Research Article
BibTex RIS Cite

Yüksek hızlı terahertz kablosuz haberleşme için iletim pencereleri ve link hesabı

Year 2021, Volume: 10 Issue: 1, 48 - 53, 15.01.2021
https://doi.org/10.28948/ngumuh.699397

Abstract

Bu çalışmada, gelecek nesil terahertz kablosuz haberleşme sistemleri için uygun frekans bantları incelenmiş ve farklı atmosferik koşullar altında bu frekans bantları için link hesapları gerçekleştirilmiştir. Çalışmada atmosferik koşulların değişiminden haberleşme sisteminin nasıl etkilendiği hususu dikkate alınarak makul zayıflama değerlerinde iletişim yapılabilecek 7 iletim penceresi (frekans bandı) olduğu gözlenmiştir. Bu iletim pencereleri içerisinde özellikle iç mekan ve dış mekan haberleşmesi için hangilerinin daha uygun olduğu konusu irdelenmiş ve Friis iletim denklemi kullanılarak link hesaplamaları ve gerekli doğrulamalar yapılmıştır.

Supporting Institution

TÜBİTAK 2209 (Yurt dışı doktora sonrası araştırma)

Thanks

TÜBİTAK 2209

References

  • I. F. Akyildiz, J.M. Jornet and C. Han, Terahertz band: Next frontier for wireless communications. Physical Communication, 12, 16-32, 2014. https://doi.org/ 10.1016/j.phycom.2014.01.006
  • T. K. Ostmann and T. Nagatsuma, A review on terahertz communications research. Journal of Infrared, Millimeter, and Terahertz Waves, 32(2), 143-171, 2011. https://doi.org/10.1007/s10762-010-9758-1
  • J. Federici and L. Moeller, Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 107(111101), 1-22, 2010. https://doi.org/10.1063/1.3386413
  • P. H. Siegel, Terahertz technology in biology and medicine. IEEE Transactions on Microwave Theory and Techniques, 52(10), 2438-2447, 2004. https://doi.org/10.1109/TMTT.2004.835916
  • P. H. Siegel, Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 50(3), 910-928, 2002. https://doi.org/10.1109/22.989974
  • X. C. Zhang, A. Shkurinov and Y. Zhang, Extreme terahertz science. Nature Photonics, 11, 16-18, 2017. https://doi.org/10.1038/nphoton.2016.249
  • M. Tonouchi, Cutting-edge terahertz technology. Nature Photonics, 1, 97-105, 2007. https://doi.org/ 10.1038/nphoton.2007.3
  • S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold and I. Kallfass, Wireless sub-THz communication system with high data rate. Nature Photonics, 7, 977-981, 2013. https://doi.org/10.1038/nphoton.2013.275
  • A. Q. Zhao, B. S. Yu, The nonlinear designs and experiments on a 0.42-THz second harmonic gyrotron with complex cavity, IEEE Transactions on Electron Devices, 64(2), 564-570, 2017. https://doi.org/10.1109 /TED.2016.2642984
  • X. Yuan, W. Zhu, Y. Zhang, N. Xu, Y. Yan, J. Wu, Y. Shen, J. Chen, J. She and S. Deng, A Fully-sealed carbon-nanotube cold-cathode terahertz gyrotron. Scientific Reports, 6(32936), 1-9, 2016. https://doi.org/10.1038/srep32936
  • M. Kim, J. Lee, J. Lee and K. Yang, A 675 GHz differential oscillator based on a resonant tunneling diode. IEEE Transactions on Terahertz Science and Technology, 6(3), 510-512, 2016. https://doi.org/ 10.1109/TTHZ.2016.2554399
  • J. Lee, M. Kim and K. Yang, A 1.52 THz RTD triple-push oscillator with a µw level output power. IEEE Transactions on Terahertz Science and Technology, 6(2), 336-340, 2016. https://doi.org/10.1109/ TTHZ.2015.2509358
  • J. Wang, A. A. Khalidi, K. Alharbi, A. Ofiare, H. Zhou, E. Wasige and J. Figueiredo, High performance resonant tunneling diode oscillators as terahertz sources. 46th European Microwave Conference (EuMC), pp. 4-6, London, UK, October 2016. https://doi.org/10.1109/EuMC.2016.7824348
  • J. Yun, J. Kim and J.S. Rieh, A 280-GHz 10-dBm signal source based on InP HBT technology. IEEE Microwave and Wireless Components Letters, 27(2), 159-161, 2017. https://doi.org/10.1109/LMWC.2016. 2646928
  • Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J.H. Kim, F. Demmerle, G. Boehm, M. C. Amann and M. A. Belkina, Spectroscopic study of terahertz generation in mid-ınfrared quantum cascade lasers. Scientific Reports, 6(21169), 1-9, 2016. https://doi.org/10.1038/ srep 21169
  • Y. Irimajiri, M. Kumagai, I. Morohashi, A. Kawakami, S. Nagano, N. Sekine, S. Ochiai, S. Tanaka, Y. Hanado, Y. Uzawa and I. Hosako, Precise evaluation of a phase-locked THz quantum cascade laser. IEEE Transactions on Terahertz Science and Technology, 6(1), 115-120, 2016. https://doi.org/ 10.1109/TTHZ.2015.2504792
  • S. H. Yang, M. R. Hashemi, C. W. Berry and M. Jarrahi, 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes. IEEE Transactions on Terahertz Science and Technology, 4(5), 575-581, 2014. https://doi.org/10.1109/TTHZ. 2014.2342505
  • N. T. Yardimci, S. H. Yang, C. W. Berry and M. Jarrahi, High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Transactions on Terahertz Science and Technology, 5(2), 223-229, 2015. https://doi.org/10.1109/TTHZ. 2015.2395417
  • S. H. Yang and M. Jarrahi, A high-power photomixer with plasmonic contact electrodes. Conference on Lasers and Electro-Optics (CLEO), pp. 1-2, San Jose, CA, USA, 5-10 June 2016.
  • S. Shopov, A. Balteanu, J. Hasch, P. Chevalier, A. Cathelin and S. P. Voinigescu, A 234–261-GHz 55-nm SiGe BiCMOS signal source with 5.4–7.2 dBm output power, 1.3% DC-to-RF efficiency, and 1-GHz divided-down output. IEEE Journal of Solid-State Circuits, 51(9), 2054-2065, 2016. https://doi:10.1109/ JSSC.2016.2560198
  • S. Jameson and E. Socher, A 0.3 THz radiating active x27 frequency multiplier chain with 1 mW radiated power in CMOS 65-nm. IEEE Transactions on Terahertz Science and Technology, 5(4), 645-648, 2015. https://doi.org/10.1109/TTHZ.2015.2439056
  • T. Takahashi, Y. Kawano, K. Makiyama, S. Shiba, M. Sato, Y. Nakasha and N. Hara, Enhancement of fmax to 910 GHz by adopting asymmetric gate recess and double-side-doped structure in 75-nm-gate InAlAs/InGaAs HEMTs. IEEE Transactions on Electron Devices, 64(1), 89-95, 2017. https://doi.org/ 10.1109/TED.2016.2624899
  • A. Acharyya and J. P. Banerjee, Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Applied Nanoscience, 4(1), 1-14, 2014. https://doi.org/10.1007/s13204-012-0172-y
  • H. J. Song and T. Nagatsuma, Present and future of terahertz communications, IEEE Transactıons on Terahertz Scıence and Technology, 1(1), 256-263, 2011. https://doi.org/10.1109/TTHZ.2011.2159552
  • T. Yilmaz and O. B. Akan, Utilizing terahertz band for local and personal area wireless communication systems. 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 330-334, Athens, 2014. https://doi.org/10.1109/ CAMAD.2014.7033260
  • International Telecommunication Union Recommendation P.676-11, Sep. 2016. [Online]. Available: https://www.itu.int/rec/R-REC-P.676-11- 201609-I. Accessed on: 20.11.2017.

Transmission windows and link budget for high speed terahertz wireless communication

Year 2021, Volume: 10 Issue: 1, 48 - 53, 15.01.2021
https://doi.org/10.28948/ngumuh.699397

Abstract

In this study, appropriate frequency bands are investigated for next generation terahertz wireless communication systems and the link budget calculations are conducted under different atmospheric conditions. Considering how the communication system is affected by the changes in atmospheric conditions in the study, it has been observed that there are 7 transmission windows (frequency bands) in which communication can be maintained at reasonable attenuation values. In these transmission windows, it is also investigated that which of them are appropriate for indoor and outdoor wireless communication and the necessary link calculations have been conducted and proved by using Friis transmission equation.

References

  • I. F. Akyildiz, J.M. Jornet and C. Han, Terahertz band: Next frontier for wireless communications. Physical Communication, 12, 16-32, 2014. https://doi.org/ 10.1016/j.phycom.2014.01.006
  • T. K. Ostmann and T. Nagatsuma, A review on terahertz communications research. Journal of Infrared, Millimeter, and Terahertz Waves, 32(2), 143-171, 2011. https://doi.org/10.1007/s10762-010-9758-1
  • J. Federici and L. Moeller, Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 107(111101), 1-22, 2010. https://doi.org/10.1063/1.3386413
  • P. H. Siegel, Terahertz technology in biology and medicine. IEEE Transactions on Microwave Theory and Techniques, 52(10), 2438-2447, 2004. https://doi.org/10.1109/TMTT.2004.835916
  • P. H. Siegel, Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 50(3), 910-928, 2002. https://doi.org/10.1109/22.989974
  • X. C. Zhang, A. Shkurinov and Y. Zhang, Extreme terahertz science. Nature Photonics, 11, 16-18, 2017. https://doi.org/10.1038/nphoton.2016.249
  • M. Tonouchi, Cutting-edge terahertz technology. Nature Photonics, 1, 97-105, 2007. https://doi.org/ 10.1038/nphoton.2007.3
  • S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold and I. Kallfass, Wireless sub-THz communication system with high data rate. Nature Photonics, 7, 977-981, 2013. https://doi.org/10.1038/nphoton.2013.275
  • A. Q. Zhao, B. S. Yu, The nonlinear designs and experiments on a 0.42-THz second harmonic gyrotron with complex cavity, IEEE Transactions on Electron Devices, 64(2), 564-570, 2017. https://doi.org/10.1109 /TED.2016.2642984
  • X. Yuan, W. Zhu, Y. Zhang, N. Xu, Y. Yan, J. Wu, Y. Shen, J. Chen, J. She and S. Deng, A Fully-sealed carbon-nanotube cold-cathode terahertz gyrotron. Scientific Reports, 6(32936), 1-9, 2016. https://doi.org/10.1038/srep32936
  • M. Kim, J. Lee, J. Lee and K. Yang, A 675 GHz differential oscillator based on a resonant tunneling diode. IEEE Transactions on Terahertz Science and Technology, 6(3), 510-512, 2016. https://doi.org/ 10.1109/TTHZ.2016.2554399
  • J. Lee, M. Kim and K. Yang, A 1.52 THz RTD triple-push oscillator with a µw level output power. IEEE Transactions on Terahertz Science and Technology, 6(2), 336-340, 2016. https://doi.org/10.1109/ TTHZ.2015.2509358
  • J. Wang, A. A. Khalidi, K. Alharbi, A. Ofiare, H. Zhou, E. Wasige and J. Figueiredo, High performance resonant tunneling diode oscillators as terahertz sources. 46th European Microwave Conference (EuMC), pp. 4-6, London, UK, October 2016. https://doi.org/10.1109/EuMC.2016.7824348
  • J. Yun, J. Kim and J.S. Rieh, A 280-GHz 10-dBm signal source based on InP HBT technology. IEEE Microwave and Wireless Components Letters, 27(2), 159-161, 2017. https://doi.org/10.1109/LMWC.2016. 2646928
  • Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J.H. Kim, F. Demmerle, G. Boehm, M. C. Amann and M. A. Belkina, Spectroscopic study of terahertz generation in mid-ınfrared quantum cascade lasers. Scientific Reports, 6(21169), 1-9, 2016. https://doi.org/10.1038/ srep 21169
  • Y. Irimajiri, M. Kumagai, I. Morohashi, A. Kawakami, S. Nagano, N. Sekine, S. Ochiai, S. Tanaka, Y. Hanado, Y. Uzawa and I. Hosako, Precise evaluation of a phase-locked THz quantum cascade laser. IEEE Transactions on Terahertz Science and Technology, 6(1), 115-120, 2016. https://doi.org/ 10.1109/TTHZ.2015.2504792
  • S. H. Yang, M. R. Hashemi, C. W. Berry and M. Jarrahi, 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes. IEEE Transactions on Terahertz Science and Technology, 4(5), 575-581, 2014. https://doi.org/10.1109/TTHZ. 2014.2342505
  • N. T. Yardimci, S. H. Yang, C. W. Berry and M. Jarrahi, High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Transactions on Terahertz Science and Technology, 5(2), 223-229, 2015. https://doi.org/10.1109/TTHZ. 2015.2395417
  • S. H. Yang and M. Jarrahi, A high-power photomixer with plasmonic contact electrodes. Conference on Lasers and Electro-Optics (CLEO), pp. 1-2, San Jose, CA, USA, 5-10 June 2016.
  • S. Shopov, A. Balteanu, J. Hasch, P. Chevalier, A. Cathelin and S. P. Voinigescu, A 234–261-GHz 55-nm SiGe BiCMOS signal source with 5.4–7.2 dBm output power, 1.3% DC-to-RF efficiency, and 1-GHz divided-down output. IEEE Journal of Solid-State Circuits, 51(9), 2054-2065, 2016. https://doi:10.1109/ JSSC.2016.2560198
  • S. Jameson and E. Socher, A 0.3 THz radiating active x27 frequency multiplier chain with 1 mW radiated power in CMOS 65-nm. IEEE Transactions on Terahertz Science and Technology, 5(4), 645-648, 2015. https://doi.org/10.1109/TTHZ.2015.2439056
  • T. Takahashi, Y. Kawano, K. Makiyama, S. Shiba, M. Sato, Y. Nakasha and N. Hara, Enhancement of fmax to 910 GHz by adopting asymmetric gate recess and double-side-doped structure in 75-nm-gate InAlAs/InGaAs HEMTs. IEEE Transactions on Electron Devices, 64(1), 89-95, 2017. https://doi.org/ 10.1109/TED.2016.2624899
  • A. Acharyya and J. P. Banerjee, Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Applied Nanoscience, 4(1), 1-14, 2014. https://doi.org/10.1007/s13204-012-0172-y
  • H. J. Song and T. Nagatsuma, Present and future of terahertz communications, IEEE Transactıons on Terahertz Scıence and Technology, 1(1), 256-263, 2011. https://doi.org/10.1109/TTHZ.2011.2159552
  • T. Yilmaz and O. B. Akan, Utilizing terahertz band for local and personal area wireless communication systems. 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 330-334, Athens, 2014. https://doi.org/10.1109/ CAMAD.2014.7033260
  • International Telecommunication Union Recommendation P.676-11, Sep. 2016. [Online]. Available: https://www.itu.int/rec/R-REC-P.676-11- 201609-I. Accessed on: 20.11.2017.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Electrical and Electronics Engineering
Authors

Ayhan Yazgan 0000-0003-2209-2973

Emin Tuğcu 0000-0001-5308-3071

Cenk Albayrak 0000-0002-1989-1697

Kadir Turk 0000-0002-4504-8417

Publication Date January 15, 2021
Submission Date March 10, 2020
Acceptance Date October 6, 2020
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

APA Yazgan, A., Tuğcu, E., Albayrak, C., Turk, K. (2021). Yüksek hızlı terahertz kablosuz haberleşme için iletim pencereleri ve link hesabı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 48-53. https://doi.org/10.28948/ngumuh.699397
AMA Yazgan A, Tuğcu E, Albayrak C, Turk K. Yüksek hızlı terahertz kablosuz haberleşme için iletim pencereleri ve link hesabı. NOHU J. Eng. Sci. January 2021;10(1):48-53. doi:10.28948/ngumuh.699397
Chicago Yazgan, Ayhan, Emin Tuğcu, Cenk Albayrak, and Kadir Turk. “Yüksek hızlı Terahertz Kablosuz haberleşme için Iletim Pencereleri Ve Link Hesabı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 1 (January 2021): 48-53. https://doi.org/10.28948/ngumuh.699397.
EndNote Yazgan A, Tuğcu E, Albayrak C, Turk K (January 1, 2021) Yüksek hızlı terahertz kablosuz haberleşme için iletim pencereleri ve link hesabı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 1 48–53.
IEEE A. Yazgan, E. Tuğcu, C. Albayrak, and K. Turk, “Yüksek hızlı terahertz kablosuz haberleşme için iletim pencereleri ve link hesabı”, NOHU J. Eng. Sci., vol. 10, no. 1, pp. 48–53, 2021, doi: 10.28948/ngumuh.699397.
ISNAD Yazgan, Ayhan et al. “Yüksek hızlı Terahertz Kablosuz haberleşme için Iletim Pencereleri Ve Link Hesabı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/1 (January 2021), 48-53. https://doi.org/10.28948/ngumuh.699397.
JAMA Yazgan A, Tuğcu E, Albayrak C, Turk K. Yüksek hızlı terahertz kablosuz haberleşme için iletim pencereleri ve link hesabı. NOHU J. Eng. Sci. 2021;10:48–53.
MLA Yazgan, Ayhan et al. “Yüksek hızlı Terahertz Kablosuz haberleşme için Iletim Pencereleri Ve Link Hesabı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 1, 2021, pp. 48-53, doi:10.28948/ngumuh.699397.
Vancouver Yazgan A, Tuğcu E, Albayrak C, Turk K. Yüksek hızlı terahertz kablosuz haberleşme için iletim pencereleri ve link hesabı. NOHU J. Eng. Sci. 2021;10(1):48-53.

download