374, 10 pages (2012).
  • [6] Çakan S., Yılmaz, Y.: Normed proper quasilinearmspaces. Journal of Nonlinear Science and Applications. 8, 816-836 (2015).
  • [7] Çakan S., Yılmaz, Y.: Riesz Lemma in Normed Quasilinear Spaces and Its an Application. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences. 88, (2), 231-239 (2018).
  • [8] Bozkurt, H., Yılmaz, Y.: Some new results on inner product quasilinear spaces. Cogents Mathematics3, 1194801 (2016).
  • [9] Yılmaz, Y., Bozkurt, H., Çakan S.: On ortonormal sets in inner product quasilinear spaces. Creative Mathematics and Informatics. 25, 229-239 (2016).
  • [10] Bozkurt, H., Yılmaz, Y.: New Inner Product Quasilinear Spaces on Interval Numbers. Journal of Function Spaces. Volume 2016, Article ID 2619271, 9 pages (2016).
  • [11] Dehghanizade, R., Modarres, S.M.S.: Quasi-algebra, aspecial sample of quasilinear spaces. arXiv preprint. arXiv:2010.08724, (2020).
  • [12] Dehghanizade, R., Modarres, S.M.S.: Quotient Spaces on Quasilinear Spaces. International Journal of Nonlinear Analysis and Applications. Vol.12, Special Issue, Winter and Spring, 781-792 2(2021).
  • [13] Farkas, J.: Theorie der einfachen Ungleichungen. Journal Reine Angewandte Mathematik. 124, 1-27 (1902).
  • [14] Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press. Cambridge, UK, (1990).
  • [15] Rohn, J.: Strong solvability of interval linear programming problems. Computing. 26, 79-82 (1981).
  • [16] Rohn, J.: Linear programming with inexact data is NP-hard. Journal of Applied Mathematics and Mechanics. 78, :(1), (3), 1051-1052 (1998).
  • [17] Rohn, J.: Systems of linear interval equations. Linear Algebra Applications. 126, 39-78 (1989).
  • [18] Rohn, J.: An existence theorem for systems of linear equations. Linear Multilinear Algebra. 29, 141-144 (1991).
  • [19] Rohn, J.: Solvability of systems of linear interval equations. Siam Journal of Matrix Analysis and Applications. 25, (1), 237-245 (2003).
  • [20] Levent, H., Yılmaz, Y.: Translation, modulation and dilation systems in set-valued signal processing. Carpathian Mathematical Publications. 10, (1), 143-164 (2018).
  • [21] Yılmaz, Y., Levent, H.: Inner-Product Quasilinear Spaces with Applications in Signal Processing. Euro-Tbilisi Mathematical Journal.14 (4), 125-146 (2021).
  • [22] Yılmaz, Y., Bozkurt, H., Levent, H., Çetinkaya, Ü.: Inner Product Fuzzy Quasilinear Spaces and Some Fuzzy Sequence Spaces. Journal of Mathematics. No.2466817, Accepted
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Yılmaz Yılmaz 0000-0003-1484-782X

Halise Levent 0000-0002-7139-361X

Hacer Bozkurt 0000-0002-2216-2516

Publication Date June 30, 2023
Submission Date May 17, 2022
Acceptance Date August 10, 2022
Published in Issue Year 2023

Cite

APA Yılmaz, Y., Levent, H., & Bozkurt, H. (2023). On the Algebra of Interval Vectors. Mathematical Sciences and Applications E-Notes, 11(2), 67-79. https://doi.org/10.36753/mathenot.1117985
AMA Yılmaz Y, Levent H, Bozkurt H. On the Algebra of Interval Vectors. Math. Sci. Appl. E-Notes. June 2023;11(2):67-79. doi:10.36753/mathenot.1117985
Chicago Yılmaz, Yılmaz, Halise Levent, and Hacer Bozkurt. “On the Algebra of Interval Vectors”. Mathematical Sciences and Applications E-Notes 11, no. 2 (June 2023): 67-79. https://doi.org/10.36753/mathenot.1117985.
EndNote Yılmaz Y, Levent H, Bozkurt H (June 1, 2023) On the Algebra of Interval Vectors. Mathematical Sciences and Applications E-Notes 11 2 67–79.
IEEE Y. Yılmaz, H. Levent, and H. Bozkurt, “On the Algebra of Interval Vectors”, Math. Sci. Appl. E-Notes, vol. 11, no. 2, pp. 67–79, 2023, doi: 10.36753/mathenot.1117985.
ISNAD Yılmaz, Yılmaz et al. “On the Algebra of Interval Vectors”. Mathematical Sciences and Applications E-Notes 11/2 (June 2023), 67-79. https://doi.org/10.36753/mathenot.1117985.
JAMA Yılmaz Y, Levent H, Bozkurt H. On the Algebra of Interval Vectors. Math. Sci. Appl. E-Notes. 2023;11:67–79.
MLA Yılmaz, Yılmaz et al. “On the Algebra of Interval Vectors”. Mathematical Sciences and Applications E-Notes, vol. 11, no. 2, 2023, pp. 67-79, doi:10.36753/mathenot.1117985.
Vancouver Yılmaz Y, Levent H, Bozkurt H. On the Algebra of Interval Vectors. Math. Sci. Appl. E-Notes. 2023;11(2):67-79.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.