Research Article
BibTex RIS Cite

Mechanical and microstructural properties of cement mortars developed with different curing conditions and design parameters

Year 2022, Volume: 11 Issue: 3, 713 - 726, 18.07.2022
https://doi.org/10.28948/ngumuh.1051296

Abstract

The aim of this study is the investigation of microstructural effects on cement mortars (CMs) of four different parameters as cement dosage, water/cement ratio, pozzolanic material and curing effect. To achieve the purpose of this study, SEM/EDX, XRD, FTIR and TGA/DTA analysis were performed. A total of 18 mixtures were produced and exposed to water curing (WC) and air curing (AC). In the design of these mixtures, three different cement dosages as 360, 400 and 450 kg/m3 and three different water/cement ratios as 0.40, 0.45 and 0.50 were used. Silica fume (SF) was preferred to observe the effect on microstructural properties clearly of pozzolanic material. In addition, super plasticizer (SP) was utilized in all mixtures and kept constant as 12 kg/m3. The compressive strength, flexural strength and ultrasonic pulse velocity (UPV) of these mixtures were determined at 28 and 90 days. Eight mixtures were chosen to observe the effect of four different parameters in a microstructural sense. XRD, SEM/EDX, FTIR and TGA/DTA analyses were applied to these mixtures. It can be said that microstructural analyses supported the findings obtained from mechanical tests.

References

  • A. Ergün, G. Kürklü, M. S. Başpınar and M. Y. Mansour, The effect of cement dosage on mechanical properties of concrete exposed to high temperatures. Fire Safety Journal, 55, 160–167, 2013. https://doi.org/10.1016/j.firesaf.2012.10.016.
  • R. Şahin, R. Demirboğa, H. Uysal and R. Gül, The effects of different cement dosages, slumps and pumice aggregate ratios on the compressive strength and densities of concrete. Cement and Concrete Research, 33, 1245–1249, 2003. https://doi.org/10.1016/S0008-8846(03)00048-6.
  • O. Lotfi-Omran, A. Sadrmomtazi and I. M. Nikbin, A comprehensive study on the effect of water to cement ratio on the mechanical and radiation shielding properties of heavyweight concrete. Construction and Building Materials, 229, 116905, 2019. https:// doi.org/10.1016/j.conbuildmat.2019.116905.
  • V. G. Haach, G. Vasconcelos, and P. B. Lourenço, Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Construction and Building Materials, 25, 2980–2987, 2011. https://doi.org/10.1016/j.conbuild mat.2010.11.011.
  • S. A. Alabi and J. Mahachi, Compressive strength of concrete containing palm oil fuel ash under different curing techniques. Materials Today: Proceedings, 43 (2), 1969–1972, 2021. https://doi.org/10.1016/j.matpr. 2020.11.426.
  • C. M. Yun, R. Rahman, C. Y. W. Phing, A. W. M. Chie and M. K. B. Bakri, The curing times effect on the strength of ground granulated blast furnace slag (GGBFS) mortar. Construction and Building Materials, 260,120622, 2020. https://doi.org/10.1016/ j.conbuildmat.2020.120622.
  • S. H. V. Mahalakshmi and V. C. Khed, Experimental study on M-sand in self-compacting concrete with and without silica fume. Materials Today: Proceedings, 27, 1061–106, 2020. https://doi.org/10.1016/j.con buildmat.2020.120622.
  • A. Mehtaa and D. K. Ashish, Silica fume and waste glass in cement concrete production: A review. Journal of Building Engineering, 29, 10088, 2020. https://doi.org/10.1016/j.jobe.2019.100888.
  • X. Y. Wang and H.-S. Lee, Modeling the hydration of concrete incorporating fly ash or slag. Cement and Concrete Research, 40, 984–996, 2010. https://doi.org/10.1016/j.cemconres.2010.03.001.
  • V. G. Papadakis and S. Tsimas, Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cement and Concrete Research, 30, 291–299, 2000. https://doi.org/10.1016/S0008-8846(99)00249-5.
  • V. G. Papadakis, C. G. Vayenas and M. N. Fardis, Physical and chemical characteristics affecting the durability of concrete, ACI Materials Journal, 88, 186–196, 1991. http://www.concrete.org/Publications/ InternationalConcreteAbstractsPortal.aspx.aspx?m=details&i=1993.
  • V. G. Papadakis, Effect of fly ash on Portland cement systems, Part I: low calcium fly ash. Cement and Concrete Research, 29, 1727–1736, 1999. https://doi.org/10.1016/S0008-8846(99)00153-2.
  • V. G. Papadakis, Experimental investigation and theoretical modeling of silica fume activity in concrete. Cement and Concrete Research, 29, 79–86, 1999. https://doi.org/10.1155/2014/102392.
  • V. G. Papadakis, Effect of fly ash on Portland cement systems, Part II: high calcium fly ash. Cement and Concrete Research, 30, 1647–1654, 2000. https://doi.org/10.1016/S0008-8846(00)00388-4.
  • S. Wang, L. Baxter and F. Fonseca, Biomass fly ash in concrete: SEM, EDX and ESEM analysis. Fuel, 87, 372–379, 2008. https://doi.org/10.1016/j.fuel.2007.05. 024.
  • M. Sharma, P. Behera, S. Saha, T. Mohanty and P. Saha, Effect of silica fume and red mud on mechanical properties of ferrochrome ash based concrete. Materials Today: Proceedings, in press. https://doi.org/10.1016/j.matpr.2021.11.372.
  • S. Saha, P. Saha and T. Mohanty, Mechanical properties of fly ash and ferrochrome ash based geopolymer concrete using recycled aggregate. Recent Development in Sustainable Infrastructures, 75, 417–426, 2019. https://doi.org/10.1007/978-981-15-4577-1_34.
  • A. Sikder and P. Saha, Effect of bacteria on performance of concrete/mortar: A review, International Journal of Recent Technology and Engineering, 7 (6C2), 12-17, 2019.
  • L. Jianyong and T. Pei, Effect of slag and Silica fume on mechanical properties of high strength concrete. Cement and Concrete Research, 27 (6), 833–837, 1997. https://doi.org/10.1016/S0008-8846(97)00076-8.
  • T. C. Holland, Silica fume user’s manual. Silica fume Association, Report no FHWA-IF-05-016, 2005.
  • M. Gruszczyński and M. Lenart, Durability of mortars modified with the addition of amorphous aluminium silicate and silica fume. Theoretical and Applied Fracture Mechanics, 107, 102526, 2020. https://doi.org/10.1016/j.tafmec.2020.102526.
  • A. C. A. Muller, K. L. Scrivener, J. Skibsted, A. M. Gajewicz, and P. J. McDonald, Influence of silica fume on the microstructure of cement pastes: New insights from 1H NMR relaxometry. Cement and Concrete Research, 74, 116–125, 2015. https://doi.org /10.1016/j.cemconres.2015.04.005.
  • J. I. Tobón, J. J. Payá, M. V. Borrachero and O. J. Restrepo, Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength, Construction and Building Materials, 36, 736–742, 2012. https://doi.org/10.1016/ j.conbuildmat.2012.06.043.
  • F. V. Ajileye, Investigations on micro-silica (silica fume) as partial cement replacement in concrete. Global Journal of Research in Engineering, 12, 17–24, 2012. https://engineeringresearch.org/index.php/GJRE /article/view/575.
  • A. Mathew, Effect of silica fume on strength and durability parameters of concrete. International Journal of Engineering Sciences & Emerging Technologies, IJESET 3, 28–35, 2012.
  • D. King, The effect of Silica fume on the properties of concrete as defined in concrete society report 74. cementitious materials, in: 37th Conference on Our World in Concrete & Structures, 29–31, 2012.
  • A. Benli, Mechanical and durability properties of self-compacting mortars containing binary and ternary mixes of fly ash and silica fume. Structural Concrete, 20, 1096–1108, 2019. https://doi.org/10.1002 /suco.201800302.
  • R. Duval and E. H. Kadri, Influence of silica fume on the workability and the compressive strength of high-performance concretes. Cement and Concrete Research 28 (4), 533–547, 1998. https://doi.org/10. 1016/S0008-8846(98)00010-6.
  • S. Singh, G. D. Ransinchung and P. Kumar, Effect of mineral admixtures on fresh, mechanical and durability properties of RAP inclusive concrete. Construction and Building Materials, 156, 19–27, 2017. https://doi.org/10.1016/j.conbuildmat.2017.08.1 44.
  • Z. Shi, B. Lothenbach, M. R. Geiker, J. Kaufmann, A. Leemann, S. Ferreiro and J. Skibsted, Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cement and Concrete Research, 88, 60–72, 2016. https://doi.org/10.1016/j.cemcon res.2016.06.006.
  • K. D. Weerdt, M. B. Haha, G. L. Saout, K. O. Kjellsen, H. Justnes and B. Lothenbach, Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 41, 279–291, 2011. https://doi.org/10.1016 /j.cemconres.2010. 11.014.
  • K. Luke and E. Lachowski, Internal composition of 20-year-old fly ash and slag blended ordinary Portland cement pastes. Journal of American Ceramic Society, 91, 4084–4092, 2008. https://doi.org/10.1111/j.1551-2916.2008.02783.x.
  • J. I. Escalante-Garcia and J. H. Sharp, The chemical composition and microstructure of hydration products in blended cements. Cement and Concrete Composites, 26, 967–976, 2004. https://doi.org/10. 1016/j.cemconcomp.2004.02.036.
  • A. M. Harrisson, N. B. Winter and H. F. W. Taylor, An examination some pure and composite Portland cement pastes using scanning electron microscopy with X-ray analytical capability. 8th ICCC, pp. 170–175, Rio de Janeiro, Brasil, 1986.
  • P. L. Rayment, The effect of pulverised-fuel ash on the C/S molar ratio and alkali content of calcium silicate hydrates in cement. Cement and Concrete Research, 12, 133–140, 1982. https://doi.org/ 10.1016/0008-8846(82)90001-1.
  • H. F. W. Taylor, K. Mohan and G. K. Moir, Analytical study of pure and extended Portland cement pastes: II, fly ash- and slag-cement pastes. Journal of American Ceramic Soc. 68, 685–690, 1985. https://doi.org/10.1111/j.1151-2916.1985.tb10125.x.
  • P. O. Awoyera, J. O. Akinmusuru, A. R. Dawson, J. M. Ndambuki and N. H. Thom, Microstructural characteristics, porosity and strength development in ceramic-laterized concrete. Cement and Concrete Composites, 86, 224–237, 2018. https://doi.org/ 10.1016/j.cemconcomp.2017.11.017.
  • A. H. Akca and N. Özyurt, Effects of re-curing on microstructure of concrete after high temperature exposure, Construction and Building Materials, 168, 431–441, 2018. https://doi.org/10.1016/j.conbuildmat. 2018.02.122.
  • H. Du and K. H. Tan, Properties of high volume glass powder concrete. Cement and Concrete Composites, 75, 22–29, 2017. https://doi.org/10.1016/j.cemconcomp.2016.10.010.
  • L. Wang, S. H. Zhou, Y. Shi, S. W. Tang and E. Chen, Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete. Composites Part B: Engineering, 130, 28–37, 2017. https://doi.org/10.1016/j.compositesb.2017.07.058.
  • TS 706 EN 12620-A1, Aggregates for concrete. Institute of Turkish Standards, 2009.
  • ASTM C305, Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. Annual book of ASTM standards, 2017.
  • ASTM C1437, Standard test method for flow of hydraulic cement mortar. Annual book of ASTM standards, 2017.
  • ASTM C349, Standard test method for compressive strength of hydraulic–cement mortars (using portions of prisms broken in flexure). Annual book of ASTM standards, 2017.
  • ASTM C348, Standard test method for flexural strength of hydraulic–cement mortars. Annual book of ASTM standards, 2017.
  • ASTM C597, Standard test method for pulse velocity through concrete. Annual book of ASTM standards, 2016.
  • J. B. Robertson and M. T. Ley, Determining the water to cement ratio of fresh concrete by evaporation. Construction and Building Materials, 242, 117972, 2020. https://doi.org/10.1016/j.conbuildmat.2019.11 7972.
  • T. C. Powers and T. Willis, The air requirement of frost resistant concrete. In High. Res. Board Proceedings, 1950.
  • Z. Wu, C. Shi and K. H. Khayat, Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). Cement and Concrete Composites, 71, 97–109, 2016. https://doi.org/10.1016/j.cemcon comp.2016.05.005.
  • S. Mindess, J.F. Young, and D. Darwin, Concrete. second ed., Prentice Hall, Pearson Education, USA, 2003 NJ 07458.
  • T. K. Erdem and Ö. Kırca, Use of binary and ternary blends in high strength concrete. Construction and Building Materials, 22, 1477–1483, 2008. https://doi. org/10.1016/j.conbuildmat.2007.03.026.
  • R. Duman, Silis dumaninin betonun performansına ve klor geçirimliliğine etkilerinin incelenmesi. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2010.
  • S. H. Kosmatka, B. Kerkhoff and W. C. Panarese, Design and control of concrete mixtures. The Portland Cement Association, 2011.
  • D. P. Bentz and P. C. Aitcin, The hidden meaning of water–cement ratio. Concrete International, 30 (5), 51–54, 2008.
  • A. Dowell, and S. Cramer, Field measurement of water–cement ratio for Portland cement concrete – Phase II Field evaluation and development; Final Report. University of Wisconsin – Madison, Department of Civil and Environmental Engineering. Wisconsin Highway Research Program, 2002.
  • B. Felekoğlu, S. Türkel and B. Baradan, Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Building and Environment, 42 (4), 1795–1802, 2007. https://doi. org/10.1016/j.buildenv.2006.01.012.
  • R. Siddique, P. Aggarwal and Y. Aggarwal, Influence of water/powder ratio on strength properties of self compacting concrete containing coal fly ash and bottom ash. Construction and Building Materials, 29, 73–81, 2012. https://doi.org/10.1016/j.conbuildmat. 2011.10.035.
  • N. S. Apebo and A.J. Shiwua, Effect of water-cement ratio on the compressive strength of gravel – crushed over burnt bricks concrete. Civil and Environmental Research, 3 (4), 74–81, 2013.
  • I. M. Nikbin, M. H. A. Beygi, M. T. Kazemi, J.V. Amiri, S. Rabbanifar, E. Rahmani and S. Rahimi, A comprehensive investigation into the effect of water to cement ratio and powder content on mechanical properties of self compacting. Construction and Building Materials, 57, 69–80, 2014. https://doi.org/ 10.1016/j.conbuildmat.2014.01.098.
  • L. R. Kumar, M. Karthikeyan and R. Raghu, Influence of water-cement ratio on compressive strength of burnt bricks. IOSR Journal of Mechanical and Civil Engineering 14 (2), 91–94, 2017.
  • F. Özcan, Silis dumanı içeren harç ve betonların özellikleri ve hızlandırılmış kür ile dayanım tahmini. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2005.
  • D. Pedro, J. de Brito and L. Evangelista, Evaluation of high-performance concrete with recycled aggregates: use of densified silica fume as cement replacement. Construction and Building Materials, 147, 803–814, 2017. https://doi.org/10.1016/j.conbuildmat.2017.05. 007.
  • ACI Committee 234, 234R-06, Guide for the use of silica fume in concrete, (2006) Michigan, USA https://www.concrete.org/publications/internationalconcreteabstract sportal/m/details/id/16670.
  • H. K. Kim and H.K. Lee, Hydration kinetics of high-strength concrete with untreated coal bottom ash for internal curing. Cement and Concrete Composites 91, 67–75, 2018. https://doi.org/10.1016/j.cemconcomp. 2018.04.017.
  • J. Dweck, P. M. Buchler, A. C. V. Coelho and F. K. Cartledge, Hydration of a Portland cement blended with calcium carbonate. Thermochimica Acta, 346 (1–2), 105–113, 2000. https://doi.org/10.1016/S0040-6031(99)00369-X.
  • I. Pane and W. Hansen, Investigation of blended cement hydration by isothermal Calorimetry and thermal analysis. Cement and Concrete Research, 35 (6), 1155–1164, 2005. https://doi.org/10.1016/j.cem conres.2004.10.027.
  • D. N. Crook and M. J. Murray, Regain of strength and firing of concrete, Magazine and Concrete Research, 22 (6), 149–154, 1970.
  • M. Henry, K. Hashimoto, I. S. Darma and T. Sugiyama, Cracking and chemical composition of cement paste subjected to heating and water re-curing. Journal of Advanced Concrete Technology, 14, 134–143, 2016.
  • A. H. Akca and N. Özyurt, Effects of re-curing on residual mechanical properties of concrete after high temperature exposure. Construction and Building Materials, 159, 540–552, 2018. https://doi.org/ 10.1016/j.conbuildmat.2017.11.005.
  • E. Menendez and L. Vega, Analysis of the behaviour of the structural concrete after the fire at the Windsor Building in Madrid. Fire Materials, 34, 95–107, 2010. https://doi.org/10.1002/fam.1013.
  • F. Branda, G. Luciani, A. Costantini and C. Piccioli, Interpretation of the thermogravimetric curves of ancient pozzolanic concretes. Archaeometry, 43, 447–453, 2001. https://doi.org/10.1111/1475-4754.00027.
  • G. Villain, M. Thiery and G. Platret, Measurement methods of carbonation profiles in concrete: thermogravimetry, chemical analysis and gamma densimetry. Cement and Concrete Research, 37, 1182–1192, 2007.
  • H. E. Yücel and S. Özcan, Strength characteristics and microstructural properties of cement mortars incorporating synthetic wollastonite produced with a new technique. Construction and Building Materials, 223, 165–176, 2019. https://doi.org/10.1016/j.con buildmat.2019.06.195.
  • V. Bulatovic´, M. Melešev, M. Radeka, V. Radonjanin and I. Lukic´ , Evaluation of sulfate resistance of concrete with recycled and natural aggregates. Construction and Building Materials, 152, 614–631, 2017. https://doi.org/10.1016/j.conbuildmat.2017.06. 161.

Farklı kür koşulları ve tasarım parametreleri ile geliştirilen çimento harçlarının mekanik ve mikroyapısal özellikleri

Year 2022, Volume: 11 Issue: 3, 713 - 726, 18.07.2022
https://doi.org/10.28948/ngumuh.1051296

Abstract

Bu çalışmanın amacı, çimento dozajı, su/çimento oranı, puzolanik malzeme ve kür etkisi olmak üzere dört farklı parametrenin çimento harçları (ÇH) üzerindeki mikroyapısal etkilerin yeni bir bakış açısıyla araştırılmasıdır. Bu amaca ulaşmak için SEM/EDX, XRD, FTIR ve TGA/DTA analizleri yapılmıştır. Toplam 18 karışım üretilmiş ve bu karışımlar su kürü (SK) ve hava kürüne (HK) maruz bırakılmıştır. Bu karışımların tasarımında 360, 400 ve 450 kg/m3 olmak üzere üç farklı çimento dozajı ve 0,40, 0,45 ve 0,50 olmak üzere üç farklı su/çimento oranı kullanılmıştır. Puzolanik malzemenin mikroyapısal özellikler üzerindeki etkisini net olarak gözlemlemek için silis dumanı (SF) tercih edilmiştir. Ayrıca, tüm karışımlarda süper akışkanlaştırıcı (SA) kullanılmış ve 12 kg/m3 olarak sabit tutulmuştur. Bu karışımların basınç dayanımı, eğilme dayanımı ve ultrasonik titreşim hızı (UTH) 28 ve 90 günde belirlenmiştir. Mikroyapısal anlamda dört farklı parametrenin etkisini gözlemlemek için sekiz karışım seçilmiştir. Bu karışımlara XRD, SEM/EDX, FTIR ve TGA/DTA analizleri uygulanmıştır. Mikroyapısal analizlerin mekanik testlerden elde edilen bulguları desteklediği belirlenmiştir.

References

  • A. Ergün, G. Kürklü, M. S. Başpınar and M. Y. Mansour, The effect of cement dosage on mechanical properties of concrete exposed to high temperatures. Fire Safety Journal, 55, 160–167, 2013. https://doi.org/10.1016/j.firesaf.2012.10.016.
  • R. Şahin, R. Demirboğa, H. Uysal and R. Gül, The effects of different cement dosages, slumps and pumice aggregate ratios on the compressive strength and densities of concrete. Cement and Concrete Research, 33, 1245–1249, 2003. https://doi.org/10.1016/S0008-8846(03)00048-6.
  • O. Lotfi-Omran, A. Sadrmomtazi and I. M. Nikbin, A comprehensive study on the effect of water to cement ratio on the mechanical and radiation shielding properties of heavyweight concrete. Construction and Building Materials, 229, 116905, 2019. https:// doi.org/10.1016/j.conbuildmat.2019.116905.
  • V. G. Haach, G. Vasconcelos, and P. B. Lourenço, Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Construction and Building Materials, 25, 2980–2987, 2011. https://doi.org/10.1016/j.conbuild mat.2010.11.011.
  • S. A. Alabi and J. Mahachi, Compressive strength of concrete containing palm oil fuel ash under different curing techniques. Materials Today: Proceedings, 43 (2), 1969–1972, 2021. https://doi.org/10.1016/j.matpr. 2020.11.426.
  • C. M. Yun, R. Rahman, C. Y. W. Phing, A. W. M. Chie and M. K. B. Bakri, The curing times effect on the strength of ground granulated blast furnace slag (GGBFS) mortar. Construction and Building Materials, 260,120622, 2020. https://doi.org/10.1016/ j.conbuildmat.2020.120622.
  • S. H. V. Mahalakshmi and V. C. Khed, Experimental study on M-sand in self-compacting concrete with and without silica fume. Materials Today: Proceedings, 27, 1061–106, 2020. https://doi.org/10.1016/j.con buildmat.2020.120622.
  • A. Mehtaa and D. K. Ashish, Silica fume and waste glass in cement concrete production: A review. Journal of Building Engineering, 29, 10088, 2020. https://doi.org/10.1016/j.jobe.2019.100888.
  • X. Y. Wang and H.-S. Lee, Modeling the hydration of concrete incorporating fly ash or slag. Cement and Concrete Research, 40, 984–996, 2010. https://doi.org/10.1016/j.cemconres.2010.03.001.
  • V. G. Papadakis and S. Tsimas, Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cement and Concrete Research, 30, 291–299, 2000. https://doi.org/10.1016/S0008-8846(99)00249-5.
  • V. G. Papadakis, C. G. Vayenas and M. N. Fardis, Physical and chemical characteristics affecting the durability of concrete, ACI Materials Journal, 88, 186–196, 1991. http://www.concrete.org/Publications/ InternationalConcreteAbstractsPortal.aspx.aspx?m=details&i=1993.
  • V. G. Papadakis, Effect of fly ash on Portland cement systems, Part I: low calcium fly ash. Cement and Concrete Research, 29, 1727–1736, 1999. https://doi.org/10.1016/S0008-8846(99)00153-2.
  • V. G. Papadakis, Experimental investigation and theoretical modeling of silica fume activity in concrete. Cement and Concrete Research, 29, 79–86, 1999. https://doi.org/10.1155/2014/102392.
  • V. G. Papadakis, Effect of fly ash on Portland cement systems, Part II: high calcium fly ash. Cement and Concrete Research, 30, 1647–1654, 2000. https://doi.org/10.1016/S0008-8846(00)00388-4.
  • S. Wang, L. Baxter and F. Fonseca, Biomass fly ash in concrete: SEM, EDX and ESEM analysis. Fuel, 87, 372–379, 2008. https://doi.org/10.1016/j.fuel.2007.05. 024.
  • M. Sharma, P. Behera, S. Saha, T. Mohanty and P. Saha, Effect of silica fume and red mud on mechanical properties of ferrochrome ash based concrete. Materials Today: Proceedings, in press. https://doi.org/10.1016/j.matpr.2021.11.372.
  • S. Saha, P. Saha and T. Mohanty, Mechanical properties of fly ash and ferrochrome ash based geopolymer concrete using recycled aggregate. Recent Development in Sustainable Infrastructures, 75, 417–426, 2019. https://doi.org/10.1007/978-981-15-4577-1_34.
  • A. Sikder and P. Saha, Effect of bacteria on performance of concrete/mortar: A review, International Journal of Recent Technology and Engineering, 7 (6C2), 12-17, 2019.
  • L. Jianyong and T. Pei, Effect of slag and Silica fume on mechanical properties of high strength concrete. Cement and Concrete Research, 27 (6), 833–837, 1997. https://doi.org/10.1016/S0008-8846(97)00076-8.
  • T. C. Holland, Silica fume user’s manual. Silica fume Association, Report no FHWA-IF-05-016, 2005.
  • M. Gruszczyński and M. Lenart, Durability of mortars modified with the addition of amorphous aluminium silicate and silica fume. Theoretical and Applied Fracture Mechanics, 107, 102526, 2020. https://doi.org/10.1016/j.tafmec.2020.102526.
  • A. C. A. Muller, K. L. Scrivener, J. Skibsted, A. M. Gajewicz, and P. J. McDonald, Influence of silica fume on the microstructure of cement pastes: New insights from 1H NMR relaxometry. Cement and Concrete Research, 74, 116–125, 2015. https://doi.org /10.1016/j.cemconres.2015.04.005.
  • J. I. Tobón, J. J. Payá, M. V. Borrachero and O. J. Restrepo, Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength, Construction and Building Materials, 36, 736–742, 2012. https://doi.org/10.1016/ j.conbuildmat.2012.06.043.
  • F. V. Ajileye, Investigations on micro-silica (silica fume) as partial cement replacement in concrete. Global Journal of Research in Engineering, 12, 17–24, 2012. https://engineeringresearch.org/index.php/GJRE /article/view/575.
  • A. Mathew, Effect of silica fume on strength and durability parameters of concrete. International Journal of Engineering Sciences & Emerging Technologies, IJESET 3, 28–35, 2012.
  • D. King, The effect of Silica fume on the properties of concrete as defined in concrete society report 74. cementitious materials, in: 37th Conference on Our World in Concrete & Structures, 29–31, 2012.
  • A. Benli, Mechanical and durability properties of self-compacting mortars containing binary and ternary mixes of fly ash and silica fume. Structural Concrete, 20, 1096–1108, 2019. https://doi.org/10.1002 /suco.201800302.
  • R. Duval and E. H. Kadri, Influence of silica fume on the workability and the compressive strength of high-performance concretes. Cement and Concrete Research 28 (4), 533–547, 1998. https://doi.org/10. 1016/S0008-8846(98)00010-6.
  • S. Singh, G. D. Ransinchung and P. Kumar, Effect of mineral admixtures on fresh, mechanical and durability properties of RAP inclusive concrete. Construction and Building Materials, 156, 19–27, 2017. https://doi.org/10.1016/j.conbuildmat.2017.08.1 44.
  • Z. Shi, B. Lothenbach, M. R. Geiker, J. Kaufmann, A. Leemann, S. Ferreiro and J. Skibsted, Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cement and Concrete Research, 88, 60–72, 2016. https://doi.org/10.1016/j.cemcon res.2016.06.006.
  • K. D. Weerdt, M. B. Haha, G. L. Saout, K. O. Kjellsen, H. Justnes and B. Lothenbach, Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 41, 279–291, 2011. https://doi.org/10.1016 /j.cemconres.2010. 11.014.
  • K. Luke and E. Lachowski, Internal composition of 20-year-old fly ash and slag blended ordinary Portland cement pastes. Journal of American Ceramic Society, 91, 4084–4092, 2008. https://doi.org/10.1111/j.1551-2916.2008.02783.x.
  • J. I. Escalante-Garcia and J. H. Sharp, The chemical composition and microstructure of hydration products in blended cements. Cement and Concrete Composites, 26, 967–976, 2004. https://doi.org/10. 1016/j.cemconcomp.2004.02.036.
  • A. M. Harrisson, N. B. Winter and H. F. W. Taylor, An examination some pure and composite Portland cement pastes using scanning electron microscopy with X-ray analytical capability. 8th ICCC, pp. 170–175, Rio de Janeiro, Brasil, 1986.
  • P. L. Rayment, The effect of pulverised-fuel ash on the C/S molar ratio and alkali content of calcium silicate hydrates in cement. Cement and Concrete Research, 12, 133–140, 1982. https://doi.org/ 10.1016/0008-8846(82)90001-1.
  • H. F. W. Taylor, K. Mohan and G. K. Moir, Analytical study of pure and extended Portland cement pastes: II, fly ash- and slag-cement pastes. Journal of American Ceramic Soc. 68, 685–690, 1985. https://doi.org/10.1111/j.1151-2916.1985.tb10125.x.
  • P. O. Awoyera, J. O. Akinmusuru, A. R. Dawson, J. M. Ndambuki and N. H. Thom, Microstructural characteristics, porosity and strength development in ceramic-laterized concrete. Cement and Concrete Composites, 86, 224–237, 2018. https://doi.org/ 10.1016/j.cemconcomp.2017.11.017.
  • A. H. Akca and N. Özyurt, Effects of re-curing on microstructure of concrete after high temperature exposure, Construction and Building Materials, 168, 431–441, 2018. https://doi.org/10.1016/j.conbuildmat. 2018.02.122.
  • H. Du and K. H. Tan, Properties of high volume glass powder concrete. Cement and Concrete Composites, 75, 22–29, 2017. https://doi.org/10.1016/j.cemconcomp.2016.10.010.
  • L. Wang, S. H. Zhou, Y. Shi, S. W. Tang and E. Chen, Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete. Composites Part B: Engineering, 130, 28–37, 2017. https://doi.org/10.1016/j.compositesb.2017.07.058.
  • TS 706 EN 12620-A1, Aggregates for concrete. Institute of Turkish Standards, 2009.
  • ASTM C305, Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. Annual book of ASTM standards, 2017.
  • ASTM C1437, Standard test method for flow of hydraulic cement mortar. Annual book of ASTM standards, 2017.
  • ASTM C349, Standard test method for compressive strength of hydraulic–cement mortars (using portions of prisms broken in flexure). Annual book of ASTM standards, 2017.
  • ASTM C348, Standard test method for flexural strength of hydraulic–cement mortars. Annual book of ASTM standards, 2017.
  • ASTM C597, Standard test method for pulse velocity through concrete. Annual book of ASTM standards, 2016.
  • J. B. Robertson and M. T. Ley, Determining the water to cement ratio of fresh concrete by evaporation. Construction and Building Materials, 242, 117972, 2020. https://doi.org/10.1016/j.conbuildmat.2019.11 7972.
  • T. C. Powers and T. Willis, The air requirement of frost resistant concrete. In High. Res. Board Proceedings, 1950.
  • Z. Wu, C. Shi and K. H. Khayat, Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). Cement and Concrete Composites, 71, 97–109, 2016. https://doi.org/10.1016/j.cemcon comp.2016.05.005.
  • S. Mindess, J.F. Young, and D. Darwin, Concrete. second ed., Prentice Hall, Pearson Education, USA, 2003 NJ 07458.
  • T. K. Erdem and Ö. Kırca, Use of binary and ternary blends in high strength concrete. Construction and Building Materials, 22, 1477–1483, 2008. https://doi. org/10.1016/j.conbuildmat.2007.03.026.
  • R. Duman, Silis dumaninin betonun performansına ve klor geçirimliliğine etkilerinin incelenmesi. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2010.
  • S. H. Kosmatka, B. Kerkhoff and W. C. Panarese, Design and control of concrete mixtures. The Portland Cement Association, 2011.
  • D. P. Bentz and P. C. Aitcin, The hidden meaning of water–cement ratio. Concrete International, 30 (5), 51–54, 2008.
  • A. Dowell, and S. Cramer, Field measurement of water–cement ratio for Portland cement concrete – Phase II Field evaluation and development; Final Report. University of Wisconsin – Madison, Department of Civil and Environmental Engineering. Wisconsin Highway Research Program, 2002.
  • B. Felekoğlu, S. Türkel and B. Baradan, Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Building and Environment, 42 (4), 1795–1802, 2007. https://doi. org/10.1016/j.buildenv.2006.01.012.
  • R. Siddique, P. Aggarwal and Y. Aggarwal, Influence of water/powder ratio on strength properties of self compacting concrete containing coal fly ash and bottom ash. Construction and Building Materials, 29, 73–81, 2012. https://doi.org/10.1016/j.conbuildmat. 2011.10.035.
  • N. S. Apebo and A.J. Shiwua, Effect of water-cement ratio on the compressive strength of gravel – crushed over burnt bricks concrete. Civil and Environmental Research, 3 (4), 74–81, 2013.
  • I. M. Nikbin, M. H. A. Beygi, M. T. Kazemi, J.V. Amiri, S. Rabbanifar, E. Rahmani and S. Rahimi, A comprehensive investigation into the effect of water to cement ratio and powder content on mechanical properties of self compacting. Construction and Building Materials, 57, 69–80, 2014. https://doi.org/ 10.1016/j.conbuildmat.2014.01.098.
  • L. R. Kumar, M. Karthikeyan and R. Raghu, Influence of water-cement ratio on compressive strength of burnt bricks. IOSR Journal of Mechanical and Civil Engineering 14 (2), 91–94, 2017.
  • F. Özcan, Silis dumanı içeren harç ve betonların özellikleri ve hızlandırılmış kür ile dayanım tahmini. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2005.
  • D. Pedro, J. de Brito and L. Evangelista, Evaluation of high-performance concrete with recycled aggregates: use of densified silica fume as cement replacement. Construction and Building Materials, 147, 803–814, 2017. https://doi.org/10.1016/j.conbuildmat.2017.05. 007.
  • ACI Committee 234, 234R-06, Guide for the use of silica fume in concrete, (2006) Michigan, USA https://www.concrete.org/publications/internationalconcreteabstract sportal/m/details/id/16670.
  • H. K. Kim and H.K. Lee, Hydration kinetics of high-strength concrete with untreated coal bottom ash for internal curing. Cement and Concrete Composites 91, 67–75, 2018. https://doi.org/10.1016/j.cemconcomp. 2018.04.017.
  • J. Dweck, P. M. Buchler, A. C. V. Coelho and F. K. Cartledge, Hydration of a Portland cement blended with calcium carbonate. Thermochimica Acta, 346 (1–2), 105–113, 2000. https://doi.org/10.1016/S0040-6031(99)00369-X.
  • I. Pane and W. Hansen, Investigation of blended cement hydration by isothermal Calorimetry and thermal analysis. Cement and Concrete Research, 35 (6), 1155–1164, 2005. https://doi.org/10.1016/j.cem conres.2004.10.027.
  • D. N. Crook and M. J. Murray, Regain of strength and firing of concrete, Magazine and Concrete Research, 22 (6), 149–154, 1970.
  • M. Henry, K. Hashimoto, I. S. Darma and T. Sugiyama, Cracking and chemical composition of cement paste subjected to heating and water re-curing. Journal of Advanced Concrete Technology, 14, 134–143, 2016.
  • A. H. Akca and N. Özyurt, Effects of re-curing on residual mechanical properties of concrete after high temperature exposure. Construction and Building Materials, 159, 540–552, 2018. https://doi.org/ 10.1016/j.conbuildmat.2017.11.005.
  • E. Menendez and L. Vega, Analysis of the behaviour of the structural concrete after the fire at the Windsor Building in Madrid. Fire Materials, 34, 95–107, 2010. https://doi.org/10.1002/fam.1013.
  • F. Branda, G. Luciani, A. Costantini and C. Piccioli, Interpretation of the thermogravimetric curves of ancient pozzolanic concretes. Archaeometry, 43, 447–453, 2001. https://doi.org/10.1111/1475-4754.00027.
  • G. Villain, M. Thiery and G. Platret, Measurement methods of carbonation profiles in concrete: thermogravimetry, chemical analysis and gamma densimetry. Cement and Concrete Research, 37, 1182–1192, 2007.
  • H. E. Yücel and S. Özcan, Strength characteristics and microstructural properties of cement mortars incorporating synthetic wollastonite produced with a new technique. Construction and Building Materials, 223, 165–176, 2019. https://doi.org/10.1016/j.con buildmat.2019.06.195.
  • V. Bulatovic´, M. Melešev, M. Radeka, V. Radonjanin and I. Lukic´ , Evaluation of sulfate resistance of concrete with recycled and natural aggregates. Construction and Building Materials, 152, 614–631, 2017. https://doi.org/10.1016/j.conbuildmat.2017.06. 161.
There are 74 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Muhammet Güneş 0000-0001-6788-788X

Hasan Erhan Yücel 0000-0001-7632-2653

Hatice Öznur Öz 0000-0003-3568-1689

Publication Date July 18, 2022
Submission Date December 30, 2021
Acceptance Date April 13, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

APA Güneş, M., Yücel, H. E., & Öz, H. Ö. (2022). Mechanical and microstructural properties of cement mortars developed with different curing conditions and design parameters. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(3), 713-726. https://doi.org/10.28948/ngumuh.1051296
AMA Güneş M, Yücel HE, Öz HÖ. Mechanical and microstructural properties of cement mortars developed with different curing conditions and design parameters. NOHU J. Eng. Sci. July 2022;11(3):713-726. doi:10.28948/ngumuh.1051296
Chicago Güneş, Muhammet, Hasan Erhan Yücel, and Hatice Öznur Öz. “Mechanical and Microstructural Properties of Cement Mortars Developed With Different Curing Conditions and Design Parameters”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 3 (July 2022): 713-26. https://doi.org/10.28948/ngumuh.1051296.
EndNote Güneş M, Yücel HE, Öz HÖ (July 1, 2022) Mechanical and microstructural properties of cement mortars developed with different curing conditions and design parameters. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 3 713–726.
IEEE M. Güneş, H. E. Yücel, and H. Ö. Öz, “Mechanical and microstructural properties of cement mortars developed with different curing conditions and design parameters”, NOHU J. Eng. Sci., vol. 11, no. 3, pp. 713–726, 2022, doi: 10.28948/ngumuh.1051296.
ISNAD Güneş, Muhammet et al. “Mechanical and Microstructural Properties of Cement Mortars Developed With Different Curing Conditions and Design Parameters”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/3 (July 2022), 713-726. https://doi.org/10.28948/ngumuh.1051296.
JAMA Güneş M, Yücel HE, Öz HÖ. Mechanical and microstructural properties of cement mortars developed with different curing conditions and design parameters. NOHU J. Eng. Sci. 2022;11:713–726.
MLA Güneş, Muhammet et al. “Mechanical and Microstructural Properties of Cement Mortars Developed With Different Curing Conditions and Design Parameters”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 3, 2022, pp. 713-26, doi:10.28948/ngumuh.1051296.
Vancouver Güneş M, Yücel HE, Öz HÖ. Mechanical and microstructural properties of cement mortars developed with different curing conditions and design parameters. NOHU J. Eng. Sci. 2022;11(3):713-26.

download