Research Article
BibTex RIS Cite

Stability Analysis and Periodictly Properties of a Class of Rational Difference Equations

Year 2022, Volume: 10 Issue: 2, 209 - 216, 31.12.2022
https://doi.org/10.51354/mjen.1027797

Abstract

The goal of this study is to investigate the global, local, and boundedness of the recursive sequence

T_{η+1}=r+((p₁T_{η-l₁})/(T_{η-m₁}))+((q₁T_{η-m₁})/(T_{η-l₁}))+((p₂T_{η-l₂})/(T_{η-m2}))+((q₂T_{η-m₂})/(T_{η-l₂}))+...+((p_{s}T_{η-l_{s}})/(T_{η-m_{s}}))+((q_{s}T_{η-m_{s}})/(T_{η-l_{s}})),

where the initial values T_{-l_{1,}},T_{-l₁₂},...T_{-l_{s,}}, T_{-m₁}, T_{-m₂}and T_{-m_{s}} are arbitrary positive real numbers. It also investigates periodic solutions for special case of above equations.

References

  • [1] H. S. Alayachi, M. S. M. Noorani, A. Q. Khan , and M. B. Almatrafi, Analytic Solutions and Stability of Sixth Order Difference Equations, Mathematical Problems in Engineering, 2020 (2020), 12 pages.
  • [2] A. M. Amleh, V. Kirk and G. Ladas, On the dynamics of 𝑥𝜂+1 = 𝑎 + 𝑏𝑥𝜂−1 𝐴 + 𝐵𝑥𝜂−2 , Math. Sci. Res. Hot-Line, 5 (2001), 1–15.
  • [3] E. Camouzis, G. Ladas and H. D. Voulov, On the dynamics of 𝑥𝜂+1 = 𝛼 + 𝛾𝑥𝜂−1 + 𝛿𝑥𝜂−2 𝐴 + 𝑥𝜂−2 , J. Differ Equations Appl., 9 (8) (2003), 731-738.
  • [4] E. Chatterjee, E. A. Grove, Y. Kostrov and G. Ladas, On the trichotomy character of 𝑥𝜂+1 = 𝛼 + 𝛾𝑥𝜂−1 𝐴 + 𝐵𝑥𝜂 + 𝑥𝜂−2 , J. Differ. Equations Appl., 9(12) (2003), 1113–1128.
  • [5] G. Chatzarakis, E. Elabbasy, O. Moaaz and H. Mahjoub, Global analysis and the periodic character of a class of difference equations, Axioms, 2019, 8(4), 131.
  • [6] C. Cinar, On the positive solutions of the difference equation 𝑥𝜂+1 = 𝑎𝑥𝜂−1 1 + 𝑏𝑥𝜂𝑥𝜂−1 , Appl. Math. Comp., 156 (2004) 587-590.
  • [7] D.S.Dilip, S. M. Mathew and E. M. Elsayed , Asymptotic and boundedness behaviour of a second order difference equation,Journal of Computational Mathematica,4 (2)(2020),68 - 77.x
  • [8] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Global attractivity and periodic character of a fractional difference equation of order three, Yokohama Math. J., Vol. 53, 2007, 89-100.
  • [9] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equation 𝑥𝜂+1 = 𝑎𝑥𝜂 − 𝑏𝑥𝜂 𝑐𝑥𝜂 − 𝑑𝑥𝜂−1 , Adv. Differ. Equ., Volume 2006, Article ID 82579,1–10.
  • [10] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equations 𝑥𝜂+1 = 𝛼𝑥𝜂−𝑘 𝛽 + 𝛾 Î𝑘 𝑖=0 𝑥𝜂−𝑖 , J. Conc. Appl. Math., 5(2), (2007), 101-113.
  • [11] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Qualitative behavior of higher order difference equation, Soochow Journal of Mathematical, Vol. 33, No. 4, (2007), 861-873.
  • [12] H. El-Metwally, E. A. Grove and G. Ladas, A global convergence result with applications to periodic solutions, J. Math. Anal. Appl., 245 (2000), 161-170.
  • [13] H. El-Metwally, E. A. Grove, G. Ladas and McGrath, On the difference equation 𝑦𝜂+1 = 𝑦𝜂− (2𝑘+1) + 𝑝 𝑦𝜂− (2𝑘+1) + 𝑞𝑦𝜂−2𝑙 , Proceedings of the 6th ICDE, Taylor and Francis, London, 2004.
  • [14] H. El-Metwally, E. A. Grove, G. Ladas and H. D. Voulov, On the global attractivity and the periodic character of some difference equations, J. Differ. Equations Appl., 7 (2001), 1-14.
  • [15] E. M. Elsayed, New method to obtain periodic solutions of period two and three of a rational difference equation, Nonlinear Dyn, (2015) 79:241-250.
  • [16] E. M. Elsayed, F. Alzahrani, I. Abbas and N. H. Alotaibi, Dynamical behavior and solution of nonlinear difference equation via fibonacci sequence, Journal of Applied Analysis & Computation, 10 (2020), 281-288.
  • [17] A.Khaliq, S. S. Hassan, M. Saqib and D. S. Mashat, Behavior of a seventh order rational difference equation, Dynamic Systems and Applications, 28, No. 4 (2019), 809-825.
  • [18] A. Khan and H. El-Metwally, Global dynamics, boundedness, and semicycle analysis of a difference equation, Discrete Dynamics in Nature and Society, 2021(2021)1,0 pages.
  • [19] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [20] M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman & Hall / CRC Press, 2001.
  • [21] B. Ogul, D. Simsek and T. Ibrahim, (2021).Solution of the Rational differnce Equation, Dynamics of Continuous, Discrete and Impulsive Systems Series, Applications and Algorithms, 28 (2021) 125-141.
  • [22] A. Sanbo and E. M. Elsayed, Some Properties of the Solutions of the Difference Equation 𝑇𝜂+1 = 𝑎𝑇𝜂 + 𝑏𝑇𝜂𝑇𝜂−4 𝑐𝑇𝜂−3 + 𝑑𝑇𝜂−4 , 𝜂 = 0, 1, ..., Open Journal of Discrete Applied Mathematics, 2(2)(2019), 31-47.
  • [23] X. Yan and W. Li , Global attractivity for a class of nonlinear difference equations, Soochow J. Math., 29 (3) (2003), 327-338.
  • [24] X. Yang, W. Su, B. Chen, G. M. Megson and D. J. Evans, On the recursive sequence 𝑥𝜂+1 = 𝑎𝑥𝜂−1 + 𝑏𝑥𝜂−2 𝑐 + 𝑑𝑥𝜂−1𝑥𝜂−2 , Appl. Math. Comp., 162 (2005), 1485-1497.
  • [25] L. Zhang, G. Zhang and H. Liu, Periodicity and attractivity for a rational recursive sequence, J. Appl. Math. & Computing, 19(1-2) (2005), 191-201.
Year 2022, Volume: 10 Issue: 2, 209 - 216, 31.12.2022
https://doi.org/10.51354/mjen.1027797

Abstract

References

  • [1] H. S. Alayachi, M. S. M. Noorani, A. Q. Khan , and M. B. Almatrafi, Analytic Solutions and Stability of Sixth Order Difference Equations, Mathematical Problems in Engineering, 2020 (2020), 12 pages.
  • [2] A. M. Amleh, V. Kirk and G. Ladas, On the dynamics of 𝑥𝜂+1 = 𝑎 + 𝑏𝑥𝜂−1 𝐴 + 𝐵𝑥𝜂−2 , Math. Sci. Res. Hot-Line, 5 (2001), 1–15.
  • [3] E. Camouzis, G. Ladas and H. D. Voulov, On the dynamics of 𝑥𝜂+1 = 𝛼 + 𝛾𝑥𝜂−1 + 𝛿𝑥𝜂−2 𝐴 + 𝑥𝜂−2 , J. Differ Equations Appl., 9 (8) (2003), 731-738.
  • [4] E. Chatterjee, E. A. Grove, Y. Kostrov and G. Ladas, On the trichotomy character of 𝑥𝜂+1 = 𝛼 + 𝛾𝑥𝜂−1 𝐴 + 𝐵𝑥𝜂 + 𝑥𝜂−2 , J. Differ. Equations Appl., 9(12) (2003), 1113–1128.
  • [5] G. Chatzarakis, E. Elabbasy, O. Moaaz and H. Mahjoub, Global analysis and the periodic character of a class of difference equations, Axioms, 2019, 8(4), 131.
  • [6] C. Cinar, On the positive solutions of the difference equation 𝑥𝜂+1 = 𝑎𝑥𝜂−1 1 + 𝑏𝑥𝜂𝑥𝜂−1 , Appl. Math. Comp., 156 (2004) 587-590.
  • [7] D.S.Dilip, S. M. Mathew and E. M. Elsayed , Asymptotic and boundedness behaviour of a second order difference equation,Journal of Computational Mathematica,4 (2)(2020),68 - 77.x
  • [8] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Global attractivity and periodic character of a fractional difference equation of order three, Yokohama Math. J., Vol. 53, 2007, 89-100.
  • [9] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equation 𝑥𝜂+1 = 𝑎𝑥𝜂 − 𝑏𝑥𝜂 𝑐𝑥𝜂 − 𝑑𝑥𝜂−1 , Adv. Differ. Equ., Volume 2006, Article ID 82579,1–10.
  • [10] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equations 𝑥𝜂+1 = 𝛼𝑥𝜂−𝑘 𝛽 + 𝛾 Î𝑘 𝑖=0 𝑥𝜂−𝑖 , J. Conc. Appl. Math., 5(2), (2007), 101-113.
  • [11] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Qualitative behavior of higher order difference equation, Soochow Journal of Mathematical, Vol. 33, No. 4, (2007), 861-873.
  • [12] H. El-Metwally, E. A. Grove and G. Ladas, A global convergence result with applications to periodic solutions, J. Math. Anal. Appl., 245 (2000), 161-170.
  • [13] H. El-Metwally, E. A. Grove, G. Ladas and McGrath, On the difference equation 𝑦𝜂+1 = 𝑦𝜂− (2𝑘+1) + 𝑝 𝑦𝜂− (2𝑘+1) + 𝑞𝑦𝜂−2𝑙 , Proceedings of the 6th ICDE, Taylor and Francis, London, 2004.
  • [14] H. El-Metwally, E. A. Grove, G. Ladas and H. D. Voulov, On the global attractivity and the periodic character of some difference equations, J. Differ. Equations Appl., 7 (2001), 1-14.
  • [15] E. M. Elsayed, New method to obtain periodic solutions of period two and three of a rational difference equation, Nonlinear Dyn, (2015) 79:241-250.
  • [16] E. M. Elsayed, F. Alzahrani, I. Abbas and N. H. Alotaibi, Dynamical behavior and solution of nonlinear difference equation via fibonacci sequence, Journal of Applied Analysis & Computation, 10 (2020), 281-288.
  • [17] A.Khaliq, S. S. Hassan, M. Saqib and D. S. Mashat, Behavior of a seventh order rational difference equation, Dynamic Systems and Applications, 28, No. 4 (2019), 809-825.
  • [18] A. Khan and H. El-Metwally, Global dynamics, boundedness, and semicycle analysis of a difference equation, Discrete Dynamics in Nature and Society, 2021(2021)1,0 pages.
  • [19] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [20] M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman & Hall / CRC Press, 2001.
  • [21] B. Ogul, D. Simsek and T. Ibrahim, (2021).Solution of the Rational differnce Equation, Dynamics of Continuous, Discrete and Impulsive Systems Series, Applications and Algorithms, 28 (2021) 125-141.
  • [22] A. Sanbo and E. M. Elsayed, Some Properties of the Solutions of the Difference Equation 𝑇𝜂+1 = 𝑎𝑇𝜂 + 𝑏𝑇𝜂𝑇𝜂−4 𝑐𝑇𝜂−3 + 𝑑𝑇𝜂−4 , 𝜂 = 0, 1, ..., Open Journal of Discrete Applied Mathematics, 2(2)(2019), 31-47.
  • [23] X. Yan and W. Li , Global attractivity for a class of nonlinear difference equations, Soochow J. Math., 29 (3) (2003), 327-338.
  • [24] X. Yang, W. Su, B. Chen, G. M. Megson and D. J. Evans, On the recursive sequence 𝑥𝜂+1 = 𝑎𝑥𝜂−1 + 𝑏𝑥𝜂−2 𝑐 + 𝑑𝑥𝜂−1𝑥𝜂−2 , Appl. Math. Comp., 162 (2005), 1485-1497.
  • [25] L. Zhang, G. Zhang and H. Liu, Periodicity and attractivity for a rational recursive sequence, J. Appl. Math. & Computing, 19(1-2) (2005), 191-201.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Elsayed Elsayed 0000-0003-0894-8472

Badriah Aloufi 0000-0002-8330-8910

Early Pub Date December 31, 2022
Publication Date December 31, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Elsayed, E., & Aloufi, B. (2022). Stability Analysis and Periodictly Properties of a Class of Rational Difference Equations. MANAS Journal of Engineering, 10(2), 209-216. https://doi.org/10.51354/mjen.1027797
AMA Elsayed E, Aloufi B. Stability Analysis and Periodictly Properties of a Class of Rational Difference Equations. MJEN. December 2022;10(2):209-216. doi:10.51354/mjen.1027797
Chicago Elsayed, Elsayed, and Badriah Aloufi. “Stability Analysis and Periodictly Properties of a Class of Rational Difference Equations”. MANAS Journal of Engineering 10, no. 2 (December 2022): 209-16. https://doi.org/10.51354/mjen.1027797.
EndNote Elsayed E, Aloufi B (December 1, 2022) Stability Analysis and Periodictly Properties of a Class of Rational Difference Equations. MANAS Journal of Engineering 10 2 209–216.
IEEE E. Elsayed and B. Aloufi, “Stability Analysis and Periodictly Properties of a Class of Rational Difference Equations”, MJEN, vol. 10, no. 2, pp. 209–216, 2022, doi: 10.51354/mjen.1027797.
ISNAD Elsayed, Elsayed - Aloufi, Badriah. “Stability Analysis and Periodictly Properties of a Class of Rational Difference Equations”. MANAS Journal of Engineering 10/2 (December 2022), 209-216. https://doi.org/10.51354/mjen.1027797.
JAMA Elsayed E, Aloufi B. Stability Analysis and Periodictly Properties of a Class of Rational Difference Equations. MJEN. 2022;10:209–216.
MLA Elsayed, Elsayed and Badriah Aloufi. “Stability Analysis and Periodictly Properties of a Class of Rational Difference Equations”. MANAS Journal of Engineering, vol. 10, no. 2, 2022, pp. 209-16, doi:10.51354/mjen.1027797.
Vancouver Elsayed E, Aloufi B. Stability Analysis and Periodictly Properties of a Class of Rational Difference Equations. MJEN. 2022;10(2):209-16.

Manas Journal of Engineering 

16155