Research Article
BibTex RIS Cite

The effect of silica fume and micro SiO2 additive on the strength properties in kaolin based geopolymer mortars

Year 2021, Volume: 10 Issue: 2, 640 - 647, 27.07.2021
https://doi.org/10.28948/ngumuh.886863

Abstract

In this study, the effects of silica fume (SD) and micro SiO2 (MS) additives on the strength properties of geopolymer mortars produced using kaolin were investigated. The binder was prepared by adding 3%, 6% and 9% by weight of SD and MS into the kaolin separately. The binders were activated with NaOH containing 11%, 13%, 15% and 17% sodium (Na) by weight. The mixture consisting of binder, sand, NaOH and water was mixed in the mortar mixer and placed in the molds, and an activation temperature of 110 ºC was applied for 24 hours. Then, the samples that were removed from the mold were kept at room temperature for up to 28 days. Unit weight, void ratio, water absorption, ultrasound pulse velocity, flexural and compressive strength tests were performed on the samples. As a result of the experiments, the compressive strength of 21.4 MPa and 45.3 MPa was determined in samples containing 9% SD and 11% Na, 9% MS and 17% Na, respectively. In samples containing 11% and 13% Na by weight, no positive effect of SD and MS was observed on the strength, and SD and MS additives were found to increase the strength in samples produced with 15% and 17% Na.

References

  • S. A. Miller, A. Horvath and P. J. M. Monteiro, Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%, Environmental Research Letters,11, 074029, 2016. https://doi.org/10.1088/1748-9326/11/7/074029
  • A. Hasanbeigi, C. Menke, and L. Price, The CO2 abatement cost curve for the Thailand cement industry. Journal of Cleaner Production. 18 (15), 1509-1519, 2010. https://doi.org/10.1016/j.jclepro.2010.06.005
  • L. N. Assi, K. Carter, E. Deaver, P. Ziehl, Review of availability of source materials for geopolymer/sustainable concrete, Journal of Cleaner Production, 263, 2020, 121477. https://doi.org/ 10.1016/ j.jclepro.2020.121477
  • L. N. Assi, K. Carter, E. Deaver, R. Anay, and P. Ziehl, Sustainable concrete: building a greener future. Journal of Cleaner Production, 198, 1641-1651, 2018. https://doi.org/ 10.1016/j.jclepro.2018.07.123.
  • J. Thaarrini, and S. Dhivya, Comparative study on the production cost of geopolymer and conventional concretes. International Journal of Civil Engineering Research, 7(2), 117-124, 2016
  • B. J. Mathew, M. Sudhakar, and C. Natarajan, Strength, economic and sustainability characteristics of coal ash -GGBS based geopolymer concrete. International Journal of Computational Engineering Research, 3(1), 207-212, 2013
  • B. C. McLellan, R. P. Williams, J. Lay, A. van Riessen, and G. D. Corder, Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19, 9(10),1080-1090, 2011. https://doi.org/10.1016/j.jclepro.2011. 02.010
  • C. D. Atiş, E. B. Görür, O. Karahan, C. Bilim, S. İlkentapar, and E. Luga, Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Construction and Building Materials, 96, 673-678, 2015. https://doi.org/10.1016/j.conbuildmat. 2015.08.089
  • İ. İ. Atabey, O. Karahan, C. Bilim, and C. D. Atiş, Very high strength Na2SiO3 and NaOH activated fly ash based geopolymer mortar, Cement Wapno Beton, 25, 292-305, 2020. https://doi.org/10.32047/CWB.2020. 25.4.4
  • A. M. Al Bakri, H. Kamarudin, M. Bnhussain, I. K. Nizar, A. Rafiza, and Y. Zarina, Microstructure of different NaOH molarity of fly ash-based. Journal of Engineering and Technology Research, 3(2), 44-49, 2011.
  • M. Kaya, M. Uysal, K. Yılmaz, and C. D. Atiş, Behaviour of geopolymer mortars after exposure to elevated temperatures. Materials Science, 24, 428-436, 2018. https://doi.org/ 10.5755/j01.ms.24.4.18829
  • D. L. Y Kong, and J. G. Sanjayan, Effect of elevated temperatures on geopolymer paste, mortar and concrete, Cement and Concrete Research, 40, 2, 334-339, 2010. https://doi.org/10.1016/j.cemconres. 2009.10.017
  • Y. Fu, L. Cai, W. Yonggen, Freezeethaw cycle test and damage mechanics models of alkali-activated slag concrete, Construction and Building Materials. 25, 3144-3148. 2011. https://doi.org/10.1016/j. conbuildmat .2010.12.006
  • M. A. M. Ariffin, M. A. R. Bhutta, M. W. Hussin, M. M. Tahir, and N. Aziah, Sulfuric acid resistance of blended ash geopolymer concrete. Construction and Building Materials, 43, 80-86, 2013. https://doi.org/10.1016/j.conbuildmat.2013.01.018
  • S. Çelikten, M. Sarıdemir, and İ. Ö. Deneme, Mechanical and microstructural properties of alkaliactivated slag and slag+ fly ash mortars exposed to high temperature. Construction and Building Materials, 217, 50-61, 2019. https://doi.org/10.1016/ j.conbuildmat. 2019.05.055
  • Ü. Yurt, B. Dündar, ve E. Çınar, Jeopolimer betonlarda sülfürik asit etkisinin araştırılması, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8 (2), 1548- 1561, 2020. https://doi.org/10.29130/dubited.644176
  • X. Hua, J. S. J. van Deventer, The effect of alkali metals on the formation ofgeopolymeric gels from alkali-feldspars, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 216, 27–44, 2003. https://doi.org/10.1016/S0927-7757(02)00499-5
  • D. S. Perera, O. Uchida, E. R. Vance, K. S. Finnie, Influence of curing schedule on the integrity of geopolymers. Journal of Materials Science, 42, 3099–3106, 2007. https://doi.org/10.1007/s10853-006-0533-6
  • K. Divya, and C. Rubina, Mechanism of geopolymerisation and factors influencing its development: A review. Journal of Materials Science, 42, 729–746, 2007. https://doi.org/10.1007/s10853-006-0401-4
  • S. Çelikten ve İ. İ. Atabey, Su içeriği ve ısıl kür süresinin atık bazalt tozu esaslı geopolimer harçların fiziksel ve mekanik özelliklerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1): 328- 332, 2021. https://doi.org/10.28948/ ngumuh.836998
  • M. Naghsh, K. Shams, Synthesis of a kaolin-based geopolymer using a novel fusion method and its application in effective water softening, Applied Clay Science, 146, 15, 238-245, 2017. https://doi.org/ 10.1016/j.clay.2017.06.008
  • F. N. Okoye, J. Durgaprasad, N. B. Singh, Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete, Construction and Building Materials. 98, 15, 685-691, 2015. https://doi.org/ 10.1016/j.conbuildmat.2015.08.009
  • W. Wang, H. Liu, and W Gu, A novel fabrication approach for improving the mechanical and sound absorbing properties of porous sound-absorbing ceramics. Journal of Alloys and Compounds. 695, 2477-2482, 2017. https://doi.org/10.1016/j.jallcom. 2016.11.147
  • H. Xu and J. S. J. van Deventer, Geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59 (3), 247-266, 2000. https://doi.org/10.1016/S0301-7516(99)00074-5
  • F. Zibouche, H. Kerdjoudj, L. J.-B d'Espinose, and H. van Damme, Geopolymers from Algerian metakaolin. Influence of secondary minerals. Applied Clay Science, 43 (3-4), 453-458, 2009. https://doi.org/10.1016/ j.clay.2008.11.001
  • Z. Zhang, H. Wang, X. Yao, and Y. Zhu, Effects of halloysite in kaolin on the formation and properties of geopolymers. Cement and Concrete Composites,34(5), 709-715, 2012. https://doi.org/10.1016/j.cemconcomp. 2012.02.003
  • C. H. Rüscher, A. Schulz, M. H. Gougazeh, and A. Ritzmann, Mechanical strength development of geopolymer binder and the effect of quartz content, Ceramic Engineering and Science Proceedings, 2013. http://dx.doi.org/10.1002/9781118807743.ch2
  • C. Y. Heah, H. Kamarudin, A. M. Mustafa Al Bakri, M. Luqman, I. Khairul Nizar, Y. M. Liew, Potential application of kaolin without calcine as greener concrete: A review. Australian Journal of Basic and Applied Sciences, 5(7), 1026-1035, 2011.
  • A. Heath, K. Paine, and M. McManus, Minimising the global warming potential of claybased geopolymers. Journal of Cleaner Production, 78, 75-83, 2014. https://doi.org/10.1016/ j.jclepro.2014.04.046
  • P. Duxson, G. C. Lukey, and J. S. J. Van Deventer, Physical evolution of na-geopolymer derived from metakaolin up to 1000 degrees. Journal of Materials Science, 42, 3044–3054, 2007. https://doi.org/10.1007/ s10853-006-0535-4
  • M. Uysal, M. M. Al-Mashhadani, Y. Aygörmez, and O. Canpolat, Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars. Construction and Building Materials, 176, 271-282, 2018. https://doi.org/10.1016/j.conbuildmat.2018.05.034
  • J. Davidovits, Geopolymer chemistry and application, 2nd ed, Institute Geopolymere, Saint-Quentin, 2008
  • S. Prasanphan, A. Wannagon, T. Kobayashi, and S. Jiemsirilers, Reaction mechanisms of calcined kaolin processing waste-based geopolymers in the presence of low alkali activator solution, Construction and Building Materials, 221, 409-420, 2019, https://doi.org/10.1016/ j.conbuildmat.2019.06.116
  • R. Bajpai, K. Choudhary, A. Srivastava, K. S. Sangwan, M. Singh, Environmental impact assessment of fly ash and silica fume based geopolymer concrete, Journal of Cleaner Production, 254, 120147,2020. https://doi.org/ 10.1016/j.jclepro.2020.120147
  • H. M Khater, Effect of silica fume on the characterization of the geopolymer materials, Khater International Journal of Advanced Structural Engineering, 5:12, 2013.
  • P. S. Deb, P. K. Sarker, and S. Barbhuiya, Effects of nano-silica on the strength development of geopolymer cured at room temperature. Construction and Building Materials, 101, 675-683, 2015. https://doi.org/10.1016/ j.conbuildmat.2015.10.044
  • U. Durak, O. Karahan, B. Uzal, S. İlkentapar, and C. D. Atiş, Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash‐based. Structural Concrete, 22(S1),E352-E367, 2021. https://doi.org/10.1002/suco.201900479
  • K. W. Lo, K. L. Lin, T. W. Cheng, Y. M. Chang, and J. Y. Lan, Effect of nano-SiO2 on the alkali-activated characteristics of spent catalyst metakaolin-based geopolymers. Construction and Building Materials,143, 455-463, 2017. https://doi.org/10.1016/ j.conbuildmat.2017.03.152
  • M. Sivasakthi, R. Jeyalakshmi, N. P. Rajamane, and R. Joseb, Thermal and structural micro analysis of micro silica blended fly ash based geopolymer composites. Journal of Non-Crystalline Solids. 499, 117-130, 2018. https://doi.org/10.1016/j.jnoncrysol. 2018.07.027
  • E. D. Rodrguez, S. A. Bernal, J. L. Provis, J. Paya, J. M. Monzo, and M. V. Borrachero, Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder, Cement and Concrete Composites, 35 (1), 1-11, 2013. https://doi.org/ 10.1016/j.cemconcomp. 2012.08.025
  • M. F. Zawrah, S. E. Abo Sawan, R. M. Khattab, and A. A. Abdel-Shafi, Effect of nano sand on the properties of metakaolin-based geopolymer: Study on its low rate sintering. Construction and Building Materials, 246, 11848620, 2020. https://doi.org/10.1016/j. conbuildmat.2020.118486
  • TS-EN 12504-4. Beton deneyleri - Bölüm 4: Ultrasonik atımlı dalga hızının tayini, Ankara, Türk Standardları Enstitüsü, 2012
  • TS EN 1015 -11, Kagir harcı - Deney metotları - Bölüm 11: Sertleşmiş harcın basınç ve eğilme dayanımının tayini, Türk Standardları Enstitüsü,2013
  • I. B. Messaoud, N. Hamdi, and E. Srasra, Physicochemical characterization of geopolymer binders and foams made from Tunisian clay. Hindawi, Advances in Materials Science and Engineering, 9392743, 8, 2018. https://doi.org/10.1155/2018/ 9392743
  • A. Celik, K. Yilmaz, O. Canpolat, M. M. Al-mashhadani, Y. Aygörmez, and M. Uysal, High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. Construction and Building Materials, 187, 1190-1203, 2018. https://doi.org/10.1016/j.conbuildmat.2018. 08. 062
  • M. Kaya, F. Köksal. Effect of cement additive on physical and mechanical properties of high calcium fly ash geopolymer mortars, Structural Concrete, 22(S1), E452-E465, 2021. https://doi.org/10.1002/suco. 202000235
  • M. Kaya, M. Uysal, K. Yilmaz, O. Karahan, and C. D. Atiş, Mechanical properties of class C and F fly ash geopolymer mortars, Gradevinar, 72 (4), 297- 309, 2020. https://doi.org/ 10.14256/JCE.2421.2018
  • N. Doğan-Sağlamtimur and A. Bilgil, Atık kazan altı külü ve pomza elek altı atığından geopolimer yapı malzemesi üretimi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(2): 590-599, 2018. https://doi.org/10.28948/ngumuh.443221
  • M. Rowles, and B. O’Connor, Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesized by sodium silicate activation of metakaolinite, Journal of Materials Chemistry, 13 1161–1165, 2003. https://doi.org/10.1039/B212629J
  • A. Nmiri, M. Duc, N. Hamdi, O. Yazoghli-Marzouk, and E. Srasra, Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers. International Journal of Minerals, Metallurgy and Materials, 26 (5), 555, 2019. https://doi.org/10.1007/ s12613-019-1764-2
  • P. De Silva, K. Sagoe-Crenstil, and V. Sirivivatnanon, Kinetics of geopolymerization: role of Al2O3 and SiO2, Cement and Concrete Research, 37 (4), 512-518, 2007. https://doi.org/10.1016/j.cemconres.2007.01.003
  • C. K. Ma, A. Z. Awang, and W. Omar, Structural and material performance of geopolymer concrete: A review. Construction and Building Materials, 186, 90-102, 2018. https://doi.org/10.1016/j.conbuildmat.2018. 07.111
  • İ. İ Atabey, O. Karahan, C. Bilim, and C. D. Atiş. The influence of activator type and quantity on the transport properties of class F fly ash geopolymer, Construction and Building Materials. 264: 120268, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120268
  • U. Rattanasak, P. Chindaprasirt, Influence of NaOH solution on the synthesis of fly ash geopolymer, Minerals Engineering, 22(12), 2009. https://doi.org/ 10.1016/j.mineng.2009.03.022
  • M. Sarıdemir, Alkali ile aktive edilmiş öğütülmüş diatomitli harçların dayanım özellikleri. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 5(2): 124-134, 2016. https://doi.org/10.28948/ngumuh. 294970

Kaolin esaslı geopolimer harçlarda silis dumanı ve mikro SiO2 katkısının dayanım özellikleri üzerine etkisi

Year 2021, Volume: 10 Issue: 2, 640 - 647, 27.07.2021
https://doi.org/10.28948/ngumuh.886863

Abstract

Bu çalışmada, kaolin kullanılarak üretilen geopolimer harçlarda, silis dumanı (SD) ve mikro SiO2 (MS) katkısının dayanım özellikleri üzerine etkisi incelenmiştir. Kaolin içeresine ağırlıkça %3, %6 ve %9 oranında SD ve MS ayrı ayrı katılarak bağlayıcı hazırlanmıştır. Bağlayıcılar, ağırlıkça %11,%13, %15 ve %17 sodyum (Na) içeren NaOH ile aktive edilmiştir. Bağlayıcı, kum, NaOH ve sudan oluşan karışım, harç mikseri içerisinde karıştırılıp kalıplara yerleştirildikten sonra 24 saat süre ile 110 ºC aktivasyon sıcaklığı uygulanmıştır. Daha sonra kalıptan çıkarılan numuneler 28 güne kadar oda sıcaklığında bekletilmiştir. Numuneler üzerinde birim ağırlık, boşluk oranı, su emme, ultrases geçiş hızı, eğilme ve basınç dayanımı deneyleri yapılmıştır Deneyler sonucunda, %9 SD ve %11 Na ile %9 MS ve %17 Na içeren numunelerde sırasıyla 21.4 MPa ve 45.3 MPa basınç dayanımı tespit edilmiştir. Ağırlıkça %11 ve %13 Na içeren numunelerde SD ve MS katkısının dayanım üzerinde olumlu etkisi gözlenmemiş, %15 ve %17 Na ile üretilmiş numunelerde ise SD ve MS katkısının dayanımı artırdığı tespit edilmiştir.

References

  • S. A. Miller, A. Horvath and P. J. M. Monteiro, Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%, Environmental Research Letters,11, 074029, 2016. https://doi.org/10.1088/1748-9326/11/7/074029
  • A. Hasanbeigi, C. Menke, and L. Price, The CO2 abatement cost curve for the Thailand cement industry. Journal of Cleaner Production. 18 (15), 1509-1519, 2010. https://doi.org/10.1016/j.jclepro.2010.06.005
  • L. N. Assi, K. Carter, E. Deaver, P. Ziehl, Review of availability of source materials for geopolymer/sustainable concrete, Journal of Cleaner Production, 263, 2020, 121477. https://doi.org/ 10.1016/ j.jclepro.2020.121477
  • L. N. Assi, K. Carter, E. Deaver, R. Anay, and P. Ziehl, Sustainable concrete: building a greener future. Journal of Cleaner Production, 198, 1641-1651, 2018. https://doi.org/ 10.1016/j.jclepro.2018.07.123.
  • J. Thaarrini, and S. Dhivya, Comparative study on the production cost of geopolymer and conventional concretes. International Journal of Civil Engineering Research, 7(2), 117-124, 2016
  • B. J. Mathew, M. Sudhakar, and C. Natarajan, Strength, economic and sustainability characteristics of coal ash -GGBS based geopolymer concrete. International Journal of Computational Engineering Research, 3(1), 207-212, 2013
  • B. C. McLellan, R. P. Williams, J. Lay, A. van Riessen, and G. D. Corder, Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19, 9(10),1080-1090, 2011. https://doi.org/10.1016/j.jclepro.2011. 02.010
  • C. D. Atiş, E. B. Görür, O. Karahan, C. Bilim, S. İlkentapar, and E. Luga, Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Construction and Building Materials, 96, 673-678, 2015. https://doi.org/10.1016/j.conbuildmat. 2015.08.089
  • İ. İ. Atabey, O. Karahan, C. Bilim, and C. D. Atiş, Very high strength Na2SiO3 and NaOH activated fly ash based geopolymer mortar, Cement Wapno Beton, 25, 292-305, 2020. https://doi.org/10.32047/CWB.2020. 25.4.4
  • A. M. Al Bakri, H. Kamarudin, M. Bnhussain, I. K. Nizar, A. Rafiza, and Y. Zarina, Microstructure of different NaOH molarity of fly ash-based. Journal of Engineering and Technology Research, 3(2), 44-49, 2011.
  • M. Kaya, M. Uysal, K. Yılmaz, and C. D. Atiş, Behaviour of geopolymer mortars after exposure to elevated temperatures. Materials Science, 24, 428-436, 2018. https://doi.org/ 10.5755/j01.ms.24.4.18829
  • D. L. Y Kong, and J. G. Sanjayan, Effect of elevated temperatures on geopolymer paste, mortar and concrete, Cement and Concrete Research, 40, 2, 334-339, 2010. https://doi.org/10.1016/j.cemconres. 2009.10.017
  • Y. Fu, L. Cai, W. Yonggen, Freezeethaw cycle test and damage mechanics models of alkali-activated slag concrete, Construction and Building Materials. 25, 3144-3148. 2011. https://doi.org/10.1016/j. conbuildmat .2010.12.006
  • M. A. M. Ariffin, M. A. R. Bhutta, M. W. Hussin, M. M. Tahir, and N. Aziah, Sulfuric acid resistance of blended ash geopolymer concrete. Construction and Building Materials, 43, 80-86, 2013. https://doi.org/10.1016/j.conbuildmat.2013.01.018
  • S. Çelikten, M. Sarıdemir, and İ. Ö. Deneme, Mechanical and microstructural properties of alkaliactivated slag and slag+ fly ash mortars exposed to high temperature. Construction and Building Materials, 217, 50-61, 2019. https://doi.org/10.1016/ j.conbuildmat. 2019.05.055
  • Ü. Yurt, B. Dündar, ve E. Çınar, Jeopolimer betonlarda sülfürik asit etkisinin araştırılması, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8 (2), 1548- 1561, 2020. https://doi.org/10.29130/dubited.644176
  • X. Hua, J. S. J. van Deventer, The effect of alkali metals on the formation ofgeopolymeric gels from alkali-feldspars, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 216, 27–44, 2003. https://doi.org/10.1016/S0927-7757(02)00499-5
  • D. S. Perera, O. Uchida, E. R. Vance, K. S. Finnie, Influence of curing schedule on the integrity of geopolymers. Journal of Materials Science, 42, 3099–3106, 2007. https://doi.org/10.1007/s10853-006-0533-6
  • K. Divya, and C. Rubina, Mechanism of geopolymerisation and factors influencing its development: A review. Journal of Materials Science, 42, 729–746, 2007. https://doi.org/10.1007/s10853-006-0401-4
  • S. Çelikten ve İ. İ. Atabey, Su içeriği ve ısıl kür süresinin atık bazalt tozu esaslı geopolimer harçların fiziksel ve mekanik özelliklerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1): 328- 332, 2021. https://doi.org/10.28948/ ngumuh.836998
  • M. Naghsh, K. Shams, Synthesis of a kaolin-based geopolymer using a novel fusion method and its application in effective water softening, Applied Clay Science, 146, 15, 238-245, 2017. https://doi.org/ 10.1016/j.clay.2017.06.008
  • F. N. Okoye, J. Durgaprasad, N. B. Singh, Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete, Construction and Building Materials. 98, 15, 685-691, 2015. https://doi.org/ 10.1016/j.conbuildmat.2015.08.009
  • W. Wang, H. Liu, and W Gu, A novel fabrication approach for improving the mechanical and sound absorbing properties of porous sound-absorbing ceramics. Journal of Alloys and Compounds. 695, 2477-2482, 2017. https://doi.org/10.1016/j.jallcom. 2016.11.147
  • H. Xu and J. S. J. van Deventer, Geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59 (3), 247-266, 2000. https://doi.org/10.1016/S0301-7516(99)00074-5
  • F. Zibouche, H. Kerdjoudj, L. J.-B d'Espinose, and H. van Damme, Geopolymers from Algerian metakaolin. Influence of secondary minerals. Applied Clay Science, 43 (3-4), 453-458, 2009. https://doi.org/10.1016/ j.clay.2008.11.001
  • Z. Zhang, H. Wang, X. Yao, and Y. Zhu, Effects of halloysite in kaolin on the formation and properties of geopolymers. Cement and Concrete Composites,34(5), 709-715, 2012. https://doi.org/10.1016/j.cemconcomp. 2012.02.003
  • C. H. Rüscher, A. Schulz, M. H. Gougazeh, and A. Ritzmann, Mechanical strength development of geopolymer binder and the effect of quartz content, Ceramic Engineering and Science Proceedings, 2013. http://dx.doi.org/10.1002/9781118807743.ch2
  • C. Y. Heah, H. Kamarudin, A. M. Mustafa Al Bakri, M. Luqman, I. Khairul Nizar, Y. M. Liew, Potential application of kaolin without calcine as greener concrete: A review. Australian Journal of Basic and Applied Sciences, 5(7), 1026-1035, 2011.
  • A. Heath, K. Paine, and M. McManus, Minimising the global warming potential of claybased geopolymers. Journal of Cleaner Production, 78, 75-83, 2014. https://doi.org/10.1016/ j.jclepro.2014.04.046
  • P. Duxson, G. C. Lukey, and J. S. J. Van Deventer, Physical evolution of na-geopolymer derived from metakaolin up to 1000 degrees. Journal of Materials Science, 42, 3044–3054, 2007. https://doi.org/10.1007/ s10853-006-0535-4
  • M. Uysal, M. M. Al-Mashhadani, Y. Aygörmez, and O. Canpolat, Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars. Construction and Building Materials, 176, 271-282, 2018. https://doi.org/10.1016/j.conbuildmat.2018.05.034
  • J. Davidovits, Geopolymer chemistry and application, 2nd ed, Institute Geopolymere, Saint-Quentin, 2008
  • S. Prasanphan, A. Wannagon, T. Kobayashi, and S. Jiemsirilers, Reaction mechanisms of calcined kaolin processing waste-based geopolymers in the presence of low alkali activator solution, Construction and Building Materials, 221, 409-420, 2019, https://doi.org/10.1016/ j.conbuildmat.2019.06.116
  • R. Bajpai, K. Choudhary, A. Srivastava, K. S. Sangwan, M. Singh, Environmental impact assessment of fly ash and silica fume based geopolymer concrete, Journal of Cleaner Production, 254, 120147,2020. https://doi.org/ 10.1016/j.jclepro.2020.120147
  • H. M Khater, Effect of silica fume on the characterization of the geopolymer materials, Khater International Journal of Advanced Structural Engineering, 5:12, 2013.
  • P. S. Deb, P. K. Sarker, and S. Barbhuiya, Effects of nano-silica on the strength development of geopolymer cured at room temperature. Construction and Building Materials, 101, 675-683, 2015. https://doi.org/10.1016/ j.conbuildmat.2015.10.044
  • U. Durak, O. Karahan, B. Uzal, S. İlkentapar, and C. D. Atiş, Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash‐based. Structural Concrete, 22(S1),E352-E367, 2021. https://doi.org/10.1002/suco.201900479
  • K. W. Lo, K. L. Lin, T. W. Cheng, Y. M. Chang, and J. Y. Lan, Effect of nano-SiO2 on the alkali-activated characteristics of spent catalyst metakaolin-based geopolymers. Construction and Building Materials,143, 455-463, 2017. https://doi.org/10.1016/ j.conbuildmat.2017.03.152
  • M. Sivasakthi, R. Jeyalakshmi, N. P. Rajamane, and R. Joseb, Thermal and structural micro analysis of micro silica blended fly ash based geopolymer composites. Journal of Non-Crystalline Solids. 499, 117-130, 2018. https://doi.org/10.1016/j.jnoncrysol. 2018.07.027
  • E. D. Rodrguez, S. A. Bernal, J. L. Provis, J. Paya, J. M. Monzo, and M. V. Borrachero, Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder, Cement and Concrete Composites, 35 (1), 1-11, 2013. https://doi.org/ 10.1016/j.cemconcomp. 2012.08.025
  • M. F. Zawrah, S. E. Abo Sawan, R. M. Khattab, and A. A. Abdel-Shafi, Effect of nano sand on the properties of metakaolin-based geopolymer: Study on its low rate sintering. Construction and Building Materials, 246, 11848620, 2020. https://doi.org/10.1016/j. conbuildmat.2020.118486
  • TS-EN 12504-4. Beton deneyleri - Bölüm 4: Ultrasonik atımlı dalga hızının tayini, Ankara, Türk Standardları Enstitüsü, 2012
  • TS EN 1015 -11, Kagir harcı - Deney metotları - Bölüm 11: Sertleşmiş harcın basınç ve eğilme dayanımının tayini, Türk Standardları Enstitüsü,2013
  • I. B. Messaoud, N. Hamdi, and E. Srasra, Physicochemical characterization of geopolymer binders and foams made from Tunisian clay. Hindawi, Advances in Materials Science and Engineering, 9392743, 8, 2018. https://doi.org/10.1155/2018/ 9392743
  • A. Celik, K. Yilmaz, O. Canpolat, M. M. Al-mashhadani, Y. Aygörmez, and M. Uysal, High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. Construction and Building Materials, 187, 1190-1203, 2018. https://doi.org/10.1016/j.conbuildmat.2018. 08. 062
  • M. Kaya, F. Köksal. Effect of cement additive on physical and mechanical properties of high calcium fly ash geopolymer mortars, Structural Concrete, 22(S1), E452-E465, 2021. https://doi.org/10.1002/suco. 202000235
  • M. Kaya, M. Uysal, K. Yilmaz, O. Karahan, and C. D. Atiş, Mechanical properties of class C and F fly ash geopolymer mortars, Gradevinar, 72 (4), 297- 309, 2020. https://doi.org/ 10.14256/JCE.2421.2018
  • N. Doğan-Sağlamtimur and A. Bilgil, Atık kazan altı külü ve pomza elek altı atığından geopolimer yapı malzemesi üretimi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(2): 590-599, 2018. https://doi.org/10.28948/ngumuh.443221
  • M. Rowles, and B. O’Connor, Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesized by sodium silicate activation of metakaolinite, Journal of Materials Chemistry, 13 1161–1165, 2003. https://doi.org/10.1039/B212629J
  • A. Nmiri, M. Duc, N. Hamdi, O. Yazoghli-Marzouk, and E. Srasra, Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers. International Journal of Minerals, Metallurgy and Materials, 26 (5), 555, 2019. https://doi.org/10.1007/ s12613-019-1764-2
  • P. De Silva, K. Sagoe-Crenstil, and V. Sirivivatnanon, Kinetics of geopolymerization: role of Al2O3 and SiO2, Cement and Concrete Research, 37 (4), 512-518, 2007. https://doi.org/10.1016/j.cemconres.2007.01.003
  • C. K. Ma, A. Z. Awang, and W. Omar, Structural and material performance of geopolymer concrete: A review. Construction and Building Materials, 186, 90-102, 2018. https://doi.org/10.1016/j.conbuildmat.2018. 07.111
  • İ. İ Atabey, O. Karahan, C. Bilim, and C. D. Atiş. The influence of activator type and quantity on the transport properties of class F fly ash geopolymer, Construction and Building Materials. 264: 120268, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120268
  • U. Rattanasak, P. Chindaprasirt, Influence of NaOH solution on the synthesis of fly ash geopolymer, Minerals Engineering, 22(12), 2009. https://doi.org/ 10.1016/j.mineng.2009.03.022
  • M. Sarıdemir, Alkali ile aktive edilmiş öğütülmüş diatomitli harçların dayanım özellikleri. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 5(2): 124-134, 2016. https://doi.org/10.28948/ngumuh. 294970
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Mehmet Kaya 0000-0002-8116-0123

Publication Date July 27, 2021
Submission Date February 26, 2021
Acceptance Date March 25, 2021
Published in Issue Year 2021 Volume: 10 Issue: 2

Cite

APA Kaya, M. (2021). Kaolin esaslı geopolimer harçlarda silis dumanı ve mikro SiO2 katkısının dayanım özellikleri üzerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 640-647. https://doi.org/10.28948/ngumuh.886863
AMA Kaya M. Kaolin esaslı geopolimer harçlarda silis dumanı ve mikro SiO2 katkısının dayanım özellikleri üzerine etkisi. NOHU J. Eng. Sci. July 2021;10(2):640-647. doi:10.28948/ngumuh.886863
Chicago Kaya, Mehmet. “Kaolin Esaslı Geopolimer harçlarda Silis Dumanı Ve Mikro SiO2 katkısının dayanım özellikleri üzerine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 2 (July 2021): 640-47. https://doi.org/10.28948/ngumuh.886863.
EndNote Kaya M (July 1, 2021) Kaolin esaslı geopolimer harçlarda silis dumanı ve mikro SiO2 katkısının dayanım özellikleri üzerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 2 640–647.
IEEE M. Kaya, “Kaolin esaslı geopolimer harçlarda silis dumanı ve mikro SiO2 katkısının dayanım özellikleri üzerine etkisi”, NOHU J. Eng. Sci., vol. 10, no. 2, pp. 640–647, 2021, doi: 10.28948/ngumuh.886863.
ISNAD Kaya, Mehmet. “Kaolin Esaslı Geopolimer harçlarda Silis Dumanı Ve Mikro SiO2 katkısının dayanım özellikleri üzerine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/2 (July 2021), 640-647. https://doi.org/10.28948/ngumuh.886863.
JAMA Kaya M. Kaolin esaslı geopolimer harçlarda silis dumanı ve mikro SiO2 katkısının dayanım özellikleri üzerine etkisi. NOHU J. Eng. Sci. 2021;10:640–647.
MLA Kaya, Mehmet. “Kaolin Esaslı Geopolimer harçlarda Silis Dumanı Ve Mikro SiO2 katkısının dayanım özellikleri üzerine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 2, 2021, pp. 640-7, doi:10.28948/ngumuh.886863.
Vancouver Kaya M. Kaolin esaslı geopolimer harçlarda silis dumanı ve mikro SiO2 katkısının dayanım özellikleri üzerine etkisi. NOHU J. Eng. Sci. 2021;10(2):640-7.

download