Research Article
BibTex RIS Cite

Karayolu - demiryolu hemzemin geçitlerinde maruz kalınan titreşimin insan sağlığını etkileme seviyeleri

Year 2023, Volume: 12 Issue: 2, 487 - 500, 15.04.2023
https://doi.org/10.28948/ngumuh.1214112

Abstract

Çalışmada yolcu otomobili türü bir taşıtla karayolu - demiryolu hemzemin geçidi (DHG) geçişlerinde maruz kalınan ve insan sağlığını olumsuz etkileyen Tüm Vücut Titreşimi (TVT) seviyeleri araştırılmıştır. Öncelikle çalışmada geometrileri bilinen bazı yol profillerinde farklı hızlarda titreşim ölçümleri yapılmış ve bu veriler yardımıyla sayısal ortamda taşıtın tepkilerini verebilecek bir dinamik model kalibre edilmiştir. Ardından farklı sürüş hızlarında Düşük (D), Orta (O) ve Yüksek (Y) şiddet düzeylerinde DHG geçişlerinde maruz kalınan titreşim verileri yardımıyla raylar arasında ve ray dışında kalan bölümler ISO 8608 standardında tanımlanan yol profillerine benzetilmiştir. TVT’ni betimleyen taşıt dinamik modeli kullanılarak D, O ve Y şiddet seviyelerinde tek hatlı ve çift hatlı DHG’de insan vücudunun maruz kaldığı titreşim verileri üretilmiştir. Simülasyonda taşıt hızları 10 ila 50 km/sa aralığında onar birim değiştirilerek sürüş hızının etkileri de değerlendirilmiştir. ISO 2631 standardında tanımlanan titreşim parametrelerinden titreşim doz değeri (VDV) ile titreşimin insan sağlığı üzerindeki genel rahatsızlık oluşumunun seviyeleri, eşdeğer statik basınç gerilimi (Se) parametresi ile taşıyıcı iskelet sisteminin (lomber omurga) etkilenme seviyeleri araştırılmıştır. Üç farklı bozulma şiddetinde, tek ve çift demiryolu hattı geçişlerinde bu olumsuzlukların oluşumuna sebebiyet verebilecek geçiş sayıları tespit edilmiştir.

References

  • U. Kırbaş and M. Karaşahin, Pavement performance levels causing human health risks. Journal of the Croatian Association of Civil Engineers, 70 (10), 851-861, 2018. https://doi.org/10.14256/jce.2120.2017.
  • M. J. Griffin, Discomfort from feeling vehicle vibration. Vehicle System Dynamics, 45, (7-8), 679-698, 2007. https://doi.org/10.1080/ 00423110701422426.
  • ASTM D 6433, Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys. ASTM International, West Conshohocken, PA, 2016. https://doi.org/10.1520/D6433-20.
  • U. Kırbaş and M. Karaşahin, Performance models for hot mix asphalt pavements in urban roads. Construction and Building Materials, 116, 281-288, 2016. https://doi.org/10.1016/j.conbuildmat.2016.04.118.
  • G. Cantisani and G. Loprencipe, Road Roughness and Whole Body Vibration: Evaluation Tools and Comfort Limits. Journal of Transportation Engineering, 136 (9), 818-826, 2010. https://doi.org/10.1061/ /ASCE/TE.1943-436.0000143.
  • ISO 2631-1, Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration, Part 1: General Requirement. ISO, Geneva, Switzerland, 1997.
  • P. Múčka, Vibration Dose Value in Passenger Car and Road Roughness. Journal of Transportation Engineering, Part B: Pavements, 146 (4), 04020064, 2020. https://doi.org/10.1061/jpeodx.0000200.
  • J. Zhang, L. Wang, P. Jing, Y. Wu, and H. Li, IRI Threshold Values Based on Riding Comfort. Journal of Transportation Engineering, Part B: Pavements, 146 (1), 04020001, 2020. https://doi.org/10.1061/ jpeodx.0000144.
  • X. Hou, X. Liang, S. Ma, and W. Hua, "The Analysis of the Correlation between International Roughness Index and Body Ride Comfort. Ninth International Conference of Chinese Transportation Professionals (ICCTP), pp. 2554-2561, Harbin, China, 5-9 August 2009.
  • M. L. M. Duarte and G. C. de Melo, Influence of pavement type and speed on whole body vibration (WBV) levels measured on passenger vehicles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (3), 150, 2018. https://doi.org/10.1007/ s40430-018-1057-0.
  • P. Múčka, International Roughness Index Thresholds Based on Whole-Body Vibration in Passenger Cars. Transportation Research Record, 2675 (1), 305-320, 2021. https://doi.org/10.1177/0361198120960475.
  • ISO 8608, Mechanical vibration - Road surface profiles - Reporting of measured data. ISO, Geneva, Switzerland, 1995.
  • H. Du, W. Li, D. Ning, and S. Sun, Advanced Seat Suspension Control System Design for Heavy Duty Vehicles, 1st Edition. Academic Press, London, UK, 2020.
  • T. Nguyen, B. Lechner, Y. D. Wong, and J. Y. Tan, Bus Ride Index – a refined approach to evaluating road surface irregularities. Road Materials and Pavement Design, 22 (2), 423-443, 2019. https://doi.org/10.1080/ 14680629.2019.1625806.
  • P. Múčka, Sensitivity of Road Unevenness Indicators to Distresses of Composite Pavements. International Journal Pavement Research Technology, 8 (2), 72-84, 2015. https://doi.org/10.6135/ijprt.org.tw/ 2015.8(2).72.
  • U. Kırbaş and M. Karaşahin, Discomfort limits provided by railroad crossings to passenger cars. International Journal of Pavement Engineering, Online pub., 2021. https://doi.org/10.1080/ 10298436.2021.2001817.
  • D. Abudinen, L. G. Fuentes, and J. S. Carvajal Muñoz, Travel Quality Assessment of Urban Roads Based on International Roughness Index. Transportation Research Record: Journal of the Transportation Research Board, 2612 (1), 1-10, 2017. https://doi.org/10.3141/2612-01.
  • M. J. Griffin, Handbook of human vibration. Academic press, London, UK., 2012, p. 1008.
  • ISO BS EN 8041, Human response to vibration - Measuring instrumentation, ISO, Geneva, Switzerland, 2005.
  • ISO 10326-1, Mechanical vibration — Laboratory method for evaluating vehicle seat vibration — Part 1: Basic requirements, ISO, Geneva, Switzerland, 2016.
  • H. Zhang and W. Yang, Evaluation Method of Pavement Roughness Based on Human-Vehicle-Road Interaction. Tenth International Conference of Chinese Transportation Professionals (ICCTP), pp.3541-3551, Beijing, China, 2010.
  • A. Bhattacharya and J. D. McGlothlin, Occupational ergonomics: theory and applications (no. 27). CRC Press, Boca Raton, FL, U.S.A., 1996, p. 1332.
  • ISO 2631-5, Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration, Part 5: Method for evaluation of vibration containing multiple shocks, ISO, Geneva, Switzerland, 2004.
  • M. Agostinacchio, D. Ciampa, and S. Olita, The vibrations induced by surface irregularities in road pavements – a Matlab® approach. European Transport Research Review, 6 (3), 267-275, 2013. https://doi.org/10.1007/s12544-013-0127-8.
  • R. Haas, W. R. Hudson, and J. P. Zaniewski, Modern Pavement Management. Krieger Pub. Co., Malabar, Florida, USA., 1994, p. 583.
  • P. Múčka and L. Gagnon, Influence of tyre–road contact model on vehicle vibration response. Vehicle System Dynamics, 53 (9), pp. 1227-1246, 2015. https://doi.org/10.1080/00423114.2015.1041992.
  • ASTM E 1170, Standard Practices for Simulating Vehicular Response to Longitudinal Profiles of Traveled Surface, ASTM, West Conshohocken, PA, 1997. https://doi.org/10.1520/E1170-97R17.
  • S. Park, A. A. Popov, and D. J. Cole, Influence of soil deformation on off-road heavy vehicle suspension vibration. Journal of Terramechanics, 41 (1), 41-68, 2004. https://doi.org/10.1016/j.jterra.2004.02.010.
  • H. Salmani, M. Abbasi, T. Fahimi Zand, M. Fard, and R. Nakhaie Jazar, A new criterion for comfort assessment of in-wheel motor electric vehicles. Journal of Vibration and Control, 28 (3-4), 316–328, 2020. https://doi.org/10.1177/1077546320977187.
  • G. Loprencipe and P. Zoccali, Ride Quality Due to Road Surface Irregularities: Comparison of Different Methods Applied on a Set of Real Road Profiles. Coatings, 7 (5), 59, 2017. https://doi.org/10.3390/ coatings7050059.
  • G. Bonin, G. Cantisani, G. Loprencipe, and M. Sbrolli, Ride Quality Evaluation: 8 d.o.f. Vehicle Model Calibration. 4th International SIIV Congress, pp. 75-83, Palermo, Italy, 12-14 September, 2007.
  • E. Khorshid, F. Alkalby, and H. Kamal, Measurement of whole-body vibration exposure from speed control humps. Journal of Sound and Vibration, 304 (3-5), 640-659, 2007. https://doi.org/10.1016/j.jsv.2007.03.013.

Human health impact levels of vibration exposure at highway - railroad level crossings

Year 2023, Volume: 12 Issue: 2, 487 - 500, 15.04.2023
https://doi.org/10.28948/ngumuh.1214112

Abstract

The Whole Body Vibration (WBV) levels, which are exposed at the Highway - Railroad Level Crossing (RLC) passes with a passenger car type vehicle and adversely affect human health, were investigated in the study. First of all, vibration measurements were made at different speeds on some road profiles with known geometries, and a dynamic model that could give the vehicle's responses in the digital environment was calibrated with the help of these data. Then, with the help of vibration data exposed in RLC transitions at Low (L), Medium (M) and High (H) severity levels at various ride speeds, the sections between and outside the rails are compared to the road profiles defined in the ISO 8608 standard. Using the vehicle dynamic model describing the WBV, vibration data that the human body is exposed to were produced in single-track and double-track RLC at L, M and H severity levels. In the simulation, the effects of the ride speed were also evaluated by changing the vehicle speeds in the range of 10 to 50 km/h by ten units. Vibration dose value (VDV), which is the vibration parameter defined in the ISO 2631 standard, the levels of general nuisance caused by vibration on human health, the equivalent static pressure stress (Se) parameter and the level of influence of the supporting skeleton system (lumbar spine) were investigated. The number of transitions that may cause the formation of these negativities in single and double railroad crossings with three different distress severities have been determined.

References

  • U. Kırbaş and M. Karaşahin, Pavement performance levels causing human health risks. Journal of the Croatian Association of Civil Engineers, 70 (10), 851-861, 2018. https://doi.org/10.14256/jce.2120.2017.
  • M. J. Griffin, Discomfort from feeling vehicle vibration. Vehicle System Dynamics, 45, (7-8), 679-698, 2007. https://doi.org/10.1080/ 00423110701422426.
  • ASTM D 6433, Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys. ASTM International, West Conshohocken, PA, 2016. https://doi.org/10.1520/D6433-20.
  • U. Kırbaş and M. Karaşahin, Performance models for hot mix asphalt pavements in urban roads. Construction and Building Materials, 116, 281-288, 2016. https://doi.org/10.1016/j.conbuildmat.2016.04.118.
  • G. Cantisani and G. Loprencipe, Road Roughness and Whole Body Vibration: Evaluation Tools and Comfort Limits. Journal of Transportation Engineering, 136 (9), 818-826, 2010. https://doi.org/10.1061/ /ASCE/TE.1943-436.0000143.
  • ISO 2631-1, Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration, Part 1: General Requirement. ISO, Geneva, Switzerland, 1997.
  • P. Múčka, Vibration Dose Value in Passenger Car and Road Roughness. Journal of Transportation Engineering, Part B: Pavements, 146 (4), 04020064, 2020. https://doi.org/10.1061/jpeodx.0000200.
  • J. Zhang, L. Wang, P. Jing, Y. Wu, and H. Li, IRI Threshold Values Based on Riding Comfort. Journal of Transportation Engineering, Part B: Pavements, 146 (1), 04020001, 2020. https://doi.org/10.1061/ jpeodx.0000144.
  • X. Hou, X. Liang, S. Ma, and W. Hua, "The Analysis of the Correlation between International Roughness Index and Body Ride Comfort. Ninth International Conference of Chinese Transportation Professionals (ICCTP), pp. 2554-2561, Harbin, China, 5-9 August 2009.
  • M. L. M. Duarte and G. C. de Melo, Influence of pavement type and speed on whole body vibration (WBV) levels measured on passenger vehicles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (3), 150, 2018. https://doi.org/10.1007/ s40430-018-1057-0.
  • P. Múčka, International Roughness Index Thresholds Based on Whole-Body Vibration in Passenger Cars. Transportation Research Record, 2675 (1), 305-320, 2021. https://doi.org/10.1177/0361198120960475.
  • ISO 8608, Mechanical vibration - Road surface profiles - Reporting of measured data. ISO, Geneva, Switzerland, 1995.
  • H. Du, W. Li, D. Ning, and S. Sun, Advanced Seat Suspension Control System Design for Heavy Duty Vehicles, 1st Edition. Academic Press, London, UK, 2020.
  • T. Nguyen, B. Lechner, Y. D. Wong, and J. Y. Tan, Bus Ride Index – a refined approach to evaluating road surface irregularities. Road Materials and Pavement Design, 22 (2), 423-443, 2019. https://doi.org/10.1080/ 14680629.2019.1625806.
  • P. Múčka, Sensitivity of Road Unevenness Indicators to Distresses of Composite Pavements. International Journal Pavement Research Technology, 8 (2), 72-84, 2015. https://doi.org/10.6135/ijprt.org.tw/ 2015.8(2).72.
  • U. Kırbaş and M. Karaşahin, Discomfort limits provided by railroad crossings to passenger cars. International Journal of Pavement Engineering, Online pub., 2021. https://doi.org/10.1080/ 10298436.2021.2001817.
  • D. Abudinen, L. G. Fuentes, and J. S. Carvajal Muñoz, Travel Quality Assessment of Urban Roads Based on International Roughness Index. Transportation Research Record: Journal of the Transportation Research Board, 2612 (1), 1-10, 2017. https://doi.org/10.3141/2612-01.
  • M. J. Griffin, Handbook of human vibration. Academic press, London, UK., 2012, p. 1008.
  • ISO BS EN 8041, Human response to vibration - Measuring instrumentation, ISO, Geneva, Switzerland, 2005.
  • ISO 10326-1, Mechanical vibration — Laboratory method for evaluating vehicle seat vibration — Part 1: Basic requirements, ISO, Geneva, Switzerland, 2016.
  • H. Zhang and W. Yang, Evaluation Method of Pavement Roughness Based on Human-Vehicle-Road Interaction. Tenth International Conference of Chinese Transportation Professionals (ICCTP), pp.3541-3551, Beijing, China, 2010.
  • A. Bhattacharya and J. D. McGlothlin, Occupational ergonomics: theory and applications (no. 27). CRC Press, Boca Raton, FL, U.S.A., 1996, p. 1332.
  • ISO 2631-5, Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration, Part 5: Method for evaluation of vibration containing multiple shocks, ISO, Geneva, Switzerland, 2004.
  • M. Agostinacchio, D. Ciampa, and S. Olita, The vibrations induced by surface irregularities in road pavements – a Matlab® approach. European Transport Research Review, 6 (3), 267-275, 2013. https://doi.org/10.1007/s12544-013-0127-8.
  • R. Haas, W. R. Hudson, and J. P. Zaniewski, Modern Pavement Management. Krieger Pub. Co., Malabar, Florida, USA., 1994, p. 583.
  • P. Múčka and L. Gagnon, Influence of tyre–road contact model on vehicle vibration response. Vehicle System Dynamics, 53 (9), pp. 1227-1246, 2015. https://doi.org/10.1080/00423114.2015.1041992.
  • ASTM E 1170, Standard Practices for Simulating Vehicular Response to Longitudinal Profiles of Traveled Surface, ASTM, West Conshohocken, PA, 1997. https://doi.org/10.1520/E1170-97R17.
  • S. Park, A. A. Popov, and D. J. Cole, Influence of soil deformation on off-road heavy vehicle suspension vibration. Journal of Terramechanics, 41 (1), 41-68, 2004. https://doi.org/10.1016/j.jterra.2004.02.010.
  • H. Salmani, M. Abbasi, T. Fahimi Zand, M. Fard, and R. Nakhaie Jazar, A new criterion for comfort assessment of in-wheel motor electric vehicles. Journal of Vibration and Control, 28 (3-4), 316–328, 2020. https://doi.org/10.1177/1077546320977187.
  • G. Loprencipe and P. Zoccali, Ride Quality Due to Road Surface Irregularities: Comparison of Different Methods Applied on a Set of Real Road Profiles. Coatings, 7 (5), 59, 2017. https://doi.org/10.3390/ coatings7050059.
  • G. Bonin, G. Cantisani, G. Loprencipe, and M. Sbrolli, Ride Quality Evaluation: 8 d.o.f. Vehicle Model Calibration. 4th International SIIV Congress, pp. 75-83, Palermo, Italy, 12-14 September, 2007.
  • E. Khorshid, F. Alkalby, and H. Kamal, Measurement of whole-body vibration exposure from speed control humps. Journal of Sound and Vibration, 304 (3-5), 640-659, 2007. https://doi.org/10.1016/j.jsv.2007.03.013.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Ufuk Kırbaş 0000-0002-2389-425X

Mustafa Karasahin 0000-0002-3811-2230

Publication Date April 15, 2023
Submission Date December 3, 2022
Acceptance Date February 9, 2023
Published in Issue Year 2023 Volume: 12 Issue: 2

Cite

APA Kırbaş, U., & Karasahin, M. (2023). Karayolu - demiryolu hemzemin geçitlerinde maruz kalınan titreşimin insan sağlığını etkileme seviyeleri. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 487-500. https://doi.org/10.28948/ngumuh.1214112
AMA Kırbaş U, Karasahin M. Karayolu - demiryolu hemzemin geçitlerinde maruz kalınan titreşimin insan sağlığını etkileme seviyeleri. NOHU J. Eng. Sci. April 2023;12(2):487-500. doi:10.28948/ngumuh.1214112
Chicago Kırbaş, Ufuk, and Mustafa Karasahin. “Karayolu - Demiryolu Hemzemin geçitlerinde Maruz kalınan titreşimin Insan sağlığını Etkileme Seviyeleri”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 2 (April 2023): 487-500. https://doi.org/10.28948/ngumuh.1214112.
EndNote Kırbaş U, Karasahin M (April 1, 2023) Karayolu - demiryolu hemzemin geçitlerinde maruz kalınan titreşimin insan sağlığını etkileme seviyeleri. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 2 487–500.
IEEE U. Kırbaş and M. Karasahin, “Karayolu - demiryolu hemzemin geçitlerinde maruz kalınan titreşimin insan sağlığını etkileme seviyeleri”, NOHU J. Eng. Sci., vol. 12, no. 2, pp. 487–500, 2023, doi: 10.28948/ngumuh.1214112.
ISNAD Kırbaş, Ufuk - Karasahin, Mustafa. “Karayolu - Demiryolu Hemzemin geçitlerinde Maruz kalınan titreşimin Insan sağlığını Etkileme Seviyeleri”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/2 (April 2023), 487-500. https://doi.org/10.28948/ngumuh.1214112.
JAMA Kırbaş U, Karasahin M. Karayolu - demiryolu hemzemin geçitlerinde maruz kalınan titreşimin insan sağlığını etkileme seviyeleri. NOHU J. Eng. Sci. 2023;12:487–500.
MLA Kırbaş, Ufuk and Mustafa Karasahin. “Karayolu - Demiryolu Hemzemin geçitlerinde Maruz kalınan titreşimin Insan sağlığını Etkileme Seviyeleri”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 2, 2023, pp. 487-00, doi:10.28948/ngumuh.1214112.
Vancouver Kırbaş U, Karasahin M. Karayolu - demiryolu hemzemin geçitlerinde maruz kalınan titreşimin insan sağlığını etkileme seviyeleri. NOHU J. Eng. Sci. 2023;12(2):487-500.

download