Research Article
BibTex RIS Cite

Synthesis and modification of hydro(solvo) thermal-supported silica aerogels and their use in adsorption studies

Year 2023, Volume: 12 Issue: 3, 872 - 882, 15.07.2023
https://doi.org/10.28948/ngumuh.1262687

Abstract

The hydro(solvo)thermal synthesis method was used to successfully synthesize bare silica aerogels and nano- and microparticle-embedded silica aerogels containing SiO2 and carbon microparticles in this study. New groups were added to these structures through modification. In the study, first, the effect of the variables was systematically examined to determine the optimum conditions. The most suitable recipe for silica aerogel was created. SiO2 and CP particles were synthesized, and modified silica aerogels were prepared with these particles and agents containing amine. For the characterization of synthesized silica aerogel, particles (SiO2, CP) and particle-embedded silica aerogels, TGA, SEM, DLS and BET-BJH techniques were used. These structures were used as adsorbent in environmental applications such as removing organic pollutants like 4-nitro phenol, methylene blue, Victoria blue, bromophenol blue etc. from aqueous media. In this environmental application, the adsorption capacity (mg/g) was determined by using UV-vis spectroscopy. The prepared structures are good adsorbents, and the adsorption capacity can be increased 18-fold with modification.

Supporting Institution

Eskisehir Osmangazi University

Project Number

2021/15A104

Thanks

Eskisehir Osmangazi University (ESOGU) is thanked for financial support. This work has been supported by Eskisehir Osmangazi University Scientific Research Projects Coordination Unit under grant number 2021/15A104.

References

  • Iswar S, Galmarini S, Bonanomi L, Wernery J, Roumeli E, Nimalshantha S, et al. Dense and strong, but superinsulating silica aerogel. Acta Materials, 213, 116959, 2021. https://doi.org/10.1016/j.actamat .2021. 116959
  • Sandeep Ahankari, Pradyumn Paliwal, Aditya Subhedar, and Hanieh Kargarzadeh. Recent Developments in Nanocellulose-Based Aerogels in Thermal Applications: A Review. ACS Nano, 15 (3), 3849-3874, 2021. https://doi.org/10.1021/acsnano. 0c09678
  • Gupta, P., Verma, C., & Maji, P. K. Flame retardant and thermally insulating clay based aerogel facilitated by cellulose nanofibers. The Journal of Supercritical Fluids, 152, 104537, 2019. https://doi.org/10.1016/j .supflu.2019.05.005
  • Tafreshi, O. A., Mosanenzadeh, S. G., Karamikamkar, S., Saadatnia, Z., Park, C. B., & Naguib, H. E. A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications. Materials Today Chemistry, 23, 100736, 2022. https://doi.org/10.1016/j.mtchem.2021.100736
  • Smirnova I, Gurikov P. Aerogels in Chemical Engineering: Strategies Toward Tailor-Made Aerogels. Annual Review of Chemical and Biomolecular Engineering, 8, 307–34, 2017. https://doi.org/10.1146 /annurev-chembioeng-060816-101458
  • Peng, H., Xiong, W., Yang, Z., Xu, Z., Cao, J., Jia, M., & Xiang, Y. Advanced MOFs@ aerogel composites: construction and application towards environmental remediation. Journal of Hazardous Materials, 432, 128684, 2022. https://doi.org/10.1016/j.jhazmat.2 022.128684
  • Carroll, M.K.; Anderson, A.M.; Mangu, S.T.; Hajjaj, Z.; Capron, M. Aesthetic Aerogel Window Design for Sustainable Buildings. Sustainability, 14 (5), 2887, 2022. https://doi.org/10.3390/su14052887
  • Nabipour, H., Nie, S., Wang, X., Song, L., & Hu, Y. Zeolitic imidazolate framework-8/polyvinyl alcohol hybrid aerogels with excellent flame retardancy. Composites Part A: Applied Science and Manufacturing, 129, 105720, 2020. https://doi.org/10. 1016/j.compositesa.2019.105720
  • Ghaffari-Mosanenzadeh, S., Tafreshi, O. A., Karamikamkar, S., Saadatnia, Z., Rad, E., Meysami, M., & Naguib, H. E. Recent advances in tailoring and improving the properties of polyimide aerogels and their application. Advances in Colloid and Interface Science, 304, 102646, 2022. https://doi.org/10.10 16/j.cis.2022.102646
  • Wilson, S. M., Gabriel, V. A., & Tezel, F. H. Adsorption of components from air on silica aerogels. Microporous and Mesoporous Materials, 305, 110297, 2020. https://doi.org/10.1016/j.micromeso.2020.1102 97
  • McNeil, S. J., & Gupta, H. Emerging applications of aerogels in textiles. Polymer Testing, 106, 107426, 2022. https://doi.org/10.1016/j.polymertesting.2021.1 07426
  • Güzel Kaya G, Deveci H. Morphological, textural, and thermal properties of low-cost silica aerogel composites. Konya Journal of Engineering Sciences, 814–23, 2021. https://doi.org/10.36306/konjes.969489
  • Xia, Y., Man, J., Wu, X., Huang, S., Lu, A., Shen, X., ... & Fu, G. Oxygen-vacancy-assisted construction of Ce–TiO2 aerogel for efficiently boosting photocatalytic CO2 reduction without any sacrifice agent. Ceramics International, 49(4), 6100-6112, 2023. https://doi.org/10.1016/j.ceramint.2022.10.118
  • Amonette, J. E., & Matyáš, J. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review. Microporous and Mesoporous Materials, 250, 100-119, 2017. https://doi.org/10.1016 /j.micromeso.2017.04.055
  • Shrestha, D., Nayaju, T., Kandel, M. R., Pradhananga, R. R., Park, C. H., & Kim, C. S. Rice husk-derived mesoporous biogenic silica nanoparticles for gravity chromatography. Heliyon, 9(4), 2023. https://doi.org/10.1016/j.heliyon.2023.e15142
  • Rao, A. V., & Kulkarni, M. M. Hydrophobic properties of TMOS/TMES-based silica aerogels. Materials Research Bulletin, 37(9), 1667-1677, 2002. https://doi.org/10.1016/S0025-5408(02)00795-X
  • Chao, X., Jun, S., & Bin, Z. Ultralow density silica aerogels prepared with PEDS. Journal of non-crystalline solids, 355(8), 492-495, 2009. https://doi.org/10.1016/j.jnoncrysol.2008.12.010
  • Nadargi, D. Y., Latthe, S. S., Hirashima, H., & Rao, A. V. Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels. Microporous and Mesoporous Materials, 117(3), 617-626, 2009. https://doi.org/10.1016/j.micromeso.2008.08.025
  • Wang, Q., Meti, P., Gong, Y. D., Kim, T., Lee, K. Y., Mahadik, D. B., & Park, H. H. Ultralow dielectric constant trifluorophenylvinyl-functionalized silica aerogels with excellent hydrophobicity and enhanced mechanical properties. Ceramics International, 48(23), 34855-34863, 2022. https://doi.org/10.1016/j.cerami t.2022.08.075
  • Suvaci, E. & Ozel E. Hydrothermal Synthesis. Encyclopedia of Materials: Technical Ceramics and Glasses, Elsevier, 1, 58-69, 2021. https://doi.org/10.1016/B978-0-12-803581-8.12096-X
  • Linhares, T., de Amorim, M. T. P., & Durães, L. (2019). Silica aerogel composites with embedded fibres: a review on their preparation, properties, and applications. Journal of Materials Chemistry A, 7(40), 22768-22802. https://doi.org/10.1039/C9TA04811A
  • Diascorn, N., Calas, S., Sallée, H., Achard, P., & Rigacci, A. Polyurethane aerogels synthesis for thermal insulation–textural, thermal, and mechanical properties. The Journal of Supercritical Fluids, 106, 76-84, 2015. https://doi.org/10.1016/j.supflu.2015.05.012
  • Luo, Y., Zhou, Y., Bai, X., Cai, X., Luo, X., Deng, X., & Wu, D. Preparation and characterization of toughened polyurea aerogels incorporating linear long‐chain in the structure. Polymer Engineering & Science, 2023. https://doi.org/10.1002/pen.26260
  • Lee, J. H., & Park, S. J. Recent advances in preparations and applications of carbon aerogels: A review. Carbon, 163, 1-18, 2020. https://doi.org/10.1016/j.carbon.2 020.02.073
  • Lee, K. Y., Mahadik, D. B., Parale, V. G., & Park, H. H. Composites of silica aerogels with organics: A review of synthesis and mechanical properties. Journal of the Korean Ceramic Society, 57, 1-23, 2020. https://doi.org/10.1007/s43207-019-00002-2
  • Hasanpour, M., & Hatami, M. Application of three-dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Advances in Colloid and Interface Science, 284, 102247, 2020. https://doi.org/10.1016/j.cis.2020.102 247
  • Yang, J., Chen, Y., Xu, P., Li, Y., Jia, X., & Song, H. Fabrication of compressible and underwater superoleophobic carbon/g-C3N4 aerogel for wastewater purification. Materials Letters, 254, 210-213, 2019. https://doi.org/10.1016/j.matlet.2019.07.069
  • Rong, N., Chen, C., Ouyang, K., Zhang, K., Wang, X., & Xu, Z. Adsorption characteristics of directional cellulose nanofiber/chitosan/montmorillonite aerogel as adsorbent for wastewater treatment. Separation and Purification Technology, 274, 119120, 2021. https://doi.org/10.1016/j.seppur.2021.119120
  • Qi D, Lin C, Zhao H, Liu H, Lü T. Size regulation and prediction of the SiO2 nanoparticles prepared via Stober process. J Dispersion Sci Technol, 38, 70-74, 2017. https://doi.org/10.1080/01932691.2016.1143373
  • Ashour, M. M., Mabrouk, M., Soliman, I. E., Beherei, H. H., & Tohamy, K. M. Mesoporous silica nanoparticles prepared by different methods for biomedical applications: Comparative study. IET nanobiotechnology, 15(3), 291-300, 2021. https://doi.org/10.1049/nbt2.12023
  • Deveci H., Bas H., Sengel S. B. & Butun V. Carbon Spheres as Catalyst for Hydrogen Generation from Sodium Borohydride Methanolysis. 10th International Fiber and Polymer Research Symposium, 3, 73-76, Istanbul, Turkey, 2022.
  • Sahiner, N., & Sengel, S. B. Various amine functionalized halloysite nanotube as efficient metal free catalysts for H2 generation from sodium borohydride methanolysis. Applied Clay Science, 146, 517-525, 2017. https://doi.org/10.1016/j.clay.2017.07 .008
  • Sahiner, N., & Sengel, S. B. Environmentally benign halloysite clay nanotubes as alternative catalyst to metal nanoparticles in H2 production from methanolysis of sodium borohydride. Fuel Processing Technology, 158, 1-8, 2017. https://doi.org/10.1016 /j.fuproc.2016.12.009
  • Sengel, S.B., Somakli, S., & Butun, Vural (2021). SiO2 Particle Embedded Silica Aerogels: Environmental and Energy Applications. Eskisehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 22(8th ULPAS-Special Issue 2021), 120-128. https://doi.org/10.18038/estu btda.985092
  • Güler, Ö., Selen, V., Başgöz, Ö., Safa, H., & Yahia, I. S. Adsorption properties and synthesis of silica aerogel-hollow silica microsphere hybrid (sandwich) structure. Journal of Sol-Gel Science and Technology, 100(1), 74-88, 2021. https://doi.org/10.1 007/s10971-021-05622-x
  • N. Saad, M. Al-Mawla, E. Moubarak, M. Al-Ghoul, H. El-Rassy. Surface-functionalized silica aerogels and alcogels for methylene blue adsorption, RSC Adv. 5 (8), 6111–6122, 2015. https://doi.org/10.1039/C4RA 15504A
  • Han, H., Wei, W., Jiang, Z., Lu, J., Zhu, J., & Xie, J. Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 539-549, 2016. https://doi.org/10.1016/j.colsurfa.2016.09.056
  • Meng, S., Zhang, J., Xu, W., Chen, W., Zhu, L., Zhou, Z., & Zhu, M. Structural control of silica aerogel fibers for methylene blue removal. Science China Technological Sciences, 62, 958-964, 2019. https://doi.org/10.1007/s11431-018-9389-7
  • Liu, G., Yang, R., & Li, M. Liquid adsorption of basic dye using silica aerogels with different textural properties. Journal of non-crystalline solids, 356(4-5), 250-257, 2010. https://doi.org/10.1016/j.jnoncrysol.20 09.11.019
  • Dogan, M., Temel, F., & Tabakci, M. (2020). High-performance adsorption of 4-nitrophenol onto calix [6] arene-tethered silica from aqueous solutions. Journal of Inorganic and Organometallic Polymers and Materials, 30, 4191-4202. https://doi.org/10.1007/s10 904-020-01571-0
  • Shen, H. M., Zhu, G. Y., Yu, W. B., Wu, H. K., Ji, H. B., Shi, H. X., ... & Zheng, Y. F. Fast adsorption of p-nitrophenol from aqueous solution using β-cyclodextrin grafted silica gel. Applied Surface Science, 356, 1155-1167, 2015. https://doi.org/10.101 6/j.apsusc.2015.08.203
  • Bibby A, Mercier L. Adsorption and separation of water-soluble aromatic molecules by cyclodextrin-functionalized mesoporous silica. Green Chem 5:15–19, 2003. https://doi.org/10.1039/B209251B
  • Seraji, M. M., Soleimankhani, S., Afkhami Abadani, H., & Davarpanah, J. (2017). Adsorption of phenol by super hydrophobic phenol-formaldehyde/silica hybrid aerogel. Journal of Nanoanalysis, 4(3), 214-222. https://doi.org/10.22034/JNA.2017.541096.1011
  • Matias, T., Marques, J., Quina, M. J., Gando-Ferreira, L., Valente, A. J., Portugal, A., & Durães, L. Silica-based aerogels as adsorbents for phenol-derivative compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 480, 260-269, 2015. https://doi.org/10.1016/j.colsurfa.2015.01.074
  • Qin, G., Yao, Y., Wei, W., & Zhang, T. (2013). Preparation of hydrophobic granular silica aerogels and adsorption of phenol from water. Applied Surface Science, 280, 806-811. https://doi.org/10.1016/j.apsu sc.2013.05.066
  • Kant, A., & Datta, M. (2014). Adsorption characteristics of Victoria blue on low-cost natural sand and its removal from aqueous media. Eur. Chem. Bull, 3, 752-759.
  • Mirzajani, R., Pourreza, N., Zayadi, A., Malakooti, R., & Mahmoodi, H. Nanoporous calcined MCM-41 silica for adsorption and removal of Victoria blue dye from different natural water samples. Desalination and Water Treatment, 57(13), 5903-5913, 2016. https://doi.org/10.1080/19443994.2015.1005690
  • Malana, M. A., Ijaz, S., & Ashiq, M. N. (2010). Removal of various dyes from aqueous media onto polymeric gels by adsorption process: their kinetics and thermodynamics. Desalination, 263(1-3), 249-257. https://doi.org/10.1016/j.desal.2010.06.066
  • Akpomie, K. G., & Conradie, J. (2020). Efficient synthesis of magnetic nanoparticle-Musa acuminata peel composite for the adsorption of anionic dye. Arabian Journal of Chemistry, 13(9), 7115-7131. https://doi.org/10.1016/j.arabjc.2020.07.017
  • You, L., Wu, Z., Kim, T., & Lee, K. (2006). Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis (trimethoxysilyl) hexane. Journal of colloid and interface science, 300(2), 526-535. https://doi.org/10.1016/j.jci s.2006.04.039
  • Liu, J., Yao, S., Wang, L., Zhu, W., Xu, J., & Song, H. (2014). Adsorption of bromophenol blue from aqueous samples by novel supported ionic liquids. Journal of Chemical Technology & Biotechnology, 89(2), 230-238. https://doi.org/10.1002/jctb.4106

Hidro(solvo)termal destekli silika aerojellerin sentezi, modifikasyonu ve onların adsorpsiyon çalışmalarında kullanımı

Year 2023, Volume: 12 Issue: 3, 872 - 882, 15.07.2023
https://doi.org/10.28948/ngumuh.1262687

Abstract

Hidro(solvo)termal sentez yöntemi, bu çalışmada SiO2 ve karbon mikropartikülleri gibi nano- ve mikropartikül katkılı silika aerojelleri ile boş silika aerojellerini başarılı bir şekilde sentezlemek için kullanılmıştır. Hazırlanan bu yapılara modifikasyon yoluyla yeni gruplar eklenmiştir. Çalışmada öncelikle optimum koşulların belirlenmesi için değişkenlerin etkisi sistematik olarak incelenmiştir. Silika aerojel için en uygun reçete oluşturulmuştur. SiO2, CP partikülleri sentezlenmiş ve bu partiküller ile ve amin içeren ajanlar ile modifiye silika aerojeller hazırlanmıştır. Sentezlenen silika aerojel, partiküller (SiO2, CP) ve partiküller gömülü silika aerojellerin karakterizasyonu için; TGA, SEM, DLS ve BET-BJH teknikleri kullanıldı. Hazırlanan bu yapılar 4-nitro fenol, metilen mavisi, victoria mavisi, bromofenol mavisi vb. organik kirleticilerin sulu ortamdan uzaklaştırılması gibi çevresel uygulamada adsorban olarak kullanılmıştır. Bu çevresel uygulamada adsorpsiyon kapasitesi (mg/g) UV-vis spektroskopisi ile belirlenmiştir. Hazırlanan yapıların iyi bir adsorban olduğu ve modifikasyon ile adsorpsiyon kapasitesinin 18 kat arttırılabileceği ortaya konulmuştur.

Project Number

2021/15A104

References

  • Iswar S, Galmarini S, Bonanomi L, Wernery J, Roumeli E, Nimalshantha S, et al. Dense and strong, but superinsulating silica aerogel. Acta Materials, 213, 116959, 2021. https://doi.org/10.1016/j.actamat .2021. 116959
  • Sandeep Ahankari, Pradyumn Paliwal, Aditya Subhedar, and Hanieh Kargarzadeh. Recent Developments in Nanocellulose-Based Aerogels in Thermal Applications: A Review. ACS Nano, 15 (3), 3849-3874, 2021. https://doi.org/10.1021/acsnano. 0c09678
  • Gupta, P., Verma, C., & Maji, P. K. Flame retardant and thermally insulating clay based aerogel facilitated by cellulose nanofibers. The Journal of Supercritical Fluids, 152, 104537, 2019. https://doi.org/10.1016/j .supflu.2019.05.005
  • Tafreshi, O. A., Mosanenzadeh, S. G., Karamikamkar, S., Saadatnia, Z., Park, C. B., & Naguib, H. E. A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications. Materials Today Chemistry, 23, 100736, 2022. https://doi.org/10.1016/j.mtchem.2021.100736
  • Smirnova I, Gurikov P. Aerogels in Chemical Engineering: Strategies Toward Tailor-Made Aerogels. Annual Review of Chemical and Biomolecular Engineering, 8, 307–34, 2017. https://doi.org/10.1146 /annurev-chembioeng-060816-101458
  • Peng, H., Xiong, W., Yang, Z., Xu, Z., Cao, J., Jia, M., & Xiang, Y. Advanced MOFs@ aerogel composites: construction and application towards environmental remediation. Journal of Hazardous Materials, 432, 128684, 2022. https://doi.org/10.1016/j.jhazmat.2 022.128684
  • Carroll, M.K.; Anderson, A.M.; Mangu, S.T.; Hajjaj, Z.; Capron, M. Aesthetic Aerogel Window Design for Sustainable Buildings. Sustainability, 14 (5), 2887, 2022. https://doi.org/10.3390/su14052887
  • Nabipour, H., Nie, S., Wang, X., Song, L., & Hu, Y. Zeolitic imidazolate framework-8/polyvinyl alcohol hybrid aerogels with excellent flame retardancy. Composites Part A: Applied Science and Manufacturing, 129, 105720, 2020. https://doi.org/10. 1016/j.compositesa.2019.105720
  • Ghaffari-Mosanenzadeh, S., Tafreshi, O. A., Karamikamkar, S., Saadatnia, Z., Rad, E., Meysami, M., & Naguib, H. E. Recent advances in tailoring and improving the properties of polyimide aerogels and their application. Advances in Colloid and Interface Science, 304, 102646, 2022. https://doi.org/10.10 16/j.cis.2022.102646
  • Wilson, S. M., Gabriel, V. A., & Tezel, F. H. Adsorption of components from air on silica aerogels. Microporous and Mesoporous Materials, 305, 110297, 2020. https://doi.org/10.1016/j.micromeso.2020.1102 97
  • McNeil, S. J., & Gupta, H. Emerging applications of aerogels in textiles. Polymer Testing, 106, 107426, 2022. https://doi.org/10.1016/j.polymertesting.2021.1 07426
  • Güzel Kaya G, Deveci H. Morphological, textural, and thermal properties of low-cost silica aerogel composites. Konya Journal of Engineering Sciences, 814–23, 2021. https://doi.org/10.36306/konjes.969489
  • Xia, Y., Man, J., Wu, X., Huang, S., Lu, A., Shen, X., ... & Fu, G. Oxygen-vacancy-assisted construction of Ce–TiO2 aerogel for efficiently boosting photocatalytic CO2 reduction without any sacrifice agent. Ceramics International, 49(4), 6100-6112, 2023. https://doi.org/10.1016/j.ceramint.2022.10.118
  • Amonette, J. E., & Matyáš, J. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review. Microporous and Mesoporous Materials, 250, 100-119, 2017. https://doi.org/10.1016 /j.micromeso.2017.04.055
  • Shrestha, D., Nayaju, T., Kandel, M. R., Pradhananga, R. R., Park, C. H., & Kim, C. S. Rice husk-derived mesoporous biogenic silica nanoparticles for gravity chromatography. Heliyon, 9(4), 2023. https://doi.org/10.1016/j.heliyon.2023.e15142
  • Rao, A. V., & Kulkarni, M. M. Hydrophobic properties of TMOS/TMES-based silica aerogels. Materials Research Bulletin, 37(9), 1667-1677, 2002. https://doi.org/10.1016/S0025-5408(02)00795-X
  • Chao, X., Jun, S., & Bin, Z. Ultralow density silica aerogels prepared with PEDS. Journal of non-crystalline solids, 355(8), 492-495, 2009. https://doi.org/10.1016/j.jnoncrysol.2008.12.010
  • Nadargi, D. Y., Latthe, S. S., Hirashima, H., & Rao, A. V. Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels. Microporous and Mesoporous Materials, 117(3), 617-626, 2009. https://doi.org/10.1016/j.micromeso.2008.08.025
  • Wang, Q., Meti, P., Gong, Y. D., Kim, T., Lee, K. Y., Mahadik, D. B., & Park, H. H. Ultralow dielectric constant trifluorophenylvinyl-functionalized silica aerogels with excellent hydrophobicity and enhanced mechanical properties. Ceramics International, 48(23), 34855-34863, 2022. https://doi.org/10.1016/j.cerami t.2022.08.075
  • Suvaci, E. & Ozel E. Hydrothermal Synthesis. Encyclopedia of Materials: Technical Ceramics and Glasses, Elsevier, 1, 58-69, 2021. https://doi.org/10.1016/B978-0-12-803581-8.12096-X
  • Linhares, T., de Amorim, M. T. P., & Durães, L. (2019). Silica aerogel composites with embedded fibres: a review on their preparation, properties, and applications. Journal of Materials Chemistry A, 7(40), 22768-22802. https://doi.org/10.1039/C9TA04811A
  • Diascorn, N., Calas, S., Sallée, H., Achard, P., & Rigacci, A. Polyurethane aerogels synthesis for thermal insulation–textural, thermal, and mechanical properties. The Journal of Supercritical Fluids, 106, 76-84, 2015. https://doi.org/10.1016/j.supflu.2015.05.012
  • Luo, Y., Zhou, Y., Bai, X., Cai, X., Luo, X., Deng, X., & Wu, D. Preparation and characterization of toughened polyurea aerogels incorporating linear long‐chain in the structure. Polymer Engineering & Science, 2023. https://doi.org/10.1002/pen.26260
  • Lee, J. H., & Park, S. J. Recent advances in preparations and applications of carbon aerogels: A review. Carbon, 163, 1-18, 2020. https://doi.org/10.1016/j.carbon.2 020.02.073
  • Lee, K. Y., Mahadik, D. B., Parale, V. G., & Park, H. H. Composites of silica aerogels with organics: A review of synthesis and mechanical properties. Journal of the Korean Ceramic Society, 57, 1-23, 2020. https://doi.org/10.1007/s43207-019-00002-2
  • Hasanpour, M., & Hatami, M. Application of three-dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Advances in Colloid and Interface Science, 284, 102247, 2020. https://doi.org/10.1016/j.cis.2020.102 247
  • Yang, J., Chen, Y., Xu, P., Li, Y., Jia, X., & Song, H. Fabrication of compressible and underwater superoleophobic carbon/g-C3N4 aerogel for wastewater purification. Materials Letters, 254, 210-213, 2019. https://doi.org/10.1016/j.matlet.2019.07.069
  • Rong, N., Chen, C., Ouyang, K., Zhang, K., Wang, X., & Xu, Z. Adsorption characteristics of directional cellulose nanofiber/chitosan/montmorillonite aerogel as adsorbent for wastewater treatment. Separation and Purification Technology, 274, 119120, 2021. https://doi.org/10.1016/j.seppur.2021.119120
  • Qi D, Lin C, Zhao H, Liu H, Lü T. Size regulation and prediction of the SiO2 nanoparticles prepared via Stober process. J Dispersion Sci Technol, 38, 70-74, 2017. https://doi.org/10.1080/01932691.2016.1143373
  • Ashour, M. M., Mabrouk, M., Soliman, I. E., Beherei, H. H., & Tohamy, K. M. Mesoporous silica nanoparticles prepared by different methods for biomedical applications: Comparative study. IET nanobiotechnology, 15(3), 291-300, 2021. https://doi.org/10.1049/nbt2.12023
  • Deveci H., Bas H., Sengel S. B. & Butun V. Carbon Spheres as Catalyst for Hydrogen Generation from Sodium Borohydride Methanolysis. 10th International Fiber and Polymer Research Symposium, 3, 73-76, Istanbul, Turkey, 2022.
  • Sahiner, N., & Sengel, S. B. Various amine functionalized halloysite nanotube as efficient metal free catalysts for H2 generation from sodium borohydride methanolysis. Applied Clay Science, 146, 517-525, 2017. https://doi.org/10.1016/j.clay.2017.07 .008
  • Sahiner, N., & Sengel, S. B. Environmentally benign halloysite clay nanotubes as alternative catalyst to metal nanoparticles in H2 production from methanolysis of sodium borohydride. Fuel Processing Technology, 158, 1-8, 2017. https://doi.org/10.1016 /j.fuproc.2016.12.009
  • Sengel, S.B., Somakli, S., & Butun, Vural (2021). SiO2 Particle Embedded Silica Aerogels: Environmental and Energy Applications. Eskisehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 22(8th ULPAS-Special Issue 2021), 120-128. https://doi.org/10.18038/estu btda.985092
  • Güler, Ö., Selen, V., Başgöz, Ö., Safa, H., & Yahia, I. S. Adsorption properties and synthesis of silica aerogel-hollow silica microsphere hybrid (sandwich) structure. Journal of Sol-Gel Science and Technology, 100(1), 74-88, 2021. https://doi.org/10.1 007/s10971-021-05622-x
  • N. Saad, M. Al-Mawla, E. Moubarak, M. Al-Ghoul, H. El-Rassy. Surface-functionalized silica aerogels and alcogels for methylene blue adsorption, RSC Adv. 5 (8), 6111–6122, 2015. https://doi.org/10.1039/C4RA 15504A
  • Han, H., Wei, W., Jiang, Z., Lu, J., Zhu, J., & Xie, J. Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 539-549, 2016. https://doi.org/10.1016/j.colsurfa.2016.09.056
  • Meng, S., Zhang, J., Xu, W., Chen, W., Zhu, L., Zhou, Z., & Zhu, M. Structural control of silica aerogel fibers for methylene blue removal. Science China Technological Sciences, 62, 958-964, 2019. https://doi.org/10.1007/s11431-018-9389-7
  • Liu, G., Yang, R., & Li, M. Liquid adsorption of basic dye using silica aerogels with different textural properties. Journal of non-crystalline solids, 356(4-5), 250-257, 2010. https://doi.org/10.1016/j.jnoncrysol.20 09.11.019
  • Dogan, M., Temel, F., & Tabakci, M. (2020). High-performance adsorption of 4-nitrophenol onto calix [6] arene-tethered silica from aqueous solutions. Journal of Inorganic and Organometallic Polymers and Materials, 30, 4191-4202. https://doi.org/10.1007/s10 904-020-01571-0
  • Shen, H. M., Zhu, G. Y., Yu, W. B., Wu, H. K., Ji, H. B., Shi, H. X., ... & Zheng, Y. F. Fast adsorption of p-nitrophenol from aqueous solution using β-cyclodextrin grafted silica gel. Applied Surface Science, 356, 1155-1167, 2015. https://doi.org/10.101 6/j.apsusc.2015.08.203
  • Bibby A, Mercier L. Adsorption and separation of water-soluble aromatic molecules by cyclodextrin-functionalized mesoporous silica. Green Chem 5:15–19, 2003. https://doi.org/10.1039/B209251B
  • Seraji, M. M., Soleimankhani, S., Afkhami Abadani, H., & Davarpanah, J. (2017). Adsorption of phenol by super hydrophobic phenol-formaldehyde/silica hybrid aerogel. Journal of Nanoanalysis, 4(3), 214-222. https://doi.org/10.22034/JNA.2017.541096.1011
  • Matias, T., Marques, J., Quina, M. J., Gando-Ferreira, L., Valente, A. J., Portugal, A., & Durães, L. Silica-based aerogels as adsorbents for phenol-derivative compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 480, 260-269, 2015. https://doi.org/10.1016/j.colsurfa.2015.01.074
  • Qin, G., Yao, Y., Wei, W., & Zhang, T. (2013). Preparation of hydrophobic granular silica aerogels and adsorption of phenol from water. Applied Surface Science, 280, 806-811. https://doi.org/10.1016/j.apsu sc.2013.05.066
  • Kant, A., & Datta, M. (2014). Adsorption characteristics of Victoria blue on low-cost natural sand and its removal from aqueous media. Eur. Chem. Bull, 3, 752-759.
  • Mirzajani, R., Pourreza, N., Zayadi, A., Malakooti, R., & Mahmoodi, H. Nanoporous calcined MCM-41 silica for adsorption and removal of Victoria blue dye from different natural water samples. Desalination and Water Treatment, 57(13), 5903-5913, 2016. https://doi.org/10.1080/19443994.2015.1005690
  • Malana, M. A., Ijaz, S., & Ashiq, M. N. (2010). Removal of various dyes from aqueous media onto polymeric gels by adsorption process: their kinetics and thermodynamics. Desalination, 263(1-3), 249-257. https://doi.org/10.1016/j.desal.2010.06.066
  • Akpomie, K. G., & Conradie, J. (2020). Efficient synthesis of magnetic nanoparticle-Musa acuminata peel composite for the adsorption of anionic dye. Arabian Journal of Chemistry, 13(9), 7115-7131. https://doi.org/10.1016/j.arabjc.2020.07.017
  • You, L., Wu, Z., Kim, T., & Lee, K. (2006). Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis (trimethoxysilyl) hexane. Journal of colloid and interface science, 300(2), 526-535. https://doi.org/10.1016/j.jci s.2006.04.039
  • Liu, J., Yao, S., Wang, L., Zhu, W., Xu, J., & Song, H. (2014). Adsorption of bromophenol blue from aqueous samples by novel supported ionic liquids. Journal of Chemical Technology & Biotechnology, 89(2), 230-238. https://doi.org/10.1002/jctb.4106
There are 51 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Chemical Engineering
Authors

Şeyda Somaklı 0000-0002-8664-7475

Sultan Bütün Şengel 0000-0001-7036-2224

Project Number 2021/15A104
Early Pub Date July 13, 2023
Publication Date July 15, 2023
Submission Date March 9, 2023
Acceptance Date June 13, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3

Cite

APA Somaklı, Ş., & Bütün Şengel, S. (2023). Synthesis and modification of hydro(solvo) thermal-supported silica aerogels and their use in adsorption studies. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 872-882. https://doi.org/10.28948/ngumuh.1262687
AMA Somaklı Ş, Bütün Şengel S. Synthesis and modification of hydro(solvo) thermal-supported silica aerogels and their use in adsorption studies. NOHU J. Eng. Sci. July 2023;12(3):872-882. doi:10.28948/ngumuh.1262687
Chicago Somaklı, Şeyda, and Sultan Bütün Şengel. “Synthesis and Modification of hydro(solvo) Thermal-Supported Silica Aerogels and Their Use in Adsorption Studies”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 3 (July 2023): 872-82. https://doi.org/10.28948/ngumuh.1262687.
EndNote Somaklı Ş, Bütün Şengel S (July 1, 2023) Synthesis and modification of hydro(solvo) thermal-supported silica aerogels and their use in adsorption studies. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 872–882.
IEEE Ş. Somaklı and S. Bütün Şengel, “Synthesis and modification of hydro(solvo) thermal-supported silica aerogels and their use in adsorption studies”, NOHU J. Eng. Sci., vol. 12, no. 3, pp. 872–882, 2023, doi: 10.28948/ngumuh.1262687.
ISNAD Somaklı, Şeyda - Bütün Şengel, Sultan. “Synthesis and Modification of hydro(solvo) Thermal-Supported Silica Aerogels and Their Use in Adsorption Studies”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (July 2023), 872-882. https://doi.org/10.28948/ngumuh.1262687.
JAMA Somaklı Ş, Bütün Şengel S. Synthesis and modification of hydro(solvo) thermal-supported silica aerogels and their use in adsorption studies. NOHU J. Eng. Sci. 2023;12:872–882.
MLA Somaklı, Şeyda and Sultan Bütün Şengel. “Synthesis and Modification of hydro(solvo) Thermal-Supported Silica Aerogels and Their Use in Adsorption Studies”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 3, 2023, pp. 872-8, doi:10.28948/ngumuh.1262687.
Vancouver Somaklı Ş, Bütün Şengel S. Synthesis and modification of hydro(solvo) thermal-supported silica aerogels and their use in adsorption studies. NOHU J. Eng. Sci. 2023;12(3):872-8.

download