Research Article
BibTex RIS Cite

BENDING STRESS ANALYSIS OF AXIALLY LAYERED FUNCTIONALLY GRADED BEAMS

Year 2018, Volume: 7 Issue: 1, 390 - 398, 31.01.2018
https://doi.org/10.28948/ngumuh.387230

Abstract

   In this study, the bending stress analysis of
axially layered functionally graded beams subjected to their own weight were
evaluated under clamped-free (C-F) boundary condition. The beams have four
layers and each layer consist of different aluminium (Al)/monotungsten carbide
(WC) systems based on increasing of the 6% WC. The layer positions in the beams
were performed based on Taguchi L16 (4*4) orthogonal array design. The layers
were considered as control factors and each layer has four levels. The analysis
of signal-to-noise (S/N) ratios were used to obtain the optimum layer levels.
Analyses were performed using finite element software ANSYS. In addition,
analysis of variance (ANOVA) was performed to determine the important levels
and percent contributions of the layers on the responses. The numerical results
show that the increasing of the layer levels increases the bending stress and
percent contributions of Layer 1, Layer 2, Layer 3 and Layer 4 on the bending
stress were obtained as 1.12%, 11.83%, 29.54% and 57.48%, respectively.

References

  • [1] KOIZUMI, M., "FGM Activities in Japan". Composites Part B: Engineering, 28(1), 1-4, 1997.
  • [2] UDUPA, G., RAO, S.S., GANGADHARAN, K.V., "Functionally Graded Composite Materials: An Overview". Procedia Materials Science, 5, 1291-1299, 2014.
  • [3] NIINO, M., KISARA, K., MORI, M., "Feasibility Study of FGM Technology in Space Solar Power Systems (SSPS)", Material Science Forum, 492, 163–168, 2005.
  • [4] CARVALHO, O., BUCIUMEANU, M., MADEIRA, S., SOARES, D., SILVA, F.S., MIRANDA, G., "Optimization of AlSi–CNTs Functionally Graded Material Composites for Engine Piston Rings". Materials & Design, 80, 163-173, 2015.
  • [5] MÜLLER, E., DRAŠAR, Č., SCHILZ, J., KAYSSER, W.A., "Functionally Graded Materials for Sensor and Energy Applications". Materials Science and Engineering: A, 362(1), 17-39, 2003.
  • [6] SCHULZ, U., PETERS, M., BACH, F.W., TEGEDER, G., "Graded Coatings for Thermal, Wear and Corrosion Barriers". Materials Science and Engineering: A, 362(1), 61-80, 2003.
  • [7] WATARI, F., YOKOYAMA, A., SASO, F., UO, M., KAWASAKI, T., "Fabrication and Properties of Functionally Graded Dental Implant". Composites Part B: Engineering, 28(1), 5-11, 1997.
  • [8] LI, X., LI, L., HU, Y., DING, Z., DENG, W., "Bending, Buckling and Vibration of Axially Functionally Graded Beams based on Nonlocal Strain Gradient Theory". Composite Structures, 165, 250-265, 2017.
  • [9] THAI, H.-T. VO, T.P., "Bending and Free Vibration of Functionally Graded Beams using Various Higher-Order Shear Deformation Beam Theories". International Journal of Mechanical Sciences, 62(1), 57-66, 2012.
  • [10] ALDOUSARI, S.M., "Bending Analysis of Different Material Distributions of Functionally Graded Beam". Applied Physics a-Materials Science & Processing, 123(4), 1-9, 2017.
  • [11] LI, S.R., CAO, D.F., WAN, Z.Q., "Bending Solutions of FGM Timoshenko Beams from Those of The Homogenous Euler–Bernoulli Beams". Applied Mathematical Modelling, 37(10), 7077-7085, 2013.
  • [12] KANG, Y.-A. LI, X.-F., "Bending of Functionally Graded Cantilever Beam with Power-Law Non-Linearity Subjected To An End Force". International Journal of Non-Linear Mechanics, 44(6), 696-703, 2009.
  • [13] SALLAI, B., HADJI, L., DAOUADJI, T.H., ADDA, B., "Analytical Solution for Bending Analysis of Functionally Graded Beam". Steel and Composite Structures, 19(4), 829-841, 2015.
  • [14] KADOLI, R., AKHTAR, K., GANESAN, N., "Static Analysis of Functionally Graded Beams using Higher Order Shear Deformation Theory". Applied Mathematical Modelling, 32(12), 2509-2525, 2008.
  • [15] VO, T.P., THAI, H.-T., NGUYEN, T.-K., INAM, F., LEE, J., "Static Behaviour of Functionally Graded Sandwich Beams using A Quasi-3D Theory". Composites Part B: Engineering, 68, 59-74, 2015.
  • [16] LI, X.-F., WANG, B.-L., HAN, J.-C., "A Higher-Order Theory for Static and Dynamic Analyses of Functionally Graded Beams". Archive of Applied Mechanics, 80(10), 1197-1212, 2010.
  • [17] BERNARDO, G.M.S., DAMÁSIO, F.R., SILVA, T.A.N., LOJA, M.A.R., "A Study on the Structural Behaviour of FGM Plates Static and Free Vibrations Analyses". Composite Structures, 136, 124-138, 2016.
  • [18] SHEN, H.-S., Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press, Boca Raton, London, New York, 2009.
  • [19] ROY, R.K., A Primer on the Taguchi Method, Van Nostrand Reinhold, New York, USA, 1990.
  • [20] ROSS, P.J., Taguchi Techniques for Quality Engineering, (2nd Edition), McGraw-Hill International Book Company, New York, USA, 1996.

EKSENEL TABAKALI FONKSİYONEL DERECELENDİRİLMİŞ KİRİŞLERİN EĞİLME GERİLME ANALİZİ

Year 2018, Volume: 7 Issue: 1, 390 - 398, 31.01.2018
https://doi.org/10.28948/ngumuh.387230

Abstract

   Bu çalışmada, ankastre-serbest (C-F)
sınır şartı altında kendi ağırlığına maruz kalmış eksenel fonksiyonel
derecelendirilmiş tabakalı kirişlerin eğilme gerilme analizleri
değerlendirilmiştir. Kirişler dört tabakaya sahip ve her tabaka %6 monotungsten
karbür (WC) artışına bağlı olarak farklı alüminyum (Al)/WC sistemlerinden
oluşmaktadır. Kirişlerdeki tabaka pozisyonları Taguchi L16 (4*4) ortogonal dizi
tasarımına bağlı gerçekleştirilmiştir. 
Tabakalar kontrol faktörü olarak düşünüldü ve her tabaka dört seviyeye
sahiptir. Sinyal gürültü oranları analizi optimum tabaka seviyelerini elde
etmek için kullanıldı. Analizler ANSYS sonlu elemanlar programı kullanılarak
gerçekleştirildi. Ayrıca varyans analizi sonuçlar üzerinde tabakaların önem
seviyeleri ve yüzde katkıları karar vermek için gerçekleştirildi. Sayısal sonuçlar
tabaka seviyelerindeki artışın eğilme gerilmesini artırdığını göstermektedir. Eğilme
gerilmesi üzerinde Tabaka 1, Tabaka 2, Tabaka 3 ve Tabaka 4’ün katkıları
sırasıyla %1,12, %11,83, %29,54 ve %57,48 olarak elde edildi.

References

  • [1] KOIZUMI, M., "FGM Activities in Japan". Composites Part B: Engineering, 28(1), 1-4, 1997.
  • [2] UDUPA, G., RAO, S.S., GANGADHARAN, K.V., "Functionally Graded Composite Materials: An Overview". Procedia Materials Science, 5, 1291-1299, 2014.
  • [3] NIINO, M., KISARA, K., MORI, M., "Feasibility Study of FGM Technology in Space Solar Power Systems (SSPS)", Material Science Forum, 492, 163–168, 2005.
  • [4] CARVALHO, O., BUCIUMEANU, M., MADEIRA, S., SOARES, D., SILVA, F.S., MIRANDA, G., "Optimization of AlSi–CNTs Functionally Graded Material Composites for Engine Piston Rings". Materials & Design, 80, 163-173, 2015.
  • [5] MÜLLER, E., DRAŠAR, Č., SCHILZ, J., KAYSSER, W.A., "Functionally Graded Materials for Sensor and Energy Applications". Materials Science and Engineering: A, 362(1), 17-39, 2003.
  • [6] SCHULZ, U., PETERS, M., BACH, F.W., TEGEDER, G., "Graded Coatings for Thermal, Wear and Corrosion Barriers". Materials Science and Engineering: A, 362(1), 61-80, 2003.
  • [7] WATARI, F., YOKOYAMA, A., SASO, F., UO, M., KAWASAKI, T., "Fabrication and Properties of Functionally Graded Dental Implant". Composites Part B: Engineering, 28(1), 5-11, 1997.
  • [8] LI, X., LI, L., HU, Y., DING, Z., DENG, W., "Bending, Buckling and Vibration of Axially Functionally Graded Beams based on Nonlocal Strain Gradient Theory". Composite Structures, 165, 250-265, 2017.
  • [9] THAI, H.-T. VO, T.P., "Bending and Free Vibration of Functionally Graded Beams using Various Higher-Order Shear Deformation Beam Theories". International Journal of Mechanical Sciences, 62(1), 57-66, 2012.
  • [10] ALDOUSARI, S.M., "Bending Analysis of Different Material Distributions of Functionally Graded Beam". Applied Physics a-Materials Science & Processing, 123(4), 1-9, 2017.
  • [11] LI, S.R., CAO, D.F., WAN, Z.Q., "Bending Solutions of FGM Timoshenko Beams from Those of The Homogenous Euler–Bernoulli Beams". Applied Mathematical Modelling, 37(10), 7077-7085, 2013.
  • [12] KANG, Y.-A. LI, X.-F., "Bending of Functionally Graded Cantilever Beam with Power-Law Non-Linearity Subjected To An End Force". International Journal of Non-Linear Mechanics, 44(6), 696-703, 2009.
  • [13] SALLAI, B., HADJI, L., DAOUADJI, T.H., ADDA, B., "Analytical Solution for Bending Analysis of Functionally Graded Beam". Steel and Composite Structures, 19(4), 829-841, 2015.
  • [14] KADOLI, R., AKHTAR, K., GANESAN, N., "Static Analysis of Functionally Graded Beams using Higher Order Shear Deformation Theory". Applied Mathematical Modelling, 32(12), 2509-2525, 2008.
  • [15] VO, T.P., THAI, H.-T., NGUYEN, T.-K., INAM, F., LEE, J., "Static Behaviour of Functionally Graded Sandwich Beams using A Quasi-3D Theory". Composites Part B: Engineering, 68, 59-74, 2015.
  • [16] LI, X.-F., WANG, B.-L., HAN, J.-C., "A Higher-Order Theory for Static and Dynamic Analyses of Functionally Graded Beams". Archive of Applied Mechanics, 80(10), 1197-1212, 2010.
  • [17] BERNARDO, G.M.S., DAMÁSIO, F.R., SILVA, T.A.N., LOJA, M.A.R., "A Study on the Structural Behaviour of FGM Plates Static and Free Vibrations Analyses". Composite Structures, 136, 124-138, 2016.
  • [18] SHEN, H.-S., Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press, Boca Raton, London, New York, 2009.
  • [19] ROY, R.K., A Primer on the Taguchi Method, Van Nostrand Reinhold, New York, USA, 1990.
  • [20] ROSS, P.J., Taguchi Techniques for Quality Engineering, (2nd Edition), McGraw-Hill International Book Company, New York, USA, 1996.
There are 20 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Savaş Evran 0000-0002-7512-5997

Publication Date January 31, 2018
Submission Date September 15, 2017
Acceptance Date November 20, 2017
Published in Issue Year 2018 Volume: 7 Issue: 1

Cite

APA Evran, S. (2018). BENDING STRESS ANALYSIS OF AXIALLY LAYERED FUNCTIONALLY GRADED BEAMS. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 390-398. https://doi.org/10.28948/ngumuh.387230
AMA Evran S. BENDING STRESS ANALYSIS OF AXIALLY LAYERED FUNCTIONALLY GRADED BEAMS. NOHU J. Eng. Sci. January 2018;7(1):390-398. doi:10.28948/ngumuh.387230
Chicago Evran, Savaş. “BENDING STRESS ANALYSIS OF AXIALLY LAYERED FUNCTIONALLY GRADED BEAMS”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7, no. 1 (January 2018): 390-98. https://doi.org/10.28948/ngumuh.387230.
EndNote Evran S (January 1, 2018) BENDING STRESS ANALYSIS OF AXIALLY LAYERED FUNCTIONALLY GRADED BEAMS. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7 1 390–398.
IEEE S. Evran, “BENDING STRESS ANALYSIS OF AXIALLY LAYERED FUNCTIONALLY GRADED BEAMS”, NOHU J. Eng. Sci., vol. 7, no. 1, pp. 390–398, 2018, doi: 10.28948/ngumuh.387230.
ISNAD Evran, Savaş. “BENDING STRESS ANALYSIS OF AXIALLY LAYERED FUNCTIONALLY GRADED BEAMS”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7/1 (January 2018), 390-398. https://doi.org/10.28948/ngumuh.387230.
JAMA Evran S. BENDING STRESS ANALYSIS OF AXIALLY LAYERED FUNCTIONALLY GRADED BEAMS. NOHU J. Eng. Sci. 2018;7:390–398.
MLA Evran, Savaş. “BENDING STRESS ANALYSIS OF AXIALLY LAYERED FUNCTIONALLY GRADED BEAMS”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 7, no. 1, 2018, pp. 390-8, doi:10.28948/ngumuh.387230.
Vancouver Evran S. BENDING STRESS ANALYSIS OF AXIALLY LAYERED FUNCTIONALLY GRADED BEAMS. NOHU J. Eng. Sci. 2018;7(1):390-8.

download