Research Article
BibTex RIS Cite

EKSENEL TABAKALI FONKSİYONEL DERECELENDİRİLMİŞ KONİK KİRİŞLERİN SAYISAL İLK MOD FREKANS ANALİZİ

Year 2018, Volume: 7 Issue: 1, 399 - 406, 31.01.2018
https://doi.org/10.28948/ngumuh.387248

Abstract

   Bu numerik çalışmanın amacı, ANSYS V13 sonlu
elemanlar programı kullanarak ankastre-ankastre (C-C) sınır şartı altında
eksenel yönde fonksiyonel derecelendirilmiş malzemeden (FDM) modellenmiş üç
tabakalı konik kirişlerin birinci mod frekans analizini değerlendirmektir.
Analizler üç seviye ve üç kontrol faktöründen oluşan L16 Taguchi ortogonal dizi
tasarımı kullanılarak yürütülmüştür. Tabakalar kontrol faktörleri olarak karar
verilmiştir ve alüminyum (Al) / monotungsten karbür (WC) sistemlerinden
oluştuğu düşünülmektedir. Optimum tabaka kombinasyonu sinyal gürültü oran
analizine göre gerçekleştirildi. Eksenel tabakalı FD konik kirişlerin birinci
mod frekansı üzerinde tabakaların önem seviyeleri ve katkı oranları varyans
analizi (ANOVA) kullanılarak incelenmiştir. Birinci mod frekans değerleri
üzerinde Tabaka 1 ve Tabaka 3 pozitif etkilere sahiptir. Ancak Tabaka 2 negatif
etkiye sahiptir. Ayrıca en etkili tabakalar sırasıyla %82,17 ile Tabaka 1, %16,36
ile Tabaka 2 ve %1,45 ile Tabaka 3’tür. 

References

  • [1] KOIZUMI, M., "FGM Activities in Japan". Composites Part B: Engineering, 28(1), 1-4, 1997.
  • [2] SHEN, H.S., Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press, Boca Raton, London, New York, 2009.
  • [3] ŞIMŞEK, M., "Fundamental Frequency Analysis of Functionally Graded Beams by using Different Higher-Order Beam Theories". Nuclear Engineering and Design, 240(4), 697-705, 2010.
  • [4] WATARI, F., YOKOYAMA, A., SASO, F., UO, M., KAWASAKI, T., "Fabrication and Properties of Functionally Graded Dental Implant". Composites Part B: Engineering, 28(1), 5-11, 1997.
  • [5] MÜLLER, E., DRAŠAR, Č., SCHILZ, J., KAYSSER, W.A., "Functionally Graded Materials for Sensor and Energy Applications". Materials Science and Engineering: A, 362(1), 17-39, 2003.
  • [6] SCHULZ, U., PETERS, M., BACH, F.W., TEGEDER, G., "Graded Coatings for Thermal, Wear and Corrosion Barriers". Materials Science and Engineering: A, 362(1), 61-80, 2003.
  • [7] AYDOGDU, M., TASKIN, V., "Free Vibration Analysis of Functionally Graded Beams with Simply Supported Edges". Materials & Design, 28(5), 1651-1656, 2007.
  • [8] KAPURIA, S., BHATTACHARYYA, M., KUMAR, A.N., "Bending and Free Vibration Response of Layered Functionally Graded Beams: A theoretical model and its experimental validation". Composite Structures, 82(3), 390-402, 2008.
  • [9] RAJASEKARAN, S., "Free Vibration of Centrifugally Stiffened Axially Functionally Graded Tapered Timoshenko Beams using Differential Transformation and Quadrature Methods". Applied Mathematical Modelling, 37(6), 4440-4463, 2013.
  • [10] SHAHBA, A., RAJASEKARAN, S., "Free Vibration and Stability of Tapered Euler–Bernoulli Beams Made of Axially Functionally Graded Materials". Applied Mathematical Modelling, 36(7), 3094-3111, 2012.
  • [11] SHAHBA, A., ATTARNEJAD, R., MARVI, M.T., HAJILAR, S., "Free Vibration and Stability Analysis of Axially Functionally Graded Tapered Timoshenko Beams with Classical and Non-Classical Boundary Conditions". Composites Part B-Engineering, 42(4), 801-808, 2011.
  • [12] FANG, J.S., ZHOU, D., "Free Vibration Analysis of Rotating Axially Functionally Graded Tapered Timoshenko Beams". International Journal of Structural Stability and Dynamics, 16(5), 1-19, 2016.
  • [13] AKGÖZ, B., CIVALEK, Ö., "Free Vibration Analysis of Axially Functionally Graded Tapered Bernoulli–Euler Microbeams based on The Modified Couple Stress Theory". Composite Structures, 98, 314-322, 2013.
  • [14] HUANG, Y., LI, X.F., "A New Approach for Free Vibration of Axially Functionally Graded Beams with Non-Uniform Cross-Section". Journal of Sound and Vibration, 329(11), 2291-2303, 2010.
  • [15] SINA, S.A., NAVAZI, H.M., HADDADPOUR, H., "An Analytical Method for Free Vibration Analysis of Functionally Graded Beams". Materials & Design, 30(3), 741-747, 2009.
  • [16] PRADHAN, K.K., CHAKRAVERTY, S., "Free Vibration of Euler and Timoshenko Functionally Graded Beams by Rayleigh–Ritz Method". Composites Part B: Engineering, 51, 175-184, 2013.
  • [17] ALSHORBAGY, A.E., ELTAHER, M.A., MAHMOUD, F.F., "Free Vibration Characteristics of A Functionally Graded Beam by Finite Element Method". Applied Mathematical Modelling, 35(1), 412-425, 2011.
  • [18] WATTANASAKULPONG, N., GANGADHARA PRUSTY, B., KELLY, D.W., HOFFMAN, M., "Free Vibration Analysis of Layered Functionally Graded Beams with Experimental Validation". Materials & Design, 36, 182-190, 2012.
  • [19] HUANG, Y., YANG, L.E., LUO, Q.Z., "Free Vibration of Axially Functionally Graded Timoshenko Beams with Non-Uniform Cross-Section". Composites Part B: Engineering, 45(1), 1493-1498, 2013.
  • [20] HEIN, H., FEKLISTOVA, L., "Free Vibrations of Non-Uniform and Axially Functionally Graded Beams using Haar Wavelets". Engineering Structures, 33(12), 3696-3701, 2011.
  • [21] LIU, Y., XIAO, J., SHU, D., "Free Vibration of Exponential Functionally Graded Beams with Single Delamination". Procedia Engineering, 75, 164-168, 2014.
  • [22] MASHAT, D.S., CARRERA, E., ZENKOUR, A.M., AL KHATEEB, S.A., FILIPPI, M., "Free Vibration of FGM Layered Beams By Various Theories and Finite Elements". Composites Part B: Engineering, 59, 269-278, 2014.
  • [23] THAI, H.T., VO, T.P., "Bending and Free Vibration of Functionally Graded Beams using Various Higher-Order Shear Deformation Beam Theories". International Journal of Mechanical Sciences, 62(1), 57-66, 2012.
  • [24] BERNARDO, G.M.S., DAMÁSIO, F.R., SILVA, T.A.N., LOJA, M.A.R., "A Study on the Structural Behaviour of FGM Plates Static and Free Vibrations Analyses". Composite Structures, 136, 124-138, 2016.
  • [25] ROY, R.K., A Primer on the Taguchi Method, Van Nostrand Reinhold, New York, USA, 1990.
  • [26] ROSS, P.J., Taguchi Techniques for Quality Engineering, (2nd Edition), McGraw-Hill International Book Company, New York, USA, 1996.
  • [27] EVRAN, S , YILMAZ, Y ., "The Effects of Layer Arrangements on Fundamental Frequency of Layered Beams In Axial Direction". SAÜ Fen Bilimleri Enstitüsü Dergisi 21(5), 968-977, 2017.
  • [28] YILMAZ Y, EVRAN S., "Free Vibration Analysis of Axially Layered Functionally Graded Short Beams using Experimental and Finite Element Methods. Science and Engineering of Composite Materials", 23(4), 453-460, 2016.

NUMERICAL FIRST MODE FREQUENCY ANALYSIS OF AXIALLY LAYERED FUNCTIONALLY GRADED TAPERED BEAMS

Year 2018, Volume: 7 Issue: 1, 399 - 406, 31.01.2018
https://doi.org/10.28948/ngumuh.387248

Abstract

   The purpose of this numerical
work is to evaluate the first mode frequency analysis of the tapered beams with
three layers, modelled using functionally graded materials (FGM) in the axially
direction, under clamped-clamped (C-C) boundary condition based on finite
element software named ANSYS V13. Analyses were conducted using L16 Taguchi
orthogonal array design consisting of three control factors and four levels.
The layers were determined as the control factors and were considered to be
made from aluminum (Al)/monotungsten carbide (WC) systems. The optimum layer
combination was carried out according to the analysis of signal-to-noise (S/N)
ratio. The importance levels and contribution ratios of the layers on the first
mode frequency of the axially layered FG tapered beams were observed by using
analysis of variance (ANOVA). Layer 1 and Layer 3 have positive effects on the
first mode frequency values. However, Layer 2 has negative influence. In
addition, the most effective layers are Layer 1 with 82.17%, Layer 2 with
16.36% and Layer 3 with 1.45% respectively. 

References

  • [1] KOIZUMI, M., "FGM Activities in Japan". Composites Part B: Engineering, 28(1), 1-4, 1997.
  • [2] SHEN, H.S., Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press, Boca Raton, London, New York, 2009.
  • [3] ŞIMŞEK, M., "Fundamental Frequency Analysis of Functionally Graded Beams by using Different Higher-Order Beam Theories". Nuclear Engineering and Design, 240(4), 697-705, 2010.
  • [4] WATARI, F., YOKOYAMA, A., SASO, F., UO, M., KAWASAKI, T., "Fabrication and Properties of Functionally Graded Dental Implant". Composites Part B: Engineering, 28(1), 5-11, 1997.
  • [5] MÜLLER, E., DRAŠAR, Č., SCHILZ, J., KAYSSER, W.A., "Functionally Graded Materials for Sensor and Energy Applications". Materials Science and Engineering: A, 362(1), 17-39, 2003.
  • [6] SCHULZ, U., PETERS, M., BACH, F.W., TEGEDER, G., "Graded Coatings for Thermal, Wear and Corrosion Barriers". Materials Science and Engineering: A, 362(1), 61-80, 2003.
  • [7] AYDOGDU, M., TASKIN, V., "Free Vibration Analysis of Functionally Graded Beams with Simply Supported Edges". Materials & Design, 28(5), 1651-1656, 2007.
  • [8] KAPURIA, S., BHATTACHARYYA, M., KUMAR, A.N., "Bending and Free Vibration Response of Layered Functionally Graded Beams: A theoretical model and its experimental validation". Composite Structures, 82(3), 390-402, 2008.
  • [9] RAJASEKARAN, S., "Free Vibration of Centrifugally Stiffened Axially Functionally Graded Tapered Timoshenko Beams using Differential Transformation and Quadrature Methods". Applied Mathematical Modelling, 37(6), 4440-4463, 2013.
  • [10] SHAHBA, A., RAJASEKARAN, S., "Free Vibration and Stability of Tapered Euler–Bernoulli Beams Made of Axially Functionally Graded Materials". Applied Mathematical Modelling, 36(7), 3094-3111, 2012.
  • [11] SHAHBA, A., ATTARNEJAD, R., MARVI, M.T., HAJILAR, S., "Free Vibration and Stability Analysis of Axially Functionally Graded Tapered Timoshenko Beams with Classical and Non-Classical Boundary Conditions". Composites Part B-Engineering, 42(4), 801-808, 2011.
  • [12] FANG, J.S., ZHOU, D., "Free Vibration Analysis of Rotating Axially Functionally Graded Tapered Timoshenko Beams". International Journal of Structural Stability and Dynamics, 16(5), 1-19, 2016.
  • [13] AKGÖZ, B., CIVALEK, Ö., "Free Vibration Analysis of Axially Functionally Graded Tapered Bernoulli–Euler Microbeams based on The Modified Couple Stress Theory". Composite Structures, 98, 314-322, 2013.
  • [14] HUANG, Y., LI, X.F., "A New Approach for Free Vibration of Axially Functionally Graded Beams with Non-Uniform Cross-Section". Journal of Sound and Vibration, 329(11), 2291-2303, 2010.
  • [15] SINA, S.A., NAVAZI, H.M., HADDADPOUR, H., "An Analytical Method for Free Vibration Analysis of Functionally Graded Beams". Materials & Design, 30(3), 741-747, 2009.
  • [16] PRADHAN, K.K., CHAKRAVERTY, S., "Free Vibration of Euler and Timoshenko Functionally Graded Beams by Rayleigh–Ritz Method". Composites Part B: Engineering, 51, 175-184, 2013.
  • [17] ALSHORBAGY, A.E., ELTAHER, M.A., MAHMOUD, F.F., "Free Vibration Characteristics of A Functionally Graded Beam by Finite Element Method". Applied Mathematical Modelling, 35(1), 412-425, 2011.
  • [18] WATTANASAKULPONG, N., GANGADHARA PRUSTY, B., KELLY, D.W., HOFFMAN, M., "Free Vibration Analysis of Layered Functionally Graded Beams with Experimental Validation". Materials & Design, 36, 182-190, 2012.
  • [19] HUANG, Y., YANG, L.E., LUO, Q.Z., "Free Vibration of Axially Functionally Graded Timoshenko Beams with Non-Uniform Cross-Section". Composites Part B: Engineering, 45(1), 1493-1498, 2013.
  • [20] HEIN, H., FEKLISTOVA, L., "Free Vibrations of Non-Uniform and Axially Functionally Graded Beams using Haar Wavelets". Engineering Structures, 33(12), 3696-3701, 2011.
  • [21] LIU, Y., XIAO, J., SHU, D., "Free Vibration of Exponential Functionally Graded Beams with Single Delamination". Procedia Engineering, 75, 164-168, 2014.
  • [22] MASHAT, D.S., CARRERA, E., ZENKOUR, A.M., AL KHATEEB, S.A., FILIPPI, M., "Free Vibration of FGM Layered Beams By Various Theories and Finite Elements". Composites Part B: Engineering, 59, 269-278, 2014.
  • [23] THAI, H.T., VO, T.P., "Bending and Free Vibration of Functionally Graded Beams using Various Higher-Order Shear Deformation Beam Theories". International Journal of Mechanical Sciences, 62(1), 57-66, 2012.
  • [24] BERNARDO, G.M.S., DAMÁSIO, F.R., SILVA, T.A.N., LOJA, M.A.R., "A Study on the Structural Behaviour of FGM Plates Static and Free Vibrations Analyses". Composite Structures, 136, 124-138, 2016.
  • [25] ROY, R.K., A Primer on the Taguchi Method, Van Nostrand Reinhold, New York, USA, 1990.
  • [26] ROSS, P.J., Taguchi Techniques for Quality Engineering, (2nd Edition), McGraw-Hill International Book Company, New York, USA, 1996.
  • [27] EVRAN, S , YILMAZ, Y ., "The Effects of Layer Arrangements on Fundamental Frequency of Layered Beams In Axial Direction". SAÜ Fen Bilimleri Enstitüsü Dergisi 21(5), 968-977, 2017.
  • [28] YILMAZ Y, EVRAN S., "Free Vibration Analysis of Axially Layered Functionally Graded Short Beams using Experimental and Finite Element Methods. Science and Engineering of Composite Materials", 23(4), 453-460, 2016.
There are 28 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Savaş Evran 0000-0002-7512-5997

Publication Date January 31, 2018
Submission Date September 15, 2017
Acceptance Date November 20, 2017
Published in Issue Year 2018 Volume: 7 Issue: 1

Cite

APA Evran, S. (2018). EKSENEL TABAKALI FONKSİYONEL DERECELENDİRİLMİŞ KONİK KİRİŞLERİN SAYISAL İLK MOD FREKANS ANALİZİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 399-406. https://doi.org/10.28948/ngumuh.387248
AMA Evran S. EKSENEL TABAKALI FONKSİYONEL DERECELENDİRİLMİŞ KONİK KİRİŞLERİN SAYISAL İLK MOD FREKANS ANALİZİ. NOHU J. Eng. Sci. January 2018;7(1):399-406. doi:10.28948/ngumuh.387248
Chicago Evran, Savaş. “EKSENEL TABAKALI FONKSİYONEL DERECELENDİRİLMİŞ KONİK KİRİŞLERİN SAYISAL İLK MOD FREKANS ANALİZİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7, no. 1 (January 2018): 399-406. https://doi.org/10.28948/ngumuh.387248.
EndNote Evran S (January 1, 2018) EKSENEL TABAKALI FONKSİYONEL DERECELENDİRİLMİŞ KONİK KİRİŞLERİN SAYISAL İLK MOD FREKANS ANALİZİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7 1 399–406.
IEEE S. Evran, “EKSENEL TABAKALI FONKSİYONEL DERECELENDİRİLMİŞ KONİK KİRİŞLERİN SAYISAL İLK MOD FREKANS ANALİZİ”, NOHU J. Eng. Sci., vol. 7, no. 1, pp. 399–406, 2018, doi: 10.28948/ngumuh.387248.
ISNAD Evran, Savaş. “EKSENEL TABAKALI FONKSİYONEL DERECELENDİRİLMİŞ KONİK KİRİŞLERİN SAYISAL İLK MOD FREKANS ANALİZİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7/1 (January 2018), 399-406. https://doi.org/10.28948/ngumuh.387248.
JAMA Evran S. EKSENEL TABAKALI FONKSİYONEL DERECELENDİRİLMİŞ KONİK KİRİŞLERİN SAYISAL İLK MOD FREKANS ANALİZİ. NOHU J. Eng. Sci. 2018;7:399–406.
MLA Evran, Savaş. “EKSENEL TABAKALI FONKSİYONEL DERECELENDİRİLMİŞ KONİK KİRİŞLERİN SAYISAL İLK MOD FREKANS ANALİZİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 7, no. 1, 2018, pp. 399-06, doi:10.28948/ngumuh.387248.
Vancouver Evran S. EKSENEL TABAKALI FONKSİYONEL DERECELENDİRİLMİŞ KONİK KİRİŞLERİN SAYISAL İLK MOD FREKANS ANALİZİ. NOHU J. Eng. Sci. 2018;7(1):399-406.

download