Review
BibTex RIS Cite

Gıda kaynaklı protein ve biyoaktif peptit eldesi, saflaştırılması ve karakterizasyonunda kullanılan güncel yöntemler ve biyoinformatik yaklaşımlar

Year 2023, Volume: 12 Issue: 2, 395 - 407, 15.04.2023
https://doi.org/10.28948/ngumuh.1177148

Abstract

Günümüzde, beslenme alışkanlıkları ile insan sağlığı arasındaki ilişkinin ortaya konulması özellikle gıda kaynaklı biyoaktif bileşenleri hedef alan çalışmaların giderek artmasına sebep olmaktadır. Gıda kaynaklı peptitler ise sahip oldukları potansiyel biyoaktivite ile araştırmacılar için oldukça önemli bir alan olarak ortaya çıkmıştır. Biyoaktif peptitler, birçok sağlık etkisine sahip olan spesifik amino asit dizileridir ve sindirim enzimleri, proteolitik enzimler veya fermantasyon sonucu gerçekleşen protein hidrolizi ile ortaya çıkmaktadır. Protein hidrolizatları ve peptitlerin elde edilmesinde geleneksel hidroliz metotlarının yanı sıra birçok yeni teknoloji kullanılmakta, saflaştırılması aşamasında ise yeni membran ve kromatografi yöntemlerinden faydalanılmaktadır. Biyoaktivitesi tespit edilen peptitlerin amino asit dizileri ise çeşitli kütle spektrometresi yöntemleri ile belirlenmektedir. Bununla beraber, biyoaktif peptit tahminlemesi, tanımlanması, amino asit dizisi belirlenmesi ve karakterizasyonu amacıyla çok sayıda biyoinformatik araç geliştirilmiştir. Mevcut derleme, gıda kaynaklı protein ve hidrolizat eldesi, peptit ayrıştırılması, saflaştırılması ve yapısal karakterizasyonu için kullanılmakta olan deneysel ve biyoinformatik yöntemlerin geniş bir literatür özetini sunmayı hedeflemektedir.

Supporting Institution

TÜBİTAK

Project Number

117O319

Thanks

Mevcut derleme, TÜBİTAK-TOVAG (117O319) projesi kapsamında hazırlanmıştır.

References

  • H. Kamal, C. F. Le, A. M. Salter and A. Ali, Extraction of protein from food waste: An overview of current status and opportunities. Comprehensive Reviews in Food Science and Food Safety, 20, 2455-2475, 2021. https://doi.org/10.1111/1541-4337.12739
  • R. J. S. de Castro and H. H. Sato, Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International, 74, 85-198, 2015. https://doi.org/10.1016/j.foodres.2015.05.013
  • D. Agyei, C. M. Ongkudon, C. Y. Wei, A. S. Chan and M. K. Danquah, Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing, 98, 244-256, 2016. http://dx.doi.org/10.1016/j.fbp.2016.02.003
  • S. Chakrabarti, S. Guha and K. Majumder, Food-derived bioactive peptides in human health: challenges and opportunities. Nutrients, 10, 1738, 2018. https://doi.org/10.3390/nu10111738
  • C. C. Udenigwe and R. E. Aluko, Food protein-derived bioactive peptides: production, processing, and potential health benefits. Journal of Food Science, 77(1), R11-R24, 2012. https://doi.org/10.1111/j.1750-3841.2011.02455.x
  • G. Shahidi and J. Zhong, Bioactive peptides. Journal of AOAC International, 91, 914-931, 2008. https://doi.org/10.1093/jaoac/91.4.914
  • B. A. Kehinde and P. Sharma, Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: a review. Critical Reviews in Food Science and Nutrition, 60(2), 322-340, 2020. https://doi.org/10.1080/10408398.2018.1528206
  • M. Pojić, A. Mišan and B. Tiwari, Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science and Technology, 75, 93– 104, 2018. https://doi.org/10.1016/j.tifs.2018.03.010
  • M. Del Mar Contreras, A. Lama-Muñoz, J. M. Gutiérrez-Pérez, F. Espínola, M. Moya, E. Castro, Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. Bioresource Technology, 280,459–77, 2019. https://doi.org/10.1016/j.biortech.2019.02.040
  • Y. W. Sari, W. J. Mulder, J. P. M. Sanders and M. E. Bruins, Towards plant protein refinery: review on protein extraction using alkali and potential enzymatic assistance. Biotechnology Journal, 10, 1138–1157, 2015. https://doi.org/10.1002/biot.201400569
  • C. Wang, F. Xu, D. Li and M. Zhang, Physico-chemical and structural properties of four rice bran protein fractions based on the multiple solvent extraction method. Czech Journal of Food Sciences, 33 (3), 283-291, 2015. https://doi.org/10.17221/462/2014-CJFS
  • W. Wang, J. de Dios-Alché and M. I. Rodriguez-Garcia, Characterization of olive seed storage proteins. Acta Physiologiae Plantarum, 29, 439-444. 2007. http://dx.doi.org/10.1007/s11738-007-0053-2
  • D. J. Cookman and C. E. Glatz, Extraction of protein from distiller's grain. Bioresource Technology, 100, 2012-2017, 2009. https://doi.org/10.1016/j.biortech.2008.09.059
  • H. Yoshikawa, A. Hirano, T. Arakawa and K. Shiraki, Mechanistic insights into protein precipitation by alcohol. International Journal of Biological Macromolecules, 50, 865-871, 2012. https://doi.org/10.1016/j.ijbiomac.2011.11.005
  • C. Tanger, J. Engel and U. Kulozik, Influence of extraction conditions on the conformational alteration of pea protein extracted from pea flour. Food Hydrocolloids, 107, 2020. https://doi.org/10.1016/j.foodhyd.2020.105949
  • L. Shen, X. Wang, Z. Wang, Y. Wu and J. Chen, Studies on tea protein extraction using alkaline and enzyme methods. Food Chemistry, 107(2), 929-938, 2008. https://doi.org/10.1016/j.foodchem.2007.08.047
  • Y. W. Sari, M. E. Bruins and J. P. M. Sanders, Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Industrial Crops and Products, 43, 78-83, 2013. https://doi.org/10.1016/j.indcrop.2012.07.014
  • F. F. Shih, E. T. Champagne, K. Daigle and Z. Zarins, Use of enzymes in the processing of protein products from rice bran and rice flour, Nahrung, 43(1), 14-18, 1999. https://doi.org/10.1002/(SICI)1521-3803(19990101)43:1<14::AID-FOOD14>3.0.CO;2-K
  • S. Jung, B. P. Lamsal, V. Stepien, L. A. Johnson and P. A. Murphy, Functionality of soy protein produced by enzyme-assisted extraction. Journal of American Oil Chemists Society, 83(1), 71-78, 2006. https://doi.org/10.1007/s11746-006-1178-y
  • J. Treimo, S. I. Aspmo, V. G. H. Eijsink and S. J. Horn, Enzymatic solubilization of proteins in brewer's spent grain. Journal of Agricultural and Food Chemistry, 56, 5359-5365. 2008. https://doi.org/10.1021/jf073317s
  • K. Rommi, D. Ercili-Cura, T. K. Hakala, E. Nordlund, K. Poutanen and R. Lantto, Impact of total solid content and extraction pH on enzyme-aided recovery of protein from defatted rapeseed (Brassica rapa L.) press cake and physicochemical properties of the protein fractions. Journal of Agricultural and Food Chemistry, 63(11), 2997-3003, 2015. https://doi.org/10.1021/acs.jafc.5b01077
  • M. N. Perović, D. K. J. Zorica and G. A. Mirjana, Improved recovery of protein from soy grit by enzyme-assisted alkaline extraction. Journal of Food Engineering, 276, 109894, 2020. https://doi.org/10.1016/j.jfoodeng.2019.109894
  • M. Herrero, A. Cifuentes and E. Ibañez, Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae. Food Chemistry, 98, 136-148, 2006. https://doi.org/10.1016/j.foodchem.2005.05.058
  • K. Watchararuji, M. Goto, M. Sasaki and A. Shotipruk, Value-added subcritical water hydrolysate from rice bran and soybean meal. Bioresource Technology, 99(14), 6207-6213, 2008. https://doi.org/10.1016/j.biortech.2007.12.021
  • I. Sereewatthanawut, S. Prapintip, K. Watchiraruji, M. Goto, M. Sasaki and A. Shotipruk, Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresource Technology, 99(3), 555–561, 2008. https://doi.org/10.1016/j.biortech.2006.12.030
  • M. A. Winters, B. L. Knutson, P. G. Debenedetti, H. G. Sparks, T. M. Przybycien, C. L. Stevenson and S. J. Prestrelski, Precipitation of proteins in supercritical carbon dioxide. Journal of Pharmaceutical Sciences, 85, 586–594, 1996. https://doi.org/10.1021/js950482q
  • S. Moshashaée, M. Bisrat, R. T. Forbes, H. Nyqvist and P. York, Supercritical fluid processing of proteins: I: Lysozyme precipitation from organic solution. European Journal of Pharmaceutical Sciences, 11(3), 239-245, 2000. https://doi.org/10.1016/S0928-0987(00)00108-1
  • K. Li, H. Ma, S. Li, C. Zhang and C. Dai, Effect of ultrasound on alkali extraction protein from rice dreg flour. Journal of Food Process Engineering, 40, e12377, 2017. https://doi.org/10.1111/jfpe.12377
  • A. A. Yagoub, H. Ma and C. Zhou, Ultrasonic-assisted extraction of protein from rapeseed (Brassica napus L.) meal: Optimization of extraction conditions and structural characteristics of the protein. International Food Research Journal, 24 (2), 621-629, 2017.
  • Y. Xu, Y. Li, T. Bao, X. Zheng, W. Chen and J. Wang, A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates. Food Chemistry, 221, 114-122, 2017. https://doi.org/10.1016/j.foodchem.2016.10.053
  • K. E. Preece, N. Hooshyar, A. J. Krijgsman, P. J. Fryer and N. J. Zuidam, Intensification of protein extraction from soybean processing materials using hydrodynamic cavitation. Innovative Food Science and Emerging Technologies, 41, 47-55, 2017. https://doi.org/10.1016/j.ifset.2017.01.002
  • H. W. Huang, C. P. Hsu, B. B. Yang and C. Y. Wang, Potential utility of high-pressure processing to address the risk of food allergen concerns. Comprehensive Reviews in Food Science and Food Safety, 13(1), 78-90, 2014. https://doi.org/10.1111/1541-4337.12045
  • K. Bandyopadhyay, C. Chakraborty and A. K. Barman, Effect of microwave and enzymatic treatment on the recovery of protein from Indian defatted rice bran meal. Journal of Oleo Science, 61(10), 525–529, 2012. https://doi.org/10.5650/jos.61.525
  • S. Phongthai, S. T. Lim and S. Rawdkuen, Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties. Journal of Cereal Science, 70, 146-154, 2016. https://doi.org/10.1016/j.jcs.2016.06.001
  • Y. Zhou, Q. He and D. Zhou, Optimization extraction of protein from mussel by high-intensity pulsed electric fields. Journal of Food Processing and Preservation, 41(3), e12962, 2017. https://doi.org/10.1111/jfpp.12962
  • M. Li, J. Lin, J. Chen and T. Fang, Pulsed electric field-assisted enzymatic extraction of protein from abalone (Haliotis discus hannai Ino) viscera. Journal of Food Process Engineering, 39(6), 702–710, 2016. https://doi.org/10.1111/jfpe.12262
  • P. E. Tham, Y. J. Ng, R. Sankaran, K. S. Khoo, K. W. Chew, Y. J. Yap, M. Malahubban, Z. Aziz, A. Fitri, P. L. Show and L. Pau, Recovery of protein from dairy milk waste product using alcohol-salt liquid biphasic flotation. Processes, 7(12), 1–18, 2019. https://doi.org/10.3390/pr7120875
  • K. X. Zhu, X. H. Sun and H. M. Zhou, Optimization of ultrasound-assisted extraction of defatted wheat germ proteins by reverse micelles. Journal of Cereal Science, 50(2), 266–271. 2009. https://doi.org/10.1016/j.jcs.2009.06.006
  • Q. Zeng, Y. Wang, N. Li, X. Huang, X. Ding, X. Lin, S. Huang and X. Liu, Extraction of proteins with ionic liquid aqueous two-phase system based on guanidine ionic liquid. Talanta, 116, 409-416, 2013. https://doi.org/10.1016/j.talanta.2013.06.011
  • K. Xu, Y. Wang, Y. Huang, N. Li and Q. Wen, A green deep eutectic solvent-based aqueous two-phase system for protein extracting. Analytica Chimica Acta, 864, 9-20, 2015. https://doi.org/10.1016/j.aca.2015.01.026
  • S. Piovesana, A. L. Capriotti, C. Cavaliere, G. La Barbera, C. M. Montone, R. Zenezini R. Z. Chiozzi and A. Laganà, Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation. Analytical and Bioanalytical Chemistry, 410, 3425-3444, 2018. https://doi.org/10.1007/s00216-018-0852-x
  • D. Montesano, M. Gallo, F. Blasi and L. Cossignani, Biopeptides from vegetable proteins: New scientific evidences. Current Opinion in Food Science, 31, 31–37, 2020. https://doi.org/10.1016/j.cofs.2019.10.008
  • Y. Hou, Z. Wu, Z. Dai, G. Wang and G. Wu, Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. Journal of Animal Science and Biotechnology, 8, 24, 2017. https://doi.org/10.1186/s40104-017-0153-9
  • L. Liu, S. Li, J. Zheng, T. Bu, G. He and J. Wu, Safety considerations on food protein-derived bioactive peptides. Trends in Food Science and Technology, 96, 199-207, 2020. https://doi.org/10.1016/j.tifs.2019.12.022
  • T. J. Ashaolu, Health applications of soy protein hydrolysates. International Journal of Peptide Research and Therapeutics, 26 (4), 2333-2343, 2020. https://doi.org/10.1111/ijfs.14380
  • M. A. Mazorra-Manzano, J. C. Ramírez-Suarez and R. Y. Yada, Plant proteases for bioactive peptides release: A review. Critical Reviews in Food Science and Nutrition, 58(13), 2147-2163(2018). https://doi.org/10.1080/10408398.2017.1308312
  • J. M. Lorenzo, P. E. S. Munekata, B. Gómez, F. J. Barba, L. Mora, C. Pérez-Santaescolástica, and F. Toldrá, Bioactive peptides as natural antioxidants in food products – A review. Trends in Food Science and Technology, 79, 136-147, 2018. https://doi.org/10.1016/j.tifs.2018.07.003
  • M. Karamać, A. Kosińska-Cagnazzo, A. Kulczyk, Use of different proteases to obtain flaxseed protein hydrolysates with antioxidant activity. International Journal of Molecular Sciences, 17(7), 1027, 2016. https://doi.org/10.3390/ijms17071027
  • W. Margatan, K. Ruud, Q. Wang, T. Markowski and B. Ismail, Angiotensin converting enzyme inhibitory activity of soy protein subjected to selective hydrolysis and thermal processing. Journal of Agricultural and Food Chemistry, 61(14), 3460–3467, 2013. https://doi.org/10.1021/jf4001555
  • A. B. Nongonierma, S. Le Maux, C. Dubrulle, C. Barre and R. J. Fitzgerald, Quinoa (Chenopodium quinoa willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science, 65, 112–8, 2015. https://doi.org/10.1016/j.jcs.2015.07.004
  • R. Vilcacundo, C. Martínez-Villaluenga and B. Hernández-Ledesma Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods, 35, 531–539, 2017. https://doi.org/10.1016/j.jff.2017.06.024
  • C. Cavaliere, A. M. I. Montone, S. E. Aita, R. Capparelli, A. Cerrato, P. Cuomo, A. Laganà, C. M. Montone, S. Piovesana and A. L. Capriotti, Production and characterization of medium-sized and short antioxidant peptides from soy flour-simulated gastrointestinal hydrolysate. Antioxidants, 10, 734, 2021. https://doi.org/10.3390/antiox10050734
  • Z. Shi, B. Dun, Z. Wei, C. Liu, J. Tian, G. Ren, Y. Yao, Peptides released from extruded adzuki bean protein through simulated gastrointestinal digestion exhibit anti-inflammatory activity. Journal of Agricultural and Food Chemistry, 69(25), 7028-7036, 2021. https://doi.org/10.1021/acs.jafc.1c01712
  • S. Keskin Ulug, F. Jahandideh and J. Wu, Novel technologies for the production of bioactive peptides. Trends in Food Science and Technology, 108, 27-39, 2021. https://doi.org/10.1016/j.tifs.2020.12.002
  • C. G. Rizzello, D. Tagliazucchi, E. Babini, G. S. Rutella, D. L. Taneyo Saa and A. Gianotti, Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. Journal of Functional Foods, 2016, 549-569. 2016. https://doi.org/10.1016/j.jff.2016.09.023
  • V. S. Vallabha and P. K. Tiku, Antihypertensive peptides derived from soy protein by fermentation. International Journal of Peptide Research and Therapeutics, 20, 161-168. 2014. https://doi.org/10.1007/s10989-013-9377-5
  • J. E. Aguilar-Toalá, L. Santiago-López, C. M. Peres, C. Peres, H. S. Garcia, B. Vallejo-Cordoba, A. F. González-Córdova and A. Hernández-Mendoza, Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. Journal of Dairy Science, 100(1), 65-75, 2017. https://doi.org/10.3168/jds.2016-11846
  • R. Coda, C. G. Rizzello and M. Gobbetti, Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread of γ-aminobutyric acid (GABA), International Journal of Food Microbiology, 137, 236-245, 2010. https://doi.org/10.1016/j.ijfoodmicro.2009.12.010
  • J. S. Tsai, Y. S. Lin, B. S. Pan and T. J. Chen, Antihypertensive peptides and γ- aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk. Process Biochemistry, 41(6), 1282-1288, 2006. https://doi.org/10.1016/j.procbio.2005.12.026
  • X. Wang, H. Yu, R. Xing and P. Li, Characterization, preparation, and purification of marine bioactive peptides. BioMed Research International, 2017 (9746720), 2017. https://doi.org/10.1155/2017/9746720
  • L. Bazinet and L. Firdaous, Membrane processes and devices for separation of bioactive peptides. Recent Patents on Biotechnology, 3, 61-72, 2009. https://doi.org/10.2174/187220809787172623
  • Z. Chen, W. Li, R. K. Santhanam, C. Wang, X. Gao, Y. Chen, C. Wang, L. Xu, and H. Chen, Bioactive peptide with antioxidant and anticancer activities from black soybean [Glycine max (L.) merr.] byproduct: Isolation, identification and molecular docking study. European Food Research and Technology, 245(3), 677-689, 2019. https://doi.org/10.1007/s00217-018-3190-5
  • B. Y. Park and K. Y. Yoon, Biological activity of enzymatic hydrolysates and the membrane ultrafiltration fractions from perilla seed meal protein. Czech Journal of Food Sciences, 37, 180–185, 2019. https://doi.org/10.17221/145/2018-CJFS
  • M. M. Aondona, J. K. Ikya, M. T. Ukeyima, T. J. A. Gborigo, R. E. Aluko and A. T. Girgih, In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions. Journal of Food Biochemistry, 45, e13587, 2021. https://doi.org/10.1111/jfbc.13587
  • C. Acquah, Y. W. Chan, S. Pan, D. Agyei and C. C. Udenigwe, Structure-informed separation of bioactive peptides, Journal of Food Biochemistry, 43 (1), e12765, 2019. https://doi.org/10.1111/jfbc.12765
  • E. Iritani, Y. Mukai and Y. Kiyotomo, Effects of electric field on dynamic behaviors of dead-end inclined and downward ultrafiltration of protein solution. Journal of Membrane Science, 164, 51-57, 2000. https://doi.org/10.1016/S0376-7388(99)00202-1
  • G. Brisson, M. Britten and Y. Pouliot, Electrically-enhanced crossflow microfiltration for separation of lactoferrin from whey protein mixtures. Journal of Membrane Science, 297, 206-216, 2007. https://doi.org/10.1016/j.memsci.2007.03.046
  • A. Doyen C. C. Udenigwe P. L. Mitchell, A. Marette R. E. Aluko and L. Bazinet, Anti-diabetic and antihypertensive activities of two flaxseed protein hydrolysate fractions revealed following their simultaneous separation by electrodialysis with ultrafiltration membranes. Food Chemistry, 145, 66–76, 2014. https://doi.org/10.1016/j.foodchem.2013.07.108
  • C. Roblet, A. Doyen, J. Amiot, G. Pilon, A. Marette and L. Bazinet, Enhancement of glucose uptake in muscular cell by soybean charged peptides isolated by electrodialysis with ultrafiltration membranes (EDUF): activation of the AMPK pathway. Food Chemistry, 147, 124–130, 2014. https://doi.org/10.1016/j.foodchem.2013.09.108
  • R. He, A. T. Girgih, E. Rozoy, L. Bazinet, X. R. Ju and R.E. Aluko, Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes. Food Chemistry, 197, 1008–1014, 2016. https://doi.org/10.1016/j.foodchem.2015.11.081
  • M. E. Langevin, C. Roblet, C. Moresoli, C. Ramassamy and L. Bazinet, Comparative application of pressure- and electrically-driven membrane processes for isolation of bioactive peptides from soy protein hydrolysate. Journal of Membrane Science, 403–404, 15–24, 2012. https://doi.org/10.1016/j.memsci.2012.02.005
  • G. Brusotti, E. Calleri, R. Colombo, G. Massolini, F. Rinaldi and C. Temporini, Advances on size exclusion chromatography and applications on the analysis of protein biopharmaceuticals and protein aggregates: a mini review. Chromatographia, 81, 3–23. 2018. https://doi.org/10.1007/s10337-017-3380-5
  • T. Y. Huang, L. M. Chi and K. Y. Chien, Size-exclusion chromatography using reverse-phase columns for protein separation. Journal of Chromatography A, 1571, 201-212, 2018. https://doi.org/10.1016/j.chroma.2018.08.020
  • C. Selkirk, Ion-exchange chromatography. In P. Cutler (Ed.), Protein Purification Protocols. Methods in Molecular Biology. 2nd ed., Humana Press, pp. 125–131, Totowa, NJ, 2004.
  • C. Harscoat-Schiavo, F. Raminosoa, E. Ronat-Heit, R. Vanderesse and I. Marc, Modeling the separation of small peptides by cation-exchange chromatography, Journal of Separation Science, 33(16), 2447-2457, 2010. https://doi.org/10.1002/jssc.201000112
  • C. Singh, C. Sharma and P. Kamble Amino acid analysis using ion-exchange chromatography: a review. International Journal of Pharmacognosy, 1(12), 756-62, 2014.
  • S. Di Palma, M. L. Hennrich, A. J. R. Heck and S. Mohammed, Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis, Journal of Proteomics, 75(13), 3791-3813, 2012. https://doi.org/10.1016/j.jprot.2012.04.033
  • M. Barati, F. Javanmardi, S. M. H. M. Jazayeri, M. Masoumeh Jabbari, J. Jamal Rahmani, F. Farzaneh Barati, H. Hamid Nickho, S. H. Davoodi, N. Roshanravan and A. M. Khaneghah, Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1488-1520, 2020. https://doi.org/10.1111/1541-4337.12578
  • M. Cermeño, T. Kleekayai, M. Amigo-Benavent, P. Harnedy-Rothwell and R. J. FitzGerald, Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis, 41,1694–1717, 2020. https://doi.org/10.1016/j.jprot.2012.04.033
  • A. Ayala-Niño, G. M. Rodríguez-Serrano, L. G. González-Olivares, E. Contreras-López, P. Regal-López and A. Cepeda-Saez, Sequence identification of bioactive peptides from amaranth seed proteins (Amaranthus hypochondriacus spp.). Molecules, 24, 3033, 2019. https://doi.org/10.3390/molecules24173033
  • J. Yang, L. Hu, T. Tiantian Cai, Q. Qiuluan Chen, Q. Qian Ma, J. Jie Yang, C. Meng, J. Hong, Purification and identification of two novel antioxidant peptides from perilla (Perilla frutescens L. Britton) seed protein hydrolysates. PloS One, 13, 2018. https://doi.org/10.1371/journal.pone.0200021
  • M. S. Coelho, S. de Araujo Aquino, J. M. Latorres and M. de las Mercedes Salas-Mellado, In vitro and in vivo antioxidant capacity of chia protein hydrolysates and peptides. Food Hydrocolloids, 91, 19-25, 2019. https://doi.org/10.1016/j.foodhyd.2019.01.018
  • C. Liu, D. Ren, J. Li, L. Fang, J. Wang, J. Liu and W. Min, Cytoprotective effect and purification of novel antioxidant peptides from hazelnut (C. heterophylla Fisch) protein hydrolysates. Journal of Functional Foods, 42, 203-215. 2018. https://doi.org/10.1016/j.jff.2017.12.003
  • Z. Karami, S. H. Peighambardoust, J. Hesari, B. Akbari-Adergani and D. Andreu, Antioxidant, anticancer and ACE-inhibitory activities of bioactive peptides from wheat germ protein hydrolysates. Food Bioscience, 32, 100450, 2019. https://doi.org/10.1016/j.fbio.2019.100450
  • A. Connolly, M. O'Keeffe, A. Nongonierma, C. Piggott and R. FitzGerald, Isolation of peptides from a novel brewers spent grain protein isolate with potential to modulate glycaemic response. International Journal of Food Science and Technology, 52(1):146–53, 2017. https://doi.org/10.1111/ijfs.13260
  • A. Kannan, N. S. Hettiarachchy, J. O. L. Lay and R. Iyanage, Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides, 31(9), 1629-1634, 2010. https://doi.org/10.1016/j.peptides.2010.05.018
  • A. Wali, Y. Mijiti, G. Yanhua, A. Yili, H. A. Aisa and A. Kawuli, Isolation and Identification of a Novel Antioxidant Peptide from Chickpea (Cicer arietinum L.) Sprout Protein Hydrolysates. International Journal of Peptide Research and Therapeutics, 27, 219–227. 2021. https://doi.org/10.1007/s10989-020-10070-2
  • C. Torres-Fuentes, M. Alaiz and J. Vioque, Affinity purification and characterisation of chelating peptides from chickpea protein hydrolysates. Food Chemistry, 129(2), 485-490, 2011. https://doi.org/10.1016/j.foodchem.2011.04.103
  • E. González-García, P. Puchalska, M. L. Marina and M. C. García, Fractionation and identification of antioxidant and angiotensin-converting enzyme-inhibitory peptides obtained from plum (Prunus domestica L.) Stones. Journal of Functional Foods, 19, 376-384, 2015. https://doi.org/10.1016/j.jff.2015.08.033
  • R. Vásquez-Villanueva, L. Muñoz-Moreno, M. J. Carmena, M. L. Marina and M. C. García, In vitro antitumor and hypotensive activity of peptides from olive seeds. Journal of Functional Foods, 42, 177-184, 2018. https://doi.org/10.1016/j.jff.2017.12.062
  • C. Megías, J. Pedroche, M. del Mar Yust, M. Alaiz, J. Girón-Calle, F. Millán and J. Vioque, Purification of angiotensin converting enzyme inhibitory peptides from sunflower protein hydrolysates by reverse-phase chromatography following affinity purification. LWT - Food Science and Technology, 42, 228–232, 2009. https://doi.org/10.1021/jf061488b
  • M. Zarei, A. Ebrahimpour, A. Abdul-Hamid, F. Anwar, F. A. Bakar, R. Philip and N. Saari, Identification and characterization of papain-generated antioxidant peptides from palm kernel cake proteins. Food Research International, 62, 726-734, 2014. https://doi.org/10.3390/biom9100569
  • T. Can, Introduction to Bioinformatics. In M. Yousef and J. Allmer (Eds.), miRNomics: MicroRNA Biology and Computational Analysis, Springer Science+Business Media, pp. 51–71, 2014.
  • T. Madden, The BLAST Sequence Analysis Tool. In J. McEntyre and J. Ostell (Eds.), The NCBI Handbook Bethesda (MD): National Center for Biotechnology Information (US), pp. 281, 2002.
  • G. Cochrane, I. Karsch-Mizrachi and T. Takagi, The international nucleotide sequence database collaboration. Nucleic Acids Research, 44(D1), D48–D50, 2016. https://doi.org/10.1093/nar/gkv1323
  • S. Ötleş, B. Bakar and B. Kaplan Türköz, Bioinformatic Analysis. In L.M.L. Nollet and S. Ötleş (Eds), Bioactive Peptides from Food: Sources, Analysis, and Functions, CRC Press, pp. 321-346, 2022.
  • A. Iwaniak, M. Darewicz, D. Mogut and P. Minkiewicz, Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. Journal of Functional Foods, 61, 103486, 2019. https://doi.org/10.1016/j.jff.2019.103486
  • A. Iwaniak, M. Darewicz and P. Minkiewicz, Databases of bioactive peptides. In F. Toldrá and J. Wu (Ed.), Biologically Active Peptides From Basic Science to Applications for Human Health, Academic Press, pp. 309–330. 2021.
  • P. Minkiewicz, A. Iwaniak and M. Darewicz, BIOPEP-UWM database of bioactive peptides: current opportunities. International Journal of Molecular Sciences, 20(23), 5978, 2019. https://doi.org/10.3390/ijms20235978
  • T. Panyayai, C. Ngamphiw, S. Tongsima, W. Mhuantong, W. Limsripraphan, K. Choowongkomon and O. Sawatdichaikul, FeptideDB: A web application for new bioactive peptides from food protein. Heliyon, 5(7), e02076, 2019. https://doi.org/10.1016/j.heliyon.2019.e02076
  • E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel and A. Bairoch, Protein Identification and Analysis Tools on the ExPASy Server. In J. M. Walker (Ed.), The Proteomics Protocols Handbook, Humana Press, pp. 571–607, 2005.
  • C. Kartal, B. Kaplan Türköz and S. Otles, Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. Journal of Food Measurement and Characterization, 14, 1865–1883, 2020. https://doi.org/10.1007/s11694-020-00434-z
  • A. Peredo-Lovillo, A. Hernández-Mendoza, B. Vallejo-Cordoba and H. E. Romero-Luna, Conventional and in silico approaches to select promising food-derived bioactive peptides: A review. Food Chemistry: X, 13, 100183, 2022. https://doi.org/10.1016/j.fochx.2021.100183
  • A. Thomas, S. Deshayes, M. Decaffmeyer, M. H. Van Eyck, B. Charloteaux and R. Brasseur, Prediction of peptide structure: How far are we?. Proteins: Structure, Function, and Bioinformatics, 65(4), 889–897, 2006. https://doi.org/10.1002/prot.21151
  • R. K. Spencer and J. S. Nowick, A newcomer′s guide to peptide crystallography. Israel Journal of Chemistry, 55(6‐7), 698–710, 2015. https://doi.org/10.1002/ijch.201400179
  • F. Zhang, N. Adnani, E. Vazquez-Rivera, D. R. Braun, M. Tonelli, D. R. Andes and T. S. Bugni, Application of 3D NMR for Structure Determination of Peptide Natural Products. The Journal of Organic Chemistry, 80(17), 8713–8719, 2015. https://doi.org/10.1021/acs.joc.5b01486
  • T. W. Gräwert and D. I. Svergun, Structural modeling using solution small-angle X-ray scattering (SAXS). Journal of Molecular Biology, 432(9), 3078–3092, 2020. https://doi.org/10.1016/j.jmb.2020.01.030
  • J. Verma, V. K. Coutinho and C. Evans, 3D-QSAR in Drug Design - A Review. Current Topics in Medicinal Chemistry, 10(1), 95–115, 2010. https://doi.org/10.2174/156802610790232260
  • A. B. Nongonierma and R. J. Fitzgerald, Learnings from quantitative structure-activity relationship (QSAR) studies with respect to food protein-derived bioactive peptides: A review. RSC Advances, 6(79), 75400–75413, 2016. https://doi.org/10.1039/x0xx00000x
  • S. Hellberg, M. Sjöström, B. Skagerberg and S. Wold, Peptide quantitative structure-activity relationships, a multivariate approach. Journal of Medicinal Chemistry, 30(7), 1126–1135, 1987. https://doi.org/10.1021/jm00390a003
  • E. R. Collantes and W. J. Dunn, Amino acid side chain descriptors for quantitative structure-activity relationship studies of peptide analogs. Journal of Medicinal Chemistry, 38(14), 2705–2713, 1995. https://doi.org/10.1021/jm00014a022
  • M. Sandberg, L. Eriksson, J. Jonsson, M. Sjöström and S. Wold, New chemical descriptors relevant for the design of biologically active peptides. a multivariate characterization of 87 amino acids. Journal of Medicinal Chemistry, 41(14), 2481–2491, 1998. https://doi.org/10.1021/jm9700575
  • F. Tian, Y. Lv and L. Yang, Structure-based prediction of protein–protein binding affinity with consideration of allosteric effect. Amino Acids, 43(2), 531–543, 2012. https://doi.org/10.1007/s00726-011-1101-1
  • E. Atilgan and J. Hu, Efficient protein-ligand docking using sustainable evolutionary algorithms. 2010 10th International Conference on Hybrid Intelligent Systems, HIS 2010, (pp.113–118), 2010. https://doi.org/10.1109/HIS.2010.5600082
  • H. Geng, F. Chen, J. Ye and F. Jiang, Applications of Molecular Dynamics Simulation in Structure Prediction of Peptides and Proteins. Computational and Structural Biotechnology Journal, 17, 1162–1170, 2019. https://doi.org/10.1016/j.csbj.2019.07.010
  • Y. Zhang, A. N. Aryee and B. K. Simpson, Current role of in silico approaches for food enzymes. Current Opinion in Food Science, 31, 63–70, 2020. https://doi.org/10.1016/j.cofs.2019.11.003

Current methods used in the production, purification and characterization of food-derived proteins and bioactive peptides and bioinformatics approaches

Year 2023, Volume: 12 Issue: 2, 395 - 407, 15.04.2023
https://doi.org/10.28948/ngumuh.1177148

Abstract

Nowadays, the revealing of the relationship between nutritional habits and human health causes an increase in the studies targeting especially food-derived bioactive components. Food-derived peptides, on the other hand, have emerged as a very important area for researchers with their potential bioactivity. Bioactive peptides are specific amino acid sequences that have many health effects, and they may occur as a result of protein hydrolysis with digestive enzymes, proteolytic enzymes or fermentation. In addition to traditional hydrolysis methods, many new technologies are used in the production of protein hydrolysates and peptides, and also in the purification phase, new membrane and chromatography methods are used. The amino acid sequences of the peptides whose bioactivity is detected, are determined by various mass spectrometry methods. In addition, many bioinformatics tools have been developed for the prediction, identification, determination of amino acid sequence and characterization of bioactive peptides. This review aims to present a broad literature review of experimental and bioinformatics methods for the obtaining of food-derived protein and hydrolysate, peptide separation, purification and structural characterization.

Project Number

117O319

References

  • H. Kamal, C. F. Le, A. M. Salter and A. Ali, Extraction of protein from food waste: An overview of current status and opportunities. Comprehensive Reviews in Food Science and Food Safety, 20, 2455-2475, 2021. https://doi.org/10.1111/1541-4337.12739
  • R. J. S. de Castro and H. H. Sato, Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International, 74, 85-198, 2015. https://doi.org/10.1016/j.foodres.2015.05.013
  • D. Agyei, C. M. Ongkudon, C. Y. Wei, A. S. Chan and M. K. Danquah, Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing, 98, 244-256, 2016. http://dx.doi.org/10.1016/j.fbp.2016.02.003
  • S. Chakrabarti, S. Guha and K. Majumder, Food-derived bioactive peptides in human health: challenges and opportunities. Nutrients, 10, 1738, 2018. https://doi.org/10.3390/nu10111738
  • C. C. Udenigwe and R. E. Aluko, Food protein-derived bioactive peptides: production, processing, and potential health benefits. Journal of Food Science, 77(1), R11-R24, 2012. https://doi.org/10.1111/j.1750-3841.2011.02455.x
  • G. Shahidi and J. Zhong, Bioactive peptides. Journal of AOAC International, 91, 914-931, 2008. https://doi.org/10.1093/jaoac/91.4.914
  • B. A. Kehinde and P. Sharma, Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: a review. Critical Reviews in Food Science and Nutrition, 60(2), 322-340, 2020. https://doi.org/10.1080/10408398.2018.1528206
  • M. Pojić, A. Mišan and B. Tiwari, Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science and Technology, 75, 93– 104, 2018. https://doi.org/10.1016/j.tifs.2018.03.010
  • M. Del Mar Contreras, A. Lama-Muñoz, J. M. Gutiérrez-Pérez, F. Espínola, M. Moya, E. Castro, Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. Bioresource Technology, 280,459–77, 2019. https://doi.org/10.1016/j.biortech.2019.02.040
  • Y. W. Sari, W. J. Mulder, J. P. M. Sanders and M. E. Bruins, Towards plant protein refinery: review on protein extraction using alkali and potential enzymatic assistance. Biotechnology Journal, 10, 1138–1157, 2015. https://doi.org/10.1002/biot.201400569
  • C. Wang, F. Xu, D. Li and M. Zhang, Physico-chemical and structural properties of four rice bran protein fractions based on the multiple solvent extraction method. Czech Journal of Food Sciences, 33 (3), 283-291, 2015. https://doi.org/10.17221/462/2014-CJFS
  • W. Wang, J. de Dios-Alché and M. I. Rodriguez-Garcia, Characterization of olive seed storage proteins. Acta Physiologiae Plantarum, 29, 439-444. 2007. http://dx.doi.org/10.1007/s11738-007-0053-2
  • D. J. Cookman and C. E. Glatz, Extraction of protein from distiller's grain. Bioresource Technology, 100, 2012-2017, 2009. https://doi.org/10.1016/j.biortech.2008.09.059
  • H. Yoshikawa, A. Hirano, T. Arakawa and K. Shiraki, Mechanistic insights into protein precipitation by alcohol. International Journal of Biological Macromolecules, 50, 865-871, 2012. https://doi.org/10.1016/j.ijbiomac.2011.11.005
  • C. Tanger, J. Engel and U. Kulozik, Influence of extraction conditions on the conformational alteration of pea protein extracted from pea flour. Food Hydrocolloids, 107, 2020. https://doi.org/10.1016/j.foodhyd.2020.105949
  • L. Shen, X. Wang, Z. Wang, Y. Wu and J. Chen, Studies on tea protein extraction using alkaline and enzyme methods. Food Chemistry, 107(2), 929-938, 2008. https://doi.org/10.1016/j.foodchem.2007.08.047
  • Y. W. Sari, M. E. Bruins and J. P. M. Sanders, Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Industrial Crops and Products, 43, 78-83, 2013. https://doi.org/10.1016/j.indcrop.2012.07.014
  • F. F. Shih, E. T. Champagne, K. Daigle and Z. Zarins, Use of enzymes in the processing of protein products from rice bran and rice flour, Nahrung, 43(1), 14-18, 1999. https://doi.org/10.1002/(SICI)1521-3803(19990101)43:1<14::AID-FOOD14>3.0.CO;2-K
  • S. Jung, B. P. Lamsal, V. Stepien, L. A. Johnson and P. A. Murphy, Functionality of soy protein produced by enzyme-assisted extraction. Journal of American Oil Chemists Society, 83(1), 71-78, 2006. https://doi.org/10.1007/s11746-006-1178-y
  • J. Treimo, S. I. Aspmo, V. G. H. Eijsink and S. J. Horn, Enzymatic solubilization of proteins in brewer's spent grain. Journal of Agricultural and Food Chemistry, 56, 5359-5365. 2008. https://doi.org/10.1021/jf073317s
  • K. Rommi, D. Ercili-Cura, T. K. Hakala, E. Nordlund, K. Poutanen and R. Lantto, Impact of total solid content and extraction pH on enzyme-aided recovery of protein from defatted rapeseed (Brassica rapa L.) press cake and physicochemical properties of the protein fractions. Journal of Agricultural and Food Chemistry, 63(11), 2997-3003, 2015. https://doi.org/10.1021/acs.jafc.5b01077
  • M. N. Perović, D. K. J. Zorica and G. A. Mirjana, Improved recovery of protein from soy grit by enzyme-assisted alkaline extraction. Journal of Food Engineering, 276, 109894, 2020. https://doi.org/10.1016/j.jfoodeng.2019.109894
  • M. Herrero, A. Cifuentes and E. Ibañez, Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae. Food Chemistry, 98, 136-148, 2006. https://doi.org/10.1016/j.foodchem.2005.05.058
  • K. Watchararuji, M. Goto, M. Sasaki and A. Shotipruk, Value-added subcritical water hydrolysate from rice bran and soybean meal. Bioresource Technology, 99(14), 6207-6213, 2008. https://doi.org/10.1016/j.biortech.2007.12.021
  • I. Sereewatthanawut, S. Prapintip, K. Watchiraruji, M. Goto, M. Sasaki and A. Shotipruk, Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresource Technology, 99(3), 555–561, 2008. https://doi.org/10.1016/j.biortech.2006.12.030
  • M. A. Winters, B. L. Knutson, P. G. Debenedetti, H. G. Sparks, T. M. Przybycien, C. L. Stevenson and S. J. Prestrelski, Precipitation of proteins in supercritical carbon dioxide. Journal of Pharmaceutical Sciences, 85, 586–594, 1996. https://doi.org/10.1021/js950482q
  • S. Moshashaée, M. Bisrat, R. T. Forbes, H. Nyqvist and P. York, Supercritical fluid processing of proteins: I: Lysozyme precipitation from organic solution. European Journal of Pharmaceutical Sciences, 11(3), 239-245, 2000. https://doi.org/10.1016/S0928-0987(00)00108-1
  • K. Li, H. Ma, S. Li, C. Zhang and C. Dai, Effect of ultrasound on alkali extraction protein from rice dreg flour. Journal of Food Process Engineering, 40, e12377, 2017. https://doi.org/10.1111/jfpe.12377
  • A. A. Yagoub, H. Ma and C. Zhou, Ultrasonic-assisted extraction of protein from rapeseed (Brassica napus L.) meal: Optimization of extraction conditions and structural characteristics of the protein. International Food Research Journal, 24 (2), 621-629, 2017.
  • Y. Xu, Y. Li, T. Bao, X. Zheng, W. Chen and J. Wang, A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates. Food Chemistry, 221, 114-122, 2017. https://doi.org/10.1016/j.foodchem.2016.10.053
  • K. E. Preece, N. Hooshyar, A. J. Krijgsman, P. J. Fryer and N. J. Zuidam, Intensification of protein extraction from soybean processing materials using hydrodynamic cavitation. Innovative Food Science and Emerging Technologies, 41, 47-55, 2017. https://doi.org/10.1016/j.ifset.2017.01.002
  • H. W. Huang, C. P. Hsu, B. B. Yang and C. Y. Wang, Potential utility of high-pressure processing to address the risk of food allergen concerns. Comprehensive Reviews in Food Science and Food Safety, 13(1), 78-90, 2014. https://doi.org/10.1111/1541-4337.12045
  • K. Bandyopadhyay, C. Chakraborty and A. K. Barman, Effect of microwave and enzymatic treatment on the recovery of protein from Indian defatted rice bran meal. Journal of Oleo Science, 61(10), 525–529, 2012. https://doi.org/10.5650/jos.61.525
  • S. Phongthai, S. T. Lim and S. Rawdkuen, Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties. Journal of Cereal Science, 70, 146-154, 2016. https://doi.org/10.1016/j.jcs.2016.06.001
  • Y. Zhou, Q. He and D. Zhou, Optimization extraction of protein from mussel by high-intensity pulsed electric fields. Journal of Food Processing and Preservation, 41(3), e12962, 2017. https://doi.org/10.1111/jfpp.12962
  • M. Li, J. Lin, J. Chen and T. Fang, Pulsed electric field-assisted enzymatic extraction of protein from abalone (Haliotis discus hannai Ino) viscera. Journal of Food Process Engineering, 39(6), 702–710, 2016. https://doi.org/10.1111/jfpe.12262
  • P. E. Tham, Y. J. Ng, R. Sankaran, K. S. Khoo, K. W. Chew, Y. J. Yap, M. Malahubban, Z. Aziz, A. Fitri, P. L. Show and L. Pau, Recovery of protein from dairy milk waste product using alcohol-salt liquid biphasic flotation. Processes, 7(12), 1–18, 2019. https://doi.org/10.3390/pr7120875
  • K. X. Zhu, X. H. Sun and H. M. Zhou, Optimization of ultrasound-assisted extraction of defatted wheat germ proteins by reverse micelles. Journal of Cereal Science, 50(2), 266–271. 2009. https://doi.org/10.1016/j.jcs.2009.06.006
  • Q. Zeng, Y. Wang, N. Li, X. Huang, X. Ding, X. Lin, S. Huang and X. Liu, Extraction of proteins with ionic liquid aqueous two-phase system based on guanidine ionic liquid. Talanta, 116, 409-416, 2013. https://doi.org/10.1016/j.talanta.2013.06.011
  • K. Xu, Y. Wang, Y. Huang, N. Li and Q. Wen, A green deep eutectic solvent-based aqueous two-phase system for protein extracting. Analytica Chimica Acta, 864, 9-20, 2015. https://doi.org/10.1016/j.aca.2015.01.026
  • S. Piovesana, A. L. Capriotti, C. Cavaliere, G. La Barbera, C. M. Montone, R. Zenezini R. Z. Chiozzi and A. Laganà, Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation. Analytical and Bioanalytical Chemistry, 410, 3425-3444, 2018. https://doi.org/10.1007/s00216-018-0852-x
  • D. Montesano, M. Gallo, F. Blasi and L. Cossignani, Biopeptides from vegetable proteins: New scientific evidences. Current Opinion in Food Science, 31, 31–37, 2020. https://doi.org/10.1016/j.cofs.2019.10.008
  • Y. Hou, Z. Wu, Z. Dai, G. Wang and G. Wu, Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. Journal of Animal Science and Biotechnology, 8, 24, 2017. https://doi.org/10.1186/s40104-017-0153-9
  • L. Liu, S. Li, J. Zheng, T. Bu, G. He and J. Wu, Safety considerations on food protein-derived bioactive peptides. Trends in Food Science and Technology, 96, 199-207, 2020. https://doi.org/10.1016/j.tifs.2019.12.022
  • T. J. Ashaolu, Health applications of soy protein hydrolysates. International Journal of Peptide Research and Therapeutics, 26 (4), 2333-2343, 2020. https://doi.org/10.1111/ijfs.14380
  • M. A. Mazorra-Manzano, J. C. Ramírez-Suarez and R. Y. Yada, Plant proteases for bioactive peptides release: A review. Critical Reviews in Food Science and Nutrition, 58(13), 2147-2163(2018). https://doi.org/10.1080/10408398.2017.1308312
  • J. M. Lorenzo, P. E. S. Munekata, B. Gómez, F. J. Barba, L. Mora, C. Pérez-Santaescolástica, and F. Toldrá, Bioactive peptides as natural antioxidants in food products – A review. Trends in Food Science and Technology, 79, 136-147, 2018. https://doi.org/10.1016/j.tifs.2018.07.003
  • M. Karamać, A. Kosińska-Cagnazzo, A. Kulczyk, Use of different proteases to obtain flaxseed protein hydrolysates with antioxidant activity. International Journal of Molecular Sciences, 17(7), 1027, 2016. https://doi.org/10.3390/ijms17071027
  • W. Margatan, K. Ruud, Q. Wang, T. Markowski and B. Ismail, Angiotensin converting enzyme inhibitory activity of soy protein subjected to selective hydrolysis and thermal processing. Journal of Agricultural and Food Chemistry, 61(14), 3460–3467, 2013. https://doi.org/10.1021/jf4001555
  • A. B. Nongonierma, S. Le Maux, C. Dubrulle, C. Barre and R. J. Fitzgerald, Quinoa (Chenopodium quinoa willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science, 65, 112–8, 2015. https://doi.org/10.1016/j.jcs.2015.07.004
  • R. Vilcacundo, C. Martínez-Villaluenga and B. Hernández-Ledesma Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods, 35, 531–539, 2017. https://doi.org/10.1016/j.jff.2017.06.024
  • C. Cavaliere, A. M. I. Montone, S. E. Aita, R. Capparelli, A. Cerrato, P. Cuomo, A. Laganà, C. M. Montone, S. Piovesana and A. L. Capriotti, Production and characterization of medium-sized and short antioxidant peptides from soy flour-simulated gastrointestinal hydrolysate. Antioxidants, 10, 734, 2021. https://doi.org/10.3390/antiox10050734
  • Z. Shi, B. Dun, Z. Wei, C. Liu, J. Tian, G. Ren, Y. Yao, Peptides released from extruded adzuki bean protein through simulated gastrointestinal digestion exhibit anti-inflammatory activity. Journal of Agricultural and Food Chemistry, 69(25), 7028-7036, 2021. https://doi.org/10.1021/acs.jafc.1c01712
  • S. Keskin Ulug, F. Jahandideh and J. Wu, Novel technologies for the production of bioactive peptides. Trends in Food Science and Technology, 108, 27-39, 2021. https://doi.org/10.1016/j.tifs.2020.12.002
  • C. G. Rizzello, D. Tagliazucchi, E. Babini, G. S. Rutella, D. L. Taneyo Saa and A. Gianotti, Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. Journal of Functional Foods, 2016, 549-569. 2016. https://doi.org/10.1016/j.jff.2016.09.023
  • V. S. Vallabha and P. K. Tiku, Antihypertensive peptides derived from soy protein by fermentation. International Journal of Peptide Research and Therapeutics, 20, 161-168. 2014. https://doi.org/10.1007/s10989-013-9377-5
  • J. E. Aguilar-Toalá, L. Santiago-López, C. M. Peres, C. Peres, H. S. Garcia, B. Vallejo-Cordoba, A. F. González-Córdova and A. Hernández-Mendoza, Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. Journal of Dairy Science, 100(1), 65-75, 2017. https://doi.org/10.3168/jds.2016-11846
  • R. Coda, C. G. Rizzello and M. Gobbetti, Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread of γ-aminobutyric acid (GABA), International Journal of Food Microbiology, 137, 236-245, 2010. https://doi.org/10.1016/j.ijfoodmicro.2009.12.010
  • J. S. Tsai, Y. S. Lin, B. S. Pan and T. J. Chen, Antihypertensive peptides and γ- aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk. Process Biochemistry, 41(6), 1282-1288, 2006. https://doi.org/10.1016/j.procbio.2005.12.026
  • X. Wang, H. Yu, R. Xing and P. Li, Characterization, preparation, and purification of marine bioactive peptides. BioMed Research International, 2017 (9746720), 2017. https://doi.org/10.1155/2017/9746720
  • L. Bazinet and L. Firdaous, Membrane processes and devices for separation of bioactive peptides. Recent Patents on Biotechnology, 3, 61-72, 2009. https://doi.org/10.2174/187220809787172623
  • Z. Chen, W. Li, R. K. Santhanam, C. Wang, X. Gao, Y. Chen, C. Wang, L. Xu, and H. Chen, Bioactive peptide with antioxidant and anticancer activities from black soybean [Glycine max (L.) merr.] byproduct: Isolation, identification and molecular docking study. European Food Research and Technology, 245(3), 677-689, 2019. https://doi.org/10.1007/s00217-018-3190-5
  • B. Y. Park and K. Y. Yoon, Biological activity of enzymatic hydrolysates and the membrane ultrafiltration fractions from perilla seed meal protein. Czech Journal of Food Sciences, 37, 180–185, 2019. https://doi.org/10.17221/145/2018-CJFS
  • M. M. Aondona, J. K. Ikya, M. T. Ukeyima, T. J. A. Gborigo, R. E. Aluko and A. T. Girgih, In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions. Journal of Food Biochemistry, 45, e13587, 2021. https://doi.org/10.1111/jfbc.13587
  • C. Acquah, Y. W. Chan, S. Pan, D. Agyei and C. C. Udenigwe, Structure-informed separation of bioactive peptides, Journal of Food Biochemistry, 43 (1), e12765, 2019. https://doi.org/10.1111/jfbc.12765
  • E. Iritani, Y. Mukai and Y. Kiyotomo, Effects of electric field on dynamic behaviors of dead-end inclined and downward ultrafiltration of protein solution. Journal of Membrane Science, 164, 51-57, 2000. https://doi.org/10.1016/S0376-7388(99)00202-1
  • G. Brisson, M. Britten and Y. Pouliot, Electrically-enhanced crossflow microfiltration for separation of lactoferrin from whey protein mixtures. Journal of Membrane Science, 297, 206-216, 2007. https://doi.org/10.1016/j.memsci.2007.03.046
  • A. Doyen C. C. Udenigwe P. L. Mitchell, A. Marette R. E. Aluko and L. Bazinet, Anti-diabetic and antihypertensive activities of two flaxseed protein hydrolysate fractions revealed following their simultaneous separation by electrodialysis with ultrafiltration membranes. Food Chemistry, 145, 66–76, 2014. https://doi.org/10.1016/j.foodchem.2013.07.108
  • C. Roblet, A. Doyen, J. Amiot, G. Pilon, A. Marette and L. Bazinet, Enhancement of glucose uptake in muscular cell by soybean charged peptides isolated by electrodialysis with ultrafiltration membranes (EDUF): activation of the AMPK pathway. Food Chemistry, 147, 124–130, 2014. https://doi.org/10.1016/j.foodchem.2013.09.108
  • R. He, A. T. Girgih, E. Rozoy, L. Bazinet, X. R. Ju and R.E. Aluko, Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes. Food Chemistry, 197, 1008–1014, 2016. https://doi.org/10.1016/j.foodchem.2015.11.081
  • M. E. Langevin, C. Roblet, C. Moresoli, C. Ramassamy and L. Bazinet, Comparative application of pressure- and electrically-driven membrane processes for isolation of bioactive peptides from soy protein hydrolysate. Journal of Membrane Science, 403–404, 15–24, 2012. https://doi.org/10.1016/j.memsci.2012.02.005
  • G. Brusotti, E. Calleri, R. Colombo, G. Massolini, F. Rinaldi and C. Temporini, Advances on size exclusion chromatography and applications on the analysis of protein biopharmaceuticals and protein aggregates: a mini review. Chromatographia, 81, 3–23. 2018. https://doi.org/10.1007/s10337-017-3380-5
  • T. Y. Huang, L. M. Chi and K. Y. Chien, Size-exclusion chromatography using reverse-phase columns for protein separation. Journal of Chromatography A, 1571, 201-212, 2018. https://doi.org/10.1016/j.chroma.2018.08.020
  • C. Selkirk, Ion-exchange chromatography. In P. Cutler (Ed.), Protein Purification Protocols. Methods in Molecular Biology. 2nd ed., Humana Press, pp. 125–131, Totowa, NJ, 2004.
  • C. Harscoat-Schiavo, F. Raminosoa, E. Ronat-Heit, R. Vanderesse and I. Marc, Modeling the separation of small peptides by cation-exchange chromatography, Journal of Separation Science, 33(16), 2447-2457, 2010. https://doi.org/10.1002/jssc.201000112
  • C. Singh, C. Sharma and P. Kamble Amino acid analysis using ion-exchange chromatography: a review. International Journal of Pharmacognosy, 1(12), 756-62, 2014.
  • S. Di Palma, M. L. Hennrich, A. J. R. Heck and S. Mohammed, Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis, Journal of Proteomics, 75(13), 3791-3813, 2012. https://doi.org/10.1016/j.jprot.2012.04.033
  • M. Barati, F. Javanmardi, S. M. H. M. Jazayeri, M. Masoumeh Jabbari, J. Jamal Rahmani, F. Farzaneh Barati, H. Hamid Nickho, S. H. Davoodi, N. Roshanravan and A. M. Khaneghah, Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1488-1520, 2020. https://doi.org/10.1111/1541-4337.12578
  • M. Cermeño, T. Kleekayai, M. Amigo-Benavent, P. Harnedy-Rothwell and R. J. FitzGerald, Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis, 41,1694–1717, 2020. https://doi.org/10.1016/j.jprot.2012.04.033
  • A. Ayala-Niño, G. M. Rodríguez-Serrano, L. G. González-Olivares, E. Contreras-López, P. Regal-López and A. Cepeda-Saez, Sequence identification of bioactive peptides from amaranth seed proteins (Amaranthus hypochondriacus spp.). Molecules, 24, 3033, 2019. https://doi.org/10.3390/molecules24173033
  • J. Yang, L. Hu, T. Tiantian Cai, Q. Qiuluan Chen, Q. Qian Ma, J. Jie Yang, C. Meng, J. Hong, Purification and identification of two novel antioxidant peptides from perilla (Perilla frutescens L. Britton) seed protein hydrolysates. PloS One, 13, 2018. https://doi.org/10.1371/journal.pone.0200021
  • M. S. Coelho, S. de Araujo Aquino, J. M. Latorres and M. de las Mercedes Salas-Mellado, In vitro and in vivo antioxidant capacity of chia protein hydrolysates and peptides. Food Hydrocolloids, 91, 19-25, 2019. https://doi.org/10.1016/j.foodhyd.2019.01.018
  • C. Liu, D. Ren, J. Li, L. Fang, J. Wang, J. Liu and W. Min, Cytoprotective effect and purification of novel antioxidant peptides from hazelnut (C. heterophylla Fisch) protein hydrolysates. Journal of Functional Foods, 42, 203-215. 2018. https://doi.org/10.1016/j.jff.2017.12.003
  • Z. Karami, S. H. Peighambardoust, J. Hesari, B. Akbari-Adergani and D. Andreu, Antioxidant, anticancer and ACE-inhibitory activities of bioactive peptides from wheat germ protein hydrolysates. Food Bioscience, 32, 100450, 2019. https://doi.org/10.1016/j.fbio.2019.100450
  • A. Connolly, M. O'Keeffe, A. Nongonierma, C. Piggott and R. FitzGerald, Isolation of peptides from a novel brewers spent grain protein isolate with potential to modulate glycaemic response. International Journal of Food Science and Technology, 52(1):146–53, 2017. https://doi.org/10.1111/ijfs.13260
  • A. Kannan, N. S. Hettiarachchy, J. O. L. Lay and R. Iyanage, Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides, 31(9), 1629-1634, 2010. https://doi.org/10.1016/j.peptides.2010.05.018
  • A. Wali, Y. Mijiti, G. Yanhua, A. Yili, H. A. Aisa and A. Kawuli, Isolation and Identification of a Novel Antioxidant Peptide from Chickpea (Cicer arietinum L.) Sprout Protein Hydrolysates. International Journal of Peptide Research and Therapeutics, 27, 219–227. 2021. https://doi.org/10.1007/s10989-020-10070-2
  • C. Torres-Fuentes, M. Alaiz and J. Vioque, Affinity purification and characterisation of chelating peptides from chickpea protein hydrolysates. Food Chemistry, 129(2), 485-490, 2011. https://doi.org/10.1016/j.foodchem.2011.04.103
  • E. González-García, P. Puchalska, M. L. Marina and M. C. García, Fractionation and identification of antioxidant and angiotensin-converting enzyme-inhibitory peptides obtained from plum (Prunus domestica L.) Stones. Journal of Functional Foods, 19, 376-384, 2015. https://doi.org/10.1016/j.jff.2015.08.033
  • R. Vásquez-Villanueva, L. Muñoz-Moreno, M. J. Carmena, M. L. Marina and M. C. García, In vitro antitumor and hypotensive activity of peptides from olive seeds. Journal of Functional Foods, 42, 177-184, 2018. https://doi.org/10.1016/j.jff.2017.12.062
  • C. Megías, J. Pedroche, M. del Mar Yust, M. Alaiz, J. Girón-Calle, F. Millán and J. Vioque, Purification of angiotensin converting enzyme inhibitory peptides from sunflower protein hydrolysates by reverse-phase chromatography following affinity purification. LWT - Food Science and Technology, 42, 228–232, 2009. https://doi.org/10.1021/jf061488b
  • M. Zarei, A. Ebrahimpour, A. Abdul-Hamid, F. Anwar, F. A. Bakar, R. Philip and N. Saari, Identification and characterization of papain-generated antioxidant peptides from palm kernel cake proteins. Food Research International, 62, 726-734, 2014. https://doi.org/10.3390/biom9100569
  • T. Can, Introduction to Bioinformatics. In M. Yousef and J. Allmer (Eds.), miRNomics: MicroRNA Biology and Computational Analysis, Springer Science+Business Media, pp. 51–71, 2014.
  • T. Madden, The BLAST Sequence Analysis Tool. In J. McEntyre and J. Ostell (Eds.), The NCBI Handbook Bethesda (MD): National Center for Biotechnology Information (US), pp. 281, 2002.
  • G. Cochrane, I. Karsch-Mizrachi and T. Takagi, The international nucleotide sequence database collaboration. Nucleic Acids Research, 44(D1), D48–D50, 2016. https://doi.org/10.1093/nar/gkv1323
  • S. Ötleş, B. Bakar and B. Kaplan Türköz, Bioinformatic Analysis. In L.M.L. Nollet and S. Ötleş (Eds), Bioactive Peptides from Food: Sources, Analysis, and Functions, CRC Press, pp. 321-346, 2022.
  • A. Iwaniak, M. Darewicz, D. Mogut and P. Minkiewicz, Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. Journal of Functional Foods, 61, 103486, 2019. https://doi.org/10.1016/j.jff.2019.103486
  • A. Iwaniak, M. Darewicz and P. Minkiewicz, Databases of bioactive peptides. In F. Toldrá and J. Wu (Ed.), Biologically Active Peptides From Basic Science to Applications for Human Health, Academic Press, pp. 309–330. 2021.
  • P. Minkiewicz, A. Iwaniak and M. Darewicz, BIOPEP-UWM database of bioactive peptides: current opportunities. International Journal of Molecular Sciences, 20(23), 5978, 2019. https://doi.org/10.3390/ijms20235978
  • T. Panyayai, C. Ngamphiw, S. Tongsima, W. Mhuantong, W. Limsripraphan, K. Choowongkomon and O. Sawatdichaikul, FeptideDB: A web application for new bioactive peptides from food protein. Heliyon, 5(7), e02076, 2019. https://doi.org/10.1016/j.heliyon.2019.e02076
  • E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel and A. Bairoch, Protein Identification and Analysis Tools on the ExPASy Server. In J. M. Walker (Ed.), The Proteomics Protocols Handbook, Humana Press, pp. 571–607, 2005.
  • C. Kartal, B. Kaplan Türköz and S. Otles, Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. Journal of Food Measurement and Characterization, 14, 1865–1883, 2020. https://doi.org/10.1007/s11694-020-00434-z
  • A. Peredo-Lovillo, A. Hernández-Mendoza, B. Vallejo-Cordoba and H. E. Romero-Luna, Conventional and in silico approaches to select promising food-derived bioactive peptides: A review. Food Chemistry: X, 13, 100183, 2022. https://doi.org/10.1016/j.fochx.2021.100183
  • A. Thomas, S. Deshayes, M. Decaffmeyer, M. H. Van Eyck, B. Charloteaux and R. Brasseur, Prediction of peptide structure: How far are we?. Proteins: Structure, Function, and Bioinformatics, 65(4), 889–897, 2006. https://doi.org/10.1002/prot.21151
  • R. K. Spencer and J. S. Nowick, A newcomer′s guide to peptide crystallography. Israel Journal of Chemistry, 55(6‐7), 698–710, 2015. https://doi.org/10.1002/ijch.201400179
  • F. Zhang, N. Adnani, E. Vazquez-Rivera, D. R. Braun, M. Tonelli, D. R. Andes and T. S. Bugni, Application of 3D NMR for Structure Determination of Peptide Natural Products. The Journal of Organic Chemistry, 80(17), 8713–8719, 2015. https://doi.org/10.1021/acs.joc.5b01486
  • T. W. Gräwert and D. I. Svergun, Structural modeling using solution small-angle X-ray scattering (SAXS). Journal of Molecular Biology, 432(9), 3078–3092, 2020. https://doi.org/10.1016/j.jmb.2020.01.030
  • J. Verma, V. K. Coutinho and C. Evans, 3D-QSAR in Drug Design - A Review. Current Topics in Medicinal Chemistry, 10(1), 95–115, 2010. https://doi.org/10.2174/156802610790232260
  • A. B. Nongonierma and R. J. Fitzgerald, Learnings from quantitative structure-activity relationship (QSAR) studies with respect to food protein-derived bioactive peptides: A review. RSC Advances, 6(79), 75400–75413, 2016. https://doi.org/10.1039/x0xx00000x
  • S. Hellberg, M. Sjöström, B. Skagerberg and S. Wold, Peptide quantitative structure-activity relationships, a multivariate approach. Journal of Medicinal Chemistry, 30(7), 1126–1135, 1987. https://doi.org/10.1021/jm00390a003
  • E. R. Collantes and W. J. Dunn, Amino acid side chain descriptors for quantitative structure-activity relationship studies of peptide analogs. Journal of Medicinal Chemistry, 38(14), 2705–2713, 1995. https://doi.org/10.1021/jm00014a022
  • M. Sandberg, L. Eriksson, J. Jonsson, M. Sjöström and S. Wold, New chemical descriptors relevant for the design of biologically active peptides. a multivariate characterization of 87 amino acids. Journal of Medicinal Chemistry, 41(14), 2481–2491, 1998. https://doi.org/10.1021/jm9700575
  • F. Tian, Y. Lv and L. Yang, Structure-based prediction of protein–protein binding affinity with consideration of allosteric effect. Amino Acids, 43(2), 531–543, 2012. https://doi.org/10.1007/s00726-011-1101-1
  • E. Atilgan and J. Hu, Efficient protein-ligand docking using sustainable evolutionary algorithms. 2010 10th International Conference on Hybrid Intelligent Systems, HIS 2010, (pp.113–118), 2010. https://doi.org/10.1109/HIS.2010.5600082
  • H. Geng, F. Chen, J. Ye and F. Jiang, Applications of Molecular Dynamics Simulation in Structure Prediction of Peptides and Proteins. Computational and Structural Biotechnology Journal, 17, 1162–1170, 2019. https://doi.org/10.1016/j.csbj.2019.07.010
  • Y. Zhang, A. N. Aryee and B. K. Simpson, Current role of in silico approaches for food enzymes. Current Opinion in Food Science, 31, 63–70, 2020. https://doi.org/10.1016/j.cofs.2019.11.003
There are 116 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Food Engineering
Authors

Canan Kartal 0000-0002-2679-4975

Bahar Bakar 0000-0001-8811-0906

Burcu Kaplan Türköz 0000-0003-3040-3321

Semih Ötleş 0000-0003-4571-8764

Project Number 117O319
Publication Date April 15, 2023
Submission Date October 25, 2022
Acceptance Date January 13, 2023
Published in Issue Year 2023 Volume: 12 Issue: 2

Cite

APA Kartal, C., Bakar, B., Kaplan Türköz, B., Ötleş, S. (2023). Gıda kaynaklı protein ve biyoaktif peptit eldesi, saflaştırılması ve karakterizasyonunda kullanılan güncel yöntemler ve biyoinformatik yaklaşımlar. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 395-407. https://doi.org/10.28948/ngumuh.1177148
AMA Kartal C, Bakar B, Kaplan Türköz B, Ötleş S. Gıda kaynaklı protein ve biyoaktif peptit eldesi, saflaştırılması ve karakterizasyonunda kullanılan güncel yöntemler ve biyoinformatik yaklaşımlar. NOHU J. Eng. Sci. April 2023;12(2):395-407. doi:10.28948/ngumuh.1177148
Chicago Kartal, Canan, Bahar Bakar, Burcu Kaplan Türköz, and Semih Ötleş. “Gıda Kaynaklı Protein Ve Biyoaktif Peptit Eldesi, saflaştırılması Ve Karakterizasyonunda kullanılan güncel yöntemler Ve Biyoinformatik yaklaşımlar”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 2 (April 2023): 395-407. https://doi.org/10.28948/ngumuh.1177148.
EndNote Kartal C, Bakar B, Kaplan Türköz B, Ötleş S (April 1, 2023) Gıda kaynaklı protein ve biyoaktif peptit eldesi, saflaştırılması ve karakterizasyonunda kullanılan güncel yöntemler ve biyoinformatik yaklaşımlar. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 2 395–407.
IEEE C. Kartal, B. Bakar, B. Kaplan Türköz, and S. Ötleş, “Gıda kaynaklı protein ve biyoaktif peptit eldesi, saflaştırılması ve karakterizasyonunda kullanılan güncel yöntemler ve biyoinformatik yaklaşımlar”, NOHU J. Eng. Sci., vol. 12, no. 2, pp. 395–407, 2023, doi: 10.28948/ngumuh.1177148.
ISNAD Kartal, Canan et al. “Gıda Kaynaklı Protein Ve Biyoaktif Peptit Eldesi, saflaştırılması Ve Karakterizasyonunda kullanılan güncel yöntemler Ve Biyoinformatik yaklaşımlar”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/2 (April 2023), 395-407. https://doi.org/10.28948/ngumuh.1177148.
JAMA Kartal C, Bakar B, Kaplan Türköz B, Ötleş S. Gıda kaynaklı protein ve biyoaktif peptit eldesi, saflaştırılması ve karakterizasyonunda kullanılan güncel yöntemler ve biyoinformatik yaklaşımlar. NOHU J. Eng. Sci. 2023;12:395–407.
MLA Kartal, Canan et al. “Gıda Kaynaklı Protein Ve Biyoaktif Peptit Eldesi, saflaştırılması Ve Karakterizasyonunda kullanılan güncel yöntemler Ve Biyoinformatik yaklaşımlar”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 2, 2023, pp. 395-07, doi:10.28948/ngumuh.1177148.
Vancouver Kartal C, Bakar B, Kaplan Türköz B, Ötleş S. Gıda kaynaklı protein ve biyoaktif peptit eldesi, saflaştırılması ve karakterizasyonunda kullanılan güncel yöntemler ve biyoinformatik yaklaşımlar. NOHU J. Eng. Sci. 2023;12(2):395-407.

download