Research Article
BibTex RIS Cite
Year 2024, Volume: 1 Issue: 1, 48 - 54, 27.05.2024

Abstract

References

  • Anderson, D. D., and Winders, M. (2009). Idealization of a module. Journal of Commutative Algebra, 1(1), 3-56.
  • Anderson, D. D., Knopp K. R., and Lewin, R. L. (1994). Ideals generated by powers of elements. Bulletin of the Australian Mathematical Society, 49(3), 373-376.
  • Anderson, D. F., and Badawi, A. (2011). On n-absorbing ideals of commutative rings. Communications in Algebra, 39(5), 1646-1672.
  • Anderson, D. F., and Badawi, A. (2021). On n-semiprimary ideals and n-Pseudo valuation domains. Communications in Algebra, 49(2), 500-520.
  • Badawi, A., and Fahid, B. (2018). On weakly 2-absorbing δ-primary ideals of commutative rings. Georgian Mathematical Journal, 27(4), 1-13.
  • Badawi A., Sonmez D., and Yesilot, G. (2018). On weakly δ-semiprimary ideals of commutative rings. Algebra Colloquium, 25(3), 387-398.
  • Gilmer, R. (1972). Multiplicative Ideal Theory. Marcel Dekker, Inc., New York.
  • Hamoda, M. (2023). On (m,n)-closed δ-primary ideals of commutative rings. Palestine Journal of Mathematics, 12(2), 280–290.
  • Larson, M. D., and McCarthy, P. J. (1971). Multiplicative Theory of Ideals. Academic Press, New York, London.
  • Ulucak, G., Tekir, Ü. and Koç, S. (2018). On n-absorbing δ-primary ideals. Turkish Journal of Mathematics, 42(4), 1833-1844.
  • Yetkin Celikel, E. (2021). 2-absorbing δ-semiprimary ideals of commutative rings. Kyungpook Mathematical Journal, 61(4), 711-725.
  • Zhao, D. (2001). δ-primary ideals of commutative rings. Kyungpook Mathematical Journal, 41(1), 17-122.

On n-δ-semiprimary Ideals of Commutative Rings

Year 2024, Volume: 1 Issue: 1, 48 - 54, 27.05.2024

Abstract

Let R be a commutative ring with identity and n a positive integer. A generalization of prime ideals is introduced in (Anderson and Badawi, 2021). A proper ideal J of R is said to be an n-semiprimary ideal if whenever a,b∈ R with a^n b^n∈ J, then a^n∈ J or b^n ∈J. Let δ:Id(R)⟶ Id(R) be an expansion function of ideals of R where Id(R) is the set of all ideals of R. The aim of this paper is to introduce the class of n-δ-semiprimary ideals generalizing the notion of n-semiprimary ideals. We call a proper ideal J of R an n-δ-semiprimary ideal if whenever a^n b^n∈ J for a,b∈ R, then a^n∈δ(J) or b^n∈δ(J). Several properties and characterizations regarding this class of ideals with many supporting examples are presented. Additionally, we call a proper ideal J of R a strongly n-δ-semiprimary ideal of R if whenever K^n L^n⊆ J for proper ideals K and L of R, then K^n⊆δ(J) or L^n⊆δ(J). We investigate the relationship between these two concepts. Moreover, the behaviour of n-δ-semiprimary ideals under homomorphisms, in localization rings, in division rings, in cartesian product of rings and in idealization rings is investigated.

References

  • Anderson, D. D., and Winders, M. (2009). Idealization of a module. Journal of Commutative Algebra, 1(1), 3-56.
  • Anderson, D. D., Knopp K. R., and Lewin, R. L. (1994). Ideals generated by powers of elements. Bulletin of the Australian Mathematical Society, 49(3), 373-376.
  • Anderson, D. F., and Badawi, A. (2011). On n-absorbing ideals of commutative rings. Communications in Algebra, 39(5), 1646-1672.
  • Anderson, D. F., and Badawi, A. (2021). On n-semiprimary ideals and n-Pseudo valuation domains. Communications in Algebra, 49(2), 500-520.
  • Badawi, A., and Fahid, B. (2018). On weakly 2-absorbing δ-primary ideals of commutative rings. Georgian Mathematical Journal, 27(4), 1-13.
  • Badawi A., Sonmez D., and Yesilot, G. (2018). On weakly δ-semiprimary ideals of commutative rings. Algebra Colloquium, 25(3), 387-398.
  • Gilmer, R. (1972). Multiplicative Ideal Theory. Marcel Dekker, Inc., New York.
  • Hamoda, M. (2023). On (m,n)-closed δ-primary ideals of commutative rings. Palestine Journal of Mathematics, 12(2), 280–290.
  • Larson, M. D., and McCarthy, P. J. (1971). Multiplicative Theory of Ideals. Academic Press, New York, London.
  • Ulucak, G., Tekir, Ü. and Koç, S. (2018). On n-absorbing δ-primary ideals. Turkish Journal of Mathematics, 42(4), 1833-1844.
  • Yetkin Celikel, E. (2021). 2-absorbing δ-semiprimary ideals of commutative rings. Kyungpook Mathematical Journal, 61(4), 711-725.
  • Zhao, D. (2001). δ-primary ideals of commutative rings. Kyungpook Mathematical Journal, 41(1), 17-122.
There are 12 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Mohammad Hamoda 0000-0002-5452-9220

Ece Yetkin Çelikel 0000-0001-6194-656X

Publication Date May 27, 2024
Submission Date April 1, 2024
Acceptance Date May 20, 2024
Published in Issue Year 2024 Volume: 1 Issue: 1

Cite

APA Hamoda, M., & Yetkin Çelikel, E. (2024). On n-δ-semiprimary Ideals of Commutative Rings. Natural Sciences and Engineering Bulletin, 1(1), 48-54.