Research Article
BibTex RIS Cite

INVESTIGATION OF FLOW CHANNEL DESIGN EFFECTS ON PEM FUEL CELL PERFORMANS

Year 2018, Volume: 7 Issue: 1, 407 - 416, 31.01.2018
https://doi.org/10.28948/ngumuh.387275

Abstract

   The fuel cell is
a power generation unit which converts chemical energy directly into
electricity and heat in the form of usable energy by the electrochemical
reaction under hydrogen and air supplied. The flow plates are the most
important part of the system after the Membrane Electrode Group (MEG) used for
the distribution of the gases and the collection of the current and water in
the fuel cells. The flow plates are also used for the thermal management of the
fuel cell. The geometric design of the channels on the flow plate, which
performs all of these operations at the same time, is very important because it
directly affects the gas distribution, water collection and the heat
dissipation. In this study, flow plates with different flow geometry of the
fuel cell are fabricated and performance tests are performed at different
pressures. The experimental results indicated that the multi-serpentine flow
plate design with pressure is found to exhibit the highest performance.

References

  • [1] HONTANON E., ESCUDERO M.J., BAUTISTA C., GARCIA-YBARRA P.L., DAZA L., “Optimisation of Flow-Field in Polymer Electrolyte Membrane Fuel Cells Using Computational Fluid Dynamics Techniques”, Journal of Power Sources, 86, 363-8, 2000.
  • [2] KUMAR A., REDDY R.G., “Effect of Channel Dimensions and Shape in The Flow-Field Distributor on The Performance of Polymer Electrolyte Membrane Fuel Cells”, Journal of Power Sources, 113, 11-8, 2003.
  • [3] PELLEGRI A., SPAZIANTE P.M., “Bipolar Separator For Electrochemical Cells And Method Of Preparation Thereof”, Google Patents, 1980.
  • [4] JOHNSON M.C., WILKINSON D.P., KENNA J., VANDERLEEDEN O.R., ZIMMERMAN J., TABATABAIAN M., “Differential Pressure Fluid Flow Fields For Fuel Cells”, Google Patents, 2003.
  • [5] YANG J.Y.S., DESANCTIS G.D., WOODCOCK G.R., REHG J.T., “Fuel Cell Having İmproved Condensation and Reaction Product Management Capabilities”, Google Patents, 2003.
  • [6] MARIANOWSKI L.G., “Sheet Metal Bipolar Plate Design for Polymer Electrolyte Membrane Fuel Cells”, Google Patents, 2001.
  • [7] CAVALCA C., HOMEYER S.T., WALSWORTH E., “Flow Field Plate For Use in a Proton Exchange Membrane Fuel Cell”, Google Patents, 1997.
  • [8] WATKINS D.S., DIRCKS K.W., EPP D.G., “Fuel Cell Fluid Flow Field Plate”, Google Patents, 1992.
  • [9] WOODCOCK G., ISSACCI F., REHG T., “Fuel Cell Flow Field Design”, Google Patents, 2004.
  • [10] ROCK J.A., “Serially-Linked Serpentine Flow Channels for Pem Fuel Cell”, Google Patents, 2001.
  • [11] BAI D., CHOUINARD J.G., ELKAIM D., “Flow Field Plate for Use in Fuel Cells”, Google Patents, 2009.
  • [12] REISER C.A., SAWYER R.D., “Solid Polymer Electrolyte Fuel Cell Stack Water Management System”, Google Patents, 1988.
  • [13] REISER C.A., “Water and heat management in solid polymer fuel cell stack”, Google Patents, 1989.
  • [14] SPURRIER F.R., PIERCE B.L., WRIGHT M.K., “Fuel Cell Plates with İmproved Arrangement of Process Channels for Enhanced Pressure Drop Across the Plates”, Google Patents, 1986.
  • [15] SARIPELLA B.P., KOYLU U.O., LEU M.C., “Comparisons of Performances and Liquid Water Distributions within Bio-Inspired and Single-Serpentine Pem Fuel Cell Channels”, Proceedings of the Asme 13th Fuel Cell Science, Engineering, and Technology Conference, 2016.
  • [16] GROT W., Fluorinated Ionomers (2nd ed.), William Andrew Publishing, Pennsylvania, USA, 2011. [17] http://www.members.fchea.org/core/import/PDFs/Technical%20Resources/MatComp%20Single%20Cell%20Test%20Protocol%2005-014RevB.2%20071306.pdf (erişim tarihi 01.12.2017).

AKIŞ KANALI TASARIMININ PEM YAKIT PİLİ PERFORMANSINA ETKİLERİNİN İNCELENMESİ

Year 2018, Volume: 7 Issue: 1, 407 - 416, 31.01.2018
https://doi.org/10.28948/ngumuh.387275

Abstract

   Yakıt pili sisteme dışarıdan sağlanan
hidrojen ve havanın elektrokimyasal reaksiyon gerçekleşmesi ile kimyasal
enerjisini doğrudan elektrik ve ısı formunda kullanılabilir enerjiye çeviren
güç üretim elemanıdır. Akış plakaları yakıt pillerinde Membran Elektrot Grubu
(MEG) için gazların dağılımının sağlanmasında ve oluşan akımın ve suyun
toplanmasında kullanılan MEG’den sonra en önemli sistem parçasıdır. Ayrıca akış
plakaları yakıt pilinin ısıl yönetimi için de kullanılmaktadır. Tüm bu
işlemleri aynı anda yapan akış plakasının üzerinde bulunan kanalların geometrik
tasarımı, gaz dağılımını, oluşan suyun toplanmasını ve ısı dağılımını doğrudan
etkilediği için çok önemlidir. Bu çalışmada, PEM yakıt pili için farklı akış
geometrisine sahip akış plakaları imal edilerek farklı basınç değerlerinde
performans testleri yapılmıştır. Deneysel çalışmalar, basınçlı çalıştırılan
çoklu serpantin akış plakası tasarımının en iyi sonucu verdiğini göstermiştir.

References

  • [1] HONTANON E., ESCUDERO M.J., BAUTISTA C., GARCIA-YBARRA P.L., DAZA L., “Optimisation of Flow-Field in Polymer Electrolyte Membrane Fuel Cells Using Computational Fluid Dynamics Techniques”, Journal of Power Sources, 86, 363-8, 2000.
  • [2] KUMAR A., REDDY R.G., “Effect of Channel Dimensions and Shape in The Flow-Field Distributor on The Performance of Polymer Electrolyte Membrane Fuel Cells”, Journal of Power Sources, 113, 11-8, 2003.
  • [3] PELLEGRI A., SPAZIANTE P.M., “Bipolar Separator For Electrochemical Cells And Method Of Preparation Thereof”, Google Patents, 1980.
  • [4] JOHNSON M.C., WILKINSON D.P., KENNA J., VANDERLEEDEN O.R., ZIMMERMAN J., TABATABAIAN M., “Differential Pressure Fluid Flow Fields For Fuel Cells”, Google Patents, 2003.
  • [5] YANG J.Y.S., DESANCTIS G.D., WOODCOCK G.R., REHG J.T., “Fuel Cell Having İmproved Condensation and Reaction Product Management Capabilities”, Google Patents, 2003.
  • [6] MARIANOWSKI L.G., “Sheet Metal Bipolar Plate Design for Polymer Electrolyte Membrane Fuel Cells”, Google Patents, 2001.
  • [7] CAVALCA C., HOMEYER S.T., WALSWORTH E., “Flow Field Plate For Use in a Proton Exchange Membrane Fuel Cell”, Google Patents, 1997.
  • [8] WATKINS D.S., DIRCKS K.W., EPP D.G., “Fuel Cell Fluid Flow Field Plate”, Google Patents, 1992.
  • [9] WOODCOCK G., ISSACCI F., REHG T., “Fuel Cell Flow Field Design”, Google Patents, 2004.
  • [10] ROCK J.A., “Serially-Linked Serpentine Flow Channels for Pem Fuel Cell”, Google Patents, 2001.
  • [11] BAI D., CHOUINARD J.G., ELKAIM D., “Flow Field Plate for Use in Fuel Cells”, Google Patents, 2009.
  • [12] REISER C.A., SAWYER R.D., “Solid Polymer Electrolyte Fuel Cell Stack Water Management System”, Google Patents, 1988.
  • [13] REISER C.A., “Water and heat management in solid polymer fuel cell stack”, Google Patents, 1989.
  • [14] SPURRIER F.R., PIERCE B.L., WRIGHT M.K., “Fuel Cell Plates with İmproved Arrangement of Process Channels for Enhanced Pressure Drop Across the Plates”, Google Patents, 1986.
  • [15] SARIPELLA B.P., KOYLU U.O., LEU M.C., “Comparisons of Performances and Liquid Water Distributions within Bio-Inspired and Single-Serpentine Pem Fuel Cell Channels”, Proceedings of the Asme 13th Fuel Cell Science, Engineering, and Technology Conference, 2016.
  • [16] GROT W., Fluorinated Ionomers (2nd ed.), William Andrew Publishing, Pennsylvania, USA, 2011. [17] http://www.members.fchea.org/core/import/PDFs/Technical%20Resources/MatComp%20Single%20Cell%20Test%20Protocol%2005-014RevB.2%20071306.pdf (erişim tarihi 01.12.2017).
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Selahattin Çelik 0000-0002-7306-9784

Publication Date January 31, 2018
Submission Date October 19, 2017
Acceptance Date December 14, 2017
Published in Issue Year 2018 Volume: 7 Issue: 1

Cite

APA Çelik, S. (2018). AKIŞ KANALI TASARIMININ PEM YAKIT PİLİ PERFORMANSINA ETKİLERİNİN İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 407-416. https://doi.org/10.28948/ngumuh.387275
AMA Çelik S. AKIŞ KANALI TASARIMININ PEM YAKIT PİLİ PERFORMANSINA ETKİLERİNİN İNCELENMESİ. NOHU J. Eng. Sci. January 2018;7(1):407-416. doi:10.28948/ngumuh.387275
Chicago Çelik, Selahattin. “AKIŞ KANALI TASARIMININ PEM YAKIT PİLİ PERFORMANSINA ETKİLERİNİN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7, no. 1 (January 2018): 407-16. https://doi.org/10.28948/ngumuh.387275.
EndNote Çelik S (January 1, 2018) AKIŞ KANALI TASARIMININ PEM YAKIT PİLİ PERFORMANSINA ETKİLERİNİN İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7 1 407–416.
IEEE S. Çelik, “AKIŞ KANALI TASARIMININ PEM YAKIT PİLİ PERFORMANSINA ETKİLERİNİN İNCELENMESİ”, NOHU J. Eng. Sci., vol. 7, no. 1, pp. 407–416, 2018, doi: 10.28948/ngumuh.387275.
ISNAD Çelik, Selahattin. “AKIŞ KANALI TASARIMININ PEM YAKIT PİLİ PERFORMANSINA ETKİLERİNİN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7/1 (January 2018), 407-416. https://doi.org/10.28948/ngumuh.387275.
JAMA Çelik S. AKIŞ KANALI TASARIMININ PEM YAKIT PİLİ PERFORMANSINA ETKİLERİNİN İNCELENMESİ. NOHU J. Eng. Sci. 2018;7:407–416.
MLA Çelik, Selahattin. “AKIŞ KANALI TASARIMININ PEM YAKIT PİLİ PERFORMANSINA ETKİLERİNİN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 7, no. 1, 2018, pp. 407-16, doi:10.28948/ngumuh.387275.
Vancouver Çelik S. AKIŞ KANALI TASARIMININ PEM YAKIT PİLİ PERFORMANSINA ETKİLERİNİN İNCELENMESİ. NOHU J. Eng. Sci. 2018;7(1):407-16.

download