Review
BibTex RIS Cite

Anaerobik parçalanma süreçlerine iz element ilavesi ve etki mekanizmaları

Year 2023, Volume: 12 Issue: 4, 1092 - 1100, 15.10.2023
https://doi.org/10.28948/ngumuh.1242942

Abstract

Anaerobik parçalanma çeşitli mikrobiyal toplulukların aktivitelerine ve iş birliğine dayalı olan hassas ve çok aşamalı kompleks süreçleri içerir. Bu süreçteki mikroorganizmaların büyümesi için hem organik madde hem de iz elementlerin ilavesi önemli bir ihtiyaçtır. İz elementler organizmaların ve enzimlerin yapısına katılarak biyokimyasal reaksiyonların kararlılığını sağlamaktadır. Optimum seviyelerdeki iz element ilavesi daha fazla organik madde bozunması, düşük uçucu yağ asidi konsantrasyonu ve yüksek biyogaz üretimi ile olumlu etkileri olduğu bilinmektedir. İz elementlerin türleşmeleri ile biyoyararlanımı arasındaki ilişkinin yeterince anlaşılmadığı durumlarda etkisiz iz element dozlama stratejileri oluşmaktadır. İz element türü ve ideal iz element konsantrasyonları sistemdeki mikroorganizmaların ihtiyaçlarına göre çeşitlilik gösterir. Öte taraftan anaerobik süreçlere iz elementlerin ilavesi kullanılan substrat, teknoloji, işletme koşulları, karmaşık biyokimyasal reaksiyonlar, biyoyararlanım gibi birçok parametrenin etkilediği ideal konsantrasyon seviyelerinin belirlenmesi sistemin sağlıklı ve etkili çalışması açısından önem arz etmektedir. Bu derleme çalışması ile amaç iz elementlerin anaerobik parçalanma süreçlerine ilavesinin gerekçeleri ve anaerobik süreçlerdeki akıbeti hakkındaki bilgileri özetlemektedir.

References

  • Y. Li, Y. Chen and J. Wu, Enhancement of methane production in anaerobic digestion process: A review. Applied Energy, 240, 120137, 2019. https://doi.org /10.1016/j.apenergy.2019.01.243.
  • C. Carotenuto, G. Guarino, B. Morrone and M. Minale, Temperature and pH effect on methane production from buffalo manure anaerobic digestion. International Journal of Heat and Technology, 34, 425429, 2016. https://doi.org/10.18280/ijht.34S233.
  • M.O. Fagbohungbe, B.M.J. Herbert, L. Hurst, C.N. Ibeto, H. Li, S.Q. Usmani and K.T. Semple, The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Management, 61, 236249, 2017. https://doi.org/10.10 16/j.wasman.2016.11.028.
  • W. Rudolfs and H.R. Amberg, White Water Treatment: I. Factors Affecting Anaerobic Digestion. Sewage and Industrial Wastes, 24, 11081120, 1952. https://www.js tor.org/stable/25031961.
  • Y. Chen, J.J. Cheng and K.S. Creamer, Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99, 40444064, 2008. https://doi.org/10.10 16/j.biortech.2007.01.057.
  • J.N. Meegoda, B. Li, K. Patel and L.B. Wang, A review of the processes, parameters, and optimization of anaerobic digestion. International Journal of Environmental Research and Public Health, 15, 2224, 2018. https://doi.org/10.3390/ijerph15102224.
  • C. Mao, Y. Feng, X. Wang and G. Ren, Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540555, 2015. https://doi.org/10.1016/j.rser.2015 .02.032.
  • C. Gou, Z. Yang, J. Huang, H. Wang, H. Xu and L. Wang, Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Chemosphere, 105, 146151, 2014. https://doi.org/10.1016/j.chemosphere.2014.01.018.
  • P. Scherer and B. Demirel, Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy, 35, 992998, 2011. https://doi.org/10 .1016/j.biombioe.2010.12.022.
  • J.A. FitzGerald, D.M. Wall, S.A. Jackson, J.D. Murphy and A.D.W. Dobson, Trace element supplementation is associated with increases in fermenting bacteria in biogas mono-digestion of grass silage. Renewable Energy, 138 980986, 2019. https://doi.org/10.1016/j. renene.2019.02.051.
  • J. Gustavsson, S. Shakeri Yekta, C. Sundberg, A. Karlsson, J. Ejlertsson, U. Skyllberg and B.H. Svensson, Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation. Applied Energy, 112, 473477, 2013. https://doi.org/10.1016/j.apenergy.2013.02.009.
  • V. Facchin, C. Cavinato, F. Fatone, P. Pavan, F. Cecchi and D. Bolzonella, Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: The influence of inoculum origin. Biochemical Engineering Journal, 70, 7177, 2013. https://doi.org/10.1016/j.bej.2012.10.004.
  • R.J. Quinlan, M.D. Sweeney, L. Lo Leggio, H. Otten, J.-C.N. Poulsen, K.S. Johansen, K.B.R.M. Krogh, C.I. Jørgensen, M. Tovborg and A. Anthonsen, Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proceeding of the National Academy of Sciences, 108, 1507915084, 2011. https://doi.org/10.1073/pnas.1105 776108.
  • Z.W. Khatri Shailendra and Kizito Simon, Synergistic effect of alkaline pretreatment and Fe dosing on batch anaerobic digestion of maize straw. Applied Energy, 158, 5564, 2015. https://doi.org/10.1016/j.apenergy .2015.08.045.
  • M. Kamali, T. Gameiro, M.E. V Costa, I. Capela, Anaerobic digestion of pulp and paper mill wastes–An overview of the developments and improvement opportunities. Chemical Engineering Journal, 298, 162182, 2016. https://doi.org/10.1016/j.cej.2016.03.11 9.
  • P.M. Thanh, B. Ketheesan, Z. Yan and D. Stuckey, Trace metal speciation and bioavailability in anaerobic digestion: A review. Biotechnology Advances, 34, 122136, 2016. https://doi.org/10.1016/j.biotechadv.20 15.12.006.
  • M. Westerholm, B. Müller, S. Isaksson and A. Schnürer, Trace element and temperature effects on microbial communities and links to biogas digester performance at high ammonia levels. Biotechnology for Biofuels, 8, 154, 2015. https://doi.org/10.1186/s13 068-015-0328-6.
  • M.S. Romero-Güiza, J. Vila, J. Mata-Alvarez, J.M. Chimenos and S. Astals, The role of additives on anaerobic digestion: A review. Renewable and Sustainable Energy Reviews, 58, 14861499, 2016. https://doi.org/10.1016/j.rser.2015.12.094.
  • C.M. Park and J.T. Novak, The effect of direct addition of iron (III) on anaerobic digestion efficiency and odor causing compounds. Water Science & Technology, 68, 23912396, 2013. https://doi.org/10.2166/wst.2013.507.
  • L. Zhang, Y.W. Lee and D. Jahng, Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresource Technology, 102, 50485059, 2011. https://doi.org/10. 1016/j.biortech.2011.01.082.
  • M. Garuti, M. Langone, C. Fabbri and S. Piccinini, Methodological approach for trace elements supplementation in anaerobic digestion: Experience from full-scale agricultural biogas plants. Journal of Environmental Management, 223, 348357, 2018. https://doi.org/10.1016/j.jenvman.2018.06.015.
  • E.D. van Hullebusch, G. Guibaud, S. Simon, M. Lenz, S.S. Yekta, F.G. Fermoso, R. Jain, L. Duester, J. Roussel and E. Guillon, Methodological approaches for fractionation and speciation to estimate trace element bioavailability in engineered anaerobic digestion ecosystems: An overview. Critical Reviews in Environmental Science and Technology, 46, 13241366, 2016. https://doi.org/10.1080/10643389.2016.123594 3.
  • J. Glass and V.J. Orphan, Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Frontiers in Microbiology, 3, 61, 2012. https://doi.org/10.3389/fm icb.2012.00061.
  • F.G. Fermoso, E. Van Hullebusch, G. Collins, J. Roussel, A.P. Mucha and G. Esposito, Trace Elements in Anaerobic Biotechnologies. IWA Publishing, 2019. https://doi.org/10.2166/9781789060225.
  • A. Karlsson, P. Einarsson, A. Schnürer, C. Sundberg, J. Ejlertsson and B.H. Svensson, Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. Journal of Bioscience and Bioengineering, 114, 446452, 2012. https://doi.org /10.1016/j.jbiosc.2012.05.010.
  • S. Rempel, E. Colucci, J.-W. de Gier, A. Guskov and D.J. Slotboom, Cysteine-mediated decyanation of vitamin B12 by the predicted membrane transporter BtuM. Nature Communications, 9, 18, 2018. https:// doi.org/10.1038/s41467-018-05441-9.
  • B. Lee, J.-G. Park, W.-B. Shin, D.-J. Tian and H.B. Jun, Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells. Bioresource Technology, 234, 273280, 2017. https://doi.org/10.1016/j.biortech.2017.02.022.
  • M. Ali and T.R. Sreekrishnan, Aquatic toxicity from pulp and paper mill effluents: A review. Advances in Environmental Research, 5, 175196, 2001. https://doi .org/10.1016/S1093-0191(00)00055-1.
  • Y. Liu, Y. Zhang, X. Quan, Y. Li, Z. Zhao, X. Meng and S. Chen, Optimization of anaerobic acidogenesis by adding Fe0 powder to enhance anaerobic wastewater treatment. Chemical Engineering Journal, 192, 179185, 2012. https://doi.org/10.1016/j.cej.2012 .03.044.
  • Q. Guo, S. Majeed, R. Xu, K. Zhang, A. Kakade, A. Khan, F.Y. Hafeez, C. Mao, P. Liu and X. Li, Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: A review. Journal of Environmental Management, 240, 266272, 2019. https://doi.org/10.1016/j.jenvman.2019. 03.104.
  • L.-J. Wu, T. Kobayashi, H. Kuramochi, Y.Y. Li and K.Q. Xu, Effects of potassium, magnesium, zinc, and manganese addition on the anaerobic digestion of de-oiled grease trap waste. Arabian Journal of Science and Engineering, 41, 24172427, 2016. https://doi.org/10 .1007/s13369-015-1879-3.
  • B.H. Bashir and A. Matin, Sodium toxicity control by the use of magnesium in an anaerobic reactor. Journal of Applied Sciences and Environmental Management, 8, 1721, 2004. https://doi.org/10.4314/jasem.v8i1.17 220.
  • F.G. Fermoso, J. Bartacek, S. Jansen and P.N.L. Lens, Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application. Science of Total Environment, 407, 36523667, 2009. https://doi.org/10.1016/j.scitotenv.2008.10.043.
  • B. Munk and M. Lebuhn, Process diagnosis using methanogenic Archaea in maize-fed, trace element depleted fermenters. Anaerobe, 29, 2228, 2014. https://doi.org/10.1016/j.anaerobe.2014.04.002.
  • I. Worms, D.F. Simon, C.S. Hassler and K.J. Wilkinson, Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie, 88, 17211731, 2006. https://doi.org/10.1016/j.biochi.2006. 09.008.
  • Z.W. and W.X. Cai Y., Hua B., Gao L., Hu Y., X.Yuan and Cui Z., Effects of adding trace elements on rice straw anaerobic mono-digestion: Focus on changes in microbial communities using high-throughput sequencing. Bioresource Technology, 239, 454463, 2017. https://doi.org/10.1016/j.biortech.2017.04.071.
  • H. Liu, J.Y. Zhu, S.Y. Fu, Effects of lignin− metal complexation on enzymatic hydrolysis of cellulose, Journal of Agricultural and Food Chemistry, 58, 72337238, 2010. https://doi.org/10.1021/jf1001588.
  • M. Stieb and B. Schink, Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Archives of Microbiology, 140, 387390, 1985. https://doi.org/10. 1007/BF00446983.
  • M.H. Zandvoort, Trace metal dynamics in methanol fed anaerobic granular sludge bed reactors. ProQuest LLC, 789 East Eisenhower Parkway, 2005.
  • M. Kim, C.Y. Gomec, Y. Ahn and R.E. Speece, Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environmental Technology, 24, 11831190, 2003. https://doi.org/10.1080/09593330309385659.
  • B. Yu, Z. Lou, D. Zhang, A. Shan, H. Yuan, N. Zhu and K. Zhang, Variations of organic matters and microbial community in thermophilic anaerobic digestion of waste activated sludge with the addition of ferric salts. Bioresource Technology, 179, 291298, 2015. https:// doi.org/10.1016/j.biortech.2014.12.011.
  • H.M. Ng, L.T. Sin, T.T. Tee, S.T. Bee, D. Hui, C.Y. Low and A.R. Rahmat, Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering, 75, 176200, 2015. https://doi.org/10.1016 /j.compositesb.2015.01.008.
  • L.G. Ljungdahl, The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annual Reviews Microbiology, 40, 415450, 1986.
  • T.C. Harrop and P.K. Mascharak, Structural and spectroscopic models of the A-cluster of acetyl coenzyme a synthase/carbon monoxide dehydrogenase: Nature’s Monsanto acetic acid catalyst. Coordination Chemistry Reviews, 249, 30073024, 2005. https:// doi.org/10.1016/j.ccr.2005.04.019.
  • Y.Y. Choong, I. Norli, A.Z. Abdullah and M.F. Yhaya, Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresource Technology, 209, 369379, 2016. https://doi.org/10.1016/j.biortech.2016.03.028.
  • P. Scherer, H. Lippert and G. Wolff, Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry. Biological Trace Element Research, 5, 149163, 1983. https://doi.org/10.1007/BF02916619.
  • X. Meng, Y. Zhang, Q. Li and X. Quan, Adding Fe0 powder to enhance the anaerobic conversion of propionate to acetate. Biochemical Engineering Journal, 73, 8085, 2013. https://doi.org/10.1016/j.bej. 2013.02.004.
  • M. Takashima, R.E. Speece and G.F. Parkin, Mineral requirements for methane fermentation. Critical Reviews in Environmental Control, 19, 465479, 1990. https://doi.org/10.1080/10643389009388378.
  • X. Zhu, Z. Wang, D. Yellezuome, R. Liu, X. Liu, C. Sun, M.H. Abd-Alla and A.-H.M. Rasmey, Effects of Trace Elements Supplementation on Methane Enhancement and Microbial Community Dynamics in Mesophilic Anaerobic Digestion of Food Waste. Waste and Biomass Valorization, 14, 2323–2334, 2022. https://doi.org/10.1007/s12649-022-02024-0.
  • A. Karlsson, X. Truong, J. Gustavsson, B.H. Svensson, F. Nilsson and J. Ejlertsson, Anaerobic treatment of activated sludge from Swedish pulp and paper mills–biogas production potential and limitations. Environmental Technology, 32, 1559–1571, 2011. https://doi.org/10.1080/09593330.2010.543932.
  • D. Toprak, T. Yilmaz and D. Uçar, Increasing biomethane production from paper industry wastewater with optimum trace element supplementation. International Journal of Environmental Science and Technology, 20, 2635–2648, 2023. https://doi.org/10. 1007/s13762-022-04156-1.
  • H.M. Lo, C.F. Chiang, H.C. Tsao, T.Y. Pai, M.H. Liu, T.A. Kurniawan, K.P. Chao, C.T. Liou, K.C. Lin and C.Y. Chang, Effects of spiked metals on the MSW anaerobic digestion. Waste Management& Research:The Journal for a Sustainable Circular Economy, 30, 3248, 2012. https://doi.org/10.1177 07 34242X10383079.
  • Y. Cai, Z. Zheng, Y. Zhao, Y. Zhang, S. Guo, Z. Cui and X. Wang, Effects of molybdenum, selenium and manganese supplementation on the performance of anaerobic digestion and the characteristics of bacterial community in acidogenic stage. Bioresource Technology, 266, 166175, 2018. https://doi.org/10.10 16/j.biortech.2018.06.061.
  • C. Schmidt-Dannert and F.H. Arnold, Directed evolution of industrial enzymes. Trends Biotechnology, 17, 135136, 1999. https://doi.org/10 .1016/S0167-7799(98)01283-9.
  • J.G. Ferry, Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass., Current Opinion in Biotechnology, 22, 351357, 2011. https://doi.org/10.1016/j.copbio.2011.04.011.
  • V. Kapoor, X. Li, M. Elk, K. Chandran, C.A. Impellitteri and J.W. Santo Domingo, Impact of heavy metals on transcriptional and physiological activity of nitrifying bacteria. Environmental Science Technology, 49, 13454–13462, 2015. https://doi.org/1 0.1021/acs.est.5b02748.
  • S. Bayr, O. Pakarinen, A. Korppoo, S. Liuksia, A. Väisänen, P. Kaparaju and J. Rintala, Effect of additives on process stability of mesophilic anaerobic monodigestion of pig slaughterhouse waste. Bioresource Technology, 120, 106113, 2012. https://doi.org/10.1016/j.biortech.2012.06.009.
  • D. Mara and N.J. Horan, Handbook of water and wastewater microbiology. Elsevier, London, 2003.
  • A. Hochheimer, R. Hedderich and R.K. Thauer, The formylmethanofuran dehydrogenase isoenzymes in Methanobacterium wolfei and Methanobacterium thermoautotrophicum: induction of the molybdenum isoenzyme by molybdate and constitutive synthesis of the tungsten isoenzyme. Archives of Microbiology, 170, 389393, 1998. https://doi.org/10.1007/s0020300 50658.
  • H.V.M. Hamelers, A. Ter Heijne, T.H.J.A. Sleutels, A.W. Jeremiasse, D.P. Strik and C.J.N. Buisman, New applications and performance of bioelectrochemical systems. Applied Microbiology and Biotechnology, 85, 1673–1685, 2010. https://doi.org/10.1007/s00253-009-2357-1.
  • C.-E. Marcato, E. Pinelli, M. Cecchi, P. Winterton and M. Guiresse, Bioavailability of Cu and Zn in raw and anaerobically digested pig slurry. Ecotoxicology and Environmental Safety, 72, 15381544, 2009. https:/ /doi.org/10.1016/j.ecoenv.2008.12.010.
  • M. He, G. Tian and X. Liang, Phytotoxicity and speciation of copper, zinc and lead during the aerobic composting of sewage sludge. Journal of Hazardous Materials, 163, 671677, 2009. https://doi.org/10.1016 /j.jhazmat.2008.07.013.
  • M.H. Zandvoort, E.D. van Hullebusch, F.G. Fermoso and P.N.L. Lens, Trace metals in anaerobic granular sludge reactors: Bioavailability and dosing strategies. Engineering in Life Science, 6, 293301, 2006. https://doi.org/10.1002/elsc.200620129.
  • J. Gustavsson, S.S. Yekta, A. Karlsson, U. Skyllberg and B.H. Svensson, Potential bioavailability and chemical forms of Co and Ni in the biogas process—an evaluation based on sequential and acid volatile sulfide extractions. Engineering in Life Science, 13, 572579, 2013. https://doi.org/10.1002/elsc.201200162.
  • F.G. Fermoso, J. Bartacek, R. Manzano, H.P. Van Leeuwen and P.N.L. Lens, Dosing of anaerobic granular sludge bioreactors with cobalt: impact of cobalt retention on methanogenic activity. Bioresource Technology, 101, 9429–9437, 2010. https://doi.org/10 .1016/j.biortech.2010.07.053.
  • S. Myszograj, A. Stadnik and E. P. Koropczuk, The influence of trace elements on anaerobic digestion process. Civil and Environmental Engineering Reports, 28, 105115, 2018. https://doi.org/10.2478/ce er-2018-0054
  • S.S. Yekta, U. Skyllberg, Å. Danielsson, A. Björn and B.H. Svensson, Chemical speciation of sulfur and metals in biogas reactors–Implications for cobalt and nickel bio-uptake processes. Journal of Hazardous Materials, 324, 110116, 2017. https://doi.org/10.1016 /j.jhazmat.2015.12.058.
  • W.P. Barber and D.C. Stuckey, Metal bioavailability and trivalent chromium removal in ABR. Journal of Environmental Engineering, 126, 649656, 2000. https://doi.org/10.1061/(ASCE)07339372(2000)126:7(649).
  • F.G. Fermoso, G. Collins, J. Bartacek, V. O’Flaherty and P. Lens, Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors. Biodegradation, 19, 725737, 2008. https://doi.org/10. 1007/s10532-008-9177-3.
  • X. Jin, X. Li, N. Zhao, I. Angelidaki and Y. Zhang, An innovative process for biogas upgrading by the microbial electrolysis cell. Sustain-ATV Conference, pp.1, Kgs. Lyngby, Denmark, 2016.
  • Y. Cai, L. Janke, X. Meng, Z. Zheng, X. Zhao, J. Pröter and F. Schäfer, The absolute concentration and bioavailability of trace elements: Two vital parameters affecting anaerobic digestion performance of chicken manure leachate. Bioresource Technology, 350, 126909, 2022. https://doi.org/10.1016/j.biortech.2022 .126909.
  • X. Jiang, Q. Lyu, L. Bi, Y. Liu, Y. Xie, G. Ji, C. Huan, L. Xu and Z. Yan, Improvement of sewage sludge anaerobic digestion through synergistic effect combined trace elements enhancer with enzyme pretreatment and microbial community response. Chemosphere, 286, 131356, 2022. https://doi.org/10 .1016/j.chemosphere.2021.13135.
  • O. Hijazi, E. Abdelsalam, M. Samer, B.M.A. Amer, I.H. Yacoub, M.A. Moselhy, Y.A. Attia and H. Bernhardt, Environmental impacts concerning the addition of trace metals in the process of biogas roduction from anaerobic digestion of slurry. Journal of Cleaner Production, 243, 118593, 2020. https://doi .org/10.1016/j.jclepro.2019.118593

Supplementation of trace elements to the anaerobic digestion and effect on the mechanisms in the processes: A review

Year 2023, Volume: 12 Issue: 4, 1092 - 1100, 15.10.2023
https://doi.org/10.28948/ngumuh.1242942

Abstract

Anaerobic digestion involves delicate and multi-step complex processes based on the activities and cooperation of various microbial communities. The addition of both organic matter and trace elements is an important need for the growth of microorganisms involved in anaerobic digestion. Trace elements contribute to the structure of organisms and enzymes, ensuring the stability of biochemical reactions. Optimum levels of trace element addition are known to have positive effects with greater organic matter degradation, lower volatile fatty acid concentration and higher biogas production. In cases where the relationship between speciation and bioavailability of trace elements is not well understood, ineffective trace element dosing strategies are formed. Trace element species and ideal trace element concentrations vary according to the needs of the microorganisms in the biosystem. On the other hand, the addition of trace elements to anaerobic processes is affected by many parameters such as the substrate used, technology, operating conditions, complex biochemical reactions, and bioavailability. These parameters are important for determining the optimum trace element levels needed and for the healthy and effective operation of the system. The aim of this review is to summarize the information about the reasons for the addition of trace elements to the anaerobic digestion system and their fate in anaerobic processes.

References

  • Y. Li, Y. Chen and J. Wu, Enhancement of methane production in anaerobic digestion process: A review. Applied Energy, 240, 120137, 2019. https://doi.org /10.1016/j.apenergy.2019.01.243.
  • C. Carotenuto, G. Guarino, B. Morrone and M. Minale, Temperature and pH effect on methane production from buffalo manure anaerobic digestion. International Journal of Heat and Technology, 34, 425429, 2016. https://doi.org/10.18280/ijht.34S233.
  • M.O. Fagbohungbe, B.M.J. Herbert, L. Hurst, C.N. Ibeto, H. Li, S.Q. Usmani and K.T. Semple, The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Management, 61, 236249, 2017. https://doi.org/10.10 16/j.wasman.2016.11.028.
  • W. Rudolfs and H.R. Amberg, White Water Treatment: I. Factors Affecting Anaerobic Digestion. Sewage and Industrial Wastes, 24, 11081120, 1952. https://www.js tor.org/stable/25031961.
  • Y. Chen, J.J. Cheng and K.S. Creamer, Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99, 40444064, 2008. https://doi.org/10.10 16/j.biortech.2007.01.057.
  • J.N. Meegoda, B. Li, K. Patel and L.B. Wang, A review of the processes, parameters, and optimization of anaerobic digestion. International Journal of Environmental Research and Public Health, 15, 2224, 2018. https://doi.org/10.3390/ijerph15102224.
  • C. Mao, Y. Feng, X. Wang and G. Ren, Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540555, 2015. https://doi.org/10.1016/j.rser.2015 .02.032.
  • C. Gou, Z. Yang, J. Huang, H. Wang, H. Xu and L. Wang, Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Chemosphere, 105, 146151, 2014. https://doi.org/10.1016/j.chemosphere.2014.01.018.
  • P. Scherer and B. Demirel, Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy, 35, 992998, 2011. https://doi.org/10 .1016/j.biombioe.2010.12.022.
  • J.A. FitzGerald, D.M. Wall, S.A. Jackson, J.D. Murphy and A.D.W. Dobson, Trace element supplementation is associated with increases in fermenting bacteria in biogas mono-digestion of grass silage. Renewable Energy, 138 980986, 2019. https://doi.org/10.1016/j. renene.2019.02.051.
  • J. Gustavsson, S. Shakeri Yekta, C. Sundberg, A. Karlsson, J. Ejlertsson, U. Skyllberg and B.H. Svensson, Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation. Applied Energy, 112, 473477, 2013. https://doi.org/10.1016/j.apenergy.2013.02.009.
  • V. Facchin, C. Cavinato, F. Fatone, P. Pavan, F. Cecchi and D. Bolzonella, Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: The influence of inoculum origin. Biochemical Engineering Journal, 70, 7177, 2013. https://doi.org/10.1016/j.bej.2012.10.004.
  • R.J. Quinlan, M.D. Sweeney, L. Lo Leggio, H. Otten, J.-C.N. Poulsen, K.S. Johansen, K.B.R.M. Krogh, C.I. Jørgensen, M. Tovborg and A. Anthonsen, Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proceeding of the National Academy of Sciences, 108, 1507915084, 2011. https://doi.org/10.1073/pnas.1105 776108.
  • Z.W. Khatri Shailendra and Kizito Simon, Synergistic effect of alkaline pretreatment and Fe dosing on batch anaerobic digestion of maize straw. Applied Energy, 158, 5564, 2015. https://doi.org/10.1016/j.apenergy .2015.08.045.
  • M. Kamali, T. Gameiro, M.E. V Costa, I. Capela, Anaerobic digestion of pulp and paper mill wastes–An overview of the developments and improvement opportunities. Chemical Engineering Journal, 298, 162182, 2016. https://doi.org/10.1016/j.cej.2016.03.11 9.
  • P.M. Thanh, B. Ketheesan, Z. Yan and D. Stuckey, Trace metal speciation and bioavailability in anaerobic digestion: A review. Biotechnology Advances, 34, 122136, 2016. https://doi.org/10.1016/j.biotechadv.20 15.12.006.
  • M. Westerholm, B. Müller, S. Isaksson and A. Schnürer, Trace element and temperature effects on microbial communities and links to biogas digester performance at high ammonia levels. Biotechnology for Biofuels, 8, 154, 2015. https://doi.org/10.1186/s13 068-015-0328-6.
  • M.S. Romero-Güiza, J. Vila, J. Mata-Alvarez, J.M. Chimenos and S. Astals, The role of additives on anaerobic digestion: A review. Renewable and Sustainable Energy Reviews, 58, 14861499, 2016. https://doi.org/10.1016/j.rser.2015.12.094.
  • C.M. Park and J.T. Novak, The effect of direct addition of iron (III) on anaerobic digestion efficiency and odor causing compounds. Water Science & Technology, 68, 23912396, 2013. https://doi.org/10.2166/wst.2013.507.
  • L. Zhang, Y.W. Lee and D. Jahng, Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresource Technology, 102, 50485059, 2011. https://doi.org/10. 1016/j.biortech.2011.01.082.
  • M. Garuti, M. Langone, C. Fabbri and S. Piccinini, Methodological approach for trace elements supplementation in anaerobic digestion: Experience from full-scale agricultural biogas plants. Journal of Environmental Management, 223, 348357, 2018. https://doi.org/10.1016/j.jenvman.2018.06.015.
  • E.D. van Hullebusch, G. Guibaud, S. Simon, M. Lenz, S.S. Yekta, F.G. Fermoso, R. Jain, L. Duester, J. Roussel and E. Guillon, Methodological approaches for fractionation and speciation to estimate trace element bioavailability in engineered anaerobic digestion ecosystems: An overview. Critical Reviews in Environmental Science and Technology, 46, 13241366, 2016. https://doi.org/10.1080/10643389.2016.123594 3.
  • J. Glass and V.J. Orphan, Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Frontiers in Microbiology, 3, 61, 2012. https://doi.org/10.3389/fm icb.2012.00061.
  • F.G. Fermoso, E. Van Hullebusch, G. Collins, J. Roussel, A.P. Mucha and G. Esposito, Trace Elements in Anaerobic Biotechnologies. IWA Publishing, 2019. https://doi.org/10.2166/9781789060225.
  • A. Karlsson, P. Einarsson, A. Schnürer, C. Sundberg, J. Ejlertsson and B.H. Svensson, Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. Journal of Bioscience and Bioengineering, 114, 446452, 2012. https://doi.org /10.1016/j.jbiosc.2012.05.010.
  • S. Rempel, E. Colucci, J.-W. de Gier, A. Guskov and D.J. Slotboom, Cysteine-mediated decyanation of vitamin B12 by the predicted membrane transporter BtuM. Nature Communications, 9, 18, 2018. https:// doi.org/10.1038/s41467-018-05441-9.
  • B. Lee, J.-G. Park, W.-B. Shin, D.-J. Tian and H.B. Jun, Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells. Bioresource Technology, 234, 273280, 2017. https://doi.org/10.1016/j.biortech.2017.02.022.
  • M. Ali and T.R. Sreekrishnan, Aquatic toxicity from pulp and paper mill effluents: A review. Advances in Environmental Research, 5, 175196, 2001. https://doi .org/10.1016/S1093-0191(00)00055-1.
  • Y. Liu, Y. Zhang, X. Quan, Y. Li, Z. Zhao, X. Meng and S. Chen, Optimization of anaerobic acidogenesis by adding Fe0 powder to enhance anaerobic wastewater treatment. Chemical Engineering Journal, 192, 179185, 2012. https://doi.org/10.1016/j.cej.2012 .03.044.
  • Q. Guo, S. Majeed, R. Xu, K. Zhang, A. Kakade, A. Khan, F.Y. Hafeez, C. Mao, P. Liu and X. Li, Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: A review. Journal of Environmental Management, 240, 266272, 2019. https://doi.org/10.1016/j.jenvman.2019. 03.104.
  • L.-J. Wu, T. Kobayashi, H. Kuramochi, Y.Y. Li and K.Q. Xu, Effects of potassium, magnesium, zinc, and manganese addition on the anaerobic digestion of de-oiled grease trap waste. Arabian Journal of Science and Engineering, 41, 24172427, 2016. https://doi.org/10 .1007/s13369-015-1879-3.
  • B.H. Bashir and A. Matin, Sodium toxicity control by the use of magnesium in an anaerobic reactor. Journal of Applied Sciences and Environmental Management, 8, 1721, 2004. https://doi.org/10.4314/jasem.v8i1.17 220.
  • F.G. Fermoso, J. Bartacek, S. Jansen and P.N.L. Lens, Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application. Science of Total Environment, 407, 36523667, 2009. https://doi.org/10.1016/j.scitotenv.2008.10.043.
  • B. Munk and M. Lebuhn, Process diagnosis using methanogenic Archaea in maize-fed, trace element depleted fermenters. Anaerobe, 29, 2228, 2014. https://doi.org/10.1016/j.anaerobe.2014.04.002.
  • I. Worms, D.F. Simon, C.S. Hassler and K.J. Wilkinson, Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie, 88, 17211731, 2006. https://doi.org/10.1016/j.biochi.2006. 09.008.
  • Z.W. and W.X. Cai Y., Hua B., Gao L., Hu Y., X.Yuan and Cui Z., Effects of adding trace elements on rice straw anaerobic mono-digestion: Focus on changes in microbial communities using high-throughput sequencing. Bioresource Technology, 239, 454463, 2017. https://doi.org/10.1016/j.biortech.2017.04.071.
  • H. Liu, J.Y. Zhu, S.Y. Fu, Effects of lignin− metal complexation on enzymatic hydrolysis of cellulose, Journal of Agricultural and Food Chemistry, 58, 72337238, 2010. https://doi.org/10.1021/jf1001588.
  • M. Stieb and B. Schink, Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Archives of Microbiology, 140, 387390, 1985. https://doi.org/10. 1007/BF00446983.
  • M.H. Zandvoort, Trace metal dynamics in methanol fed anaerobic granular sludge bed reactors. ProQuest LLC, 789 East Eisenhower Parkway, 2005.
  • M. Kim, C.Y. Gomec, Y. Ahn and R.E. Speece, Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environmental Technology, 24, 11831190, 2003. https://doi.org/10.1080/09593330309385659.
  • B. Yu, Z. Lou, D. Zhang, A. Shan, H. Yuan, N. Zhu and K. Zhang, Variations of organic matters and microbial community in thermophilic anaerobic digestion of waste activated sludge with the addition of ferric salts. Bioresource Technology, 179, 291298, 2015. https:// doi.org/10.1016/j.biortech.2014.12.011.
  • H.M. Ng, L.T. Sin, T.T. Tee, S.T. Bee, D. Hui, C.Y. Low and A.R. Rahmat, Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering, 75, 176200, 2015. https://doi.org/10.1016 /j.compositesb.2015.01.008.
  • L.G. Ljungdahl, The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annual Reviews Microbiology, 40, 415450, 1986.
  • T.C. Harrop and P.K. Mascharak, Structural and spectroscopic models of the A-cluster of acetyl coenzyme a synthase/carbon monoxide dehydrogenase: Nature’s Monsanto acetic acid catalyst. Coordination Chemistry Reviews, 249, 30073024, 2005. https:// doi.org/10.1016/j.ccr.2005.04.019.
  • Y.Y. Choong, I. Norli, A.Z. Abdullah and M.F. Yhaya, Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresource Technology, 209, 369379, 2016. https://doi.org/10.1016/j.biortech.2016.03.028.
  • P. Scherer, H. Lippert and G. Wolff, Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry. Biological Trace Element Research, 5, 149163, 1983. https://doi.org/10.1007/BF02916619.
  • X. Meng, Y. Zhang, Q. Li and X. Quan, Adding Fe0 powder to enhance the anaerobic conversion of propionate to acetate. Biochemical Engineering Journal, 73, 8085, 2013. https://doi.org/10.1016/j.bej. 2013.02.004.
  • M. Takashima, R.E. Speece and G.F. Parkin, Mineral requirements for methane fermentation. Critical Reviews in Environmental Control, 19, 465479, 1990. https://doi.org/10.1080/10643389009388378.
  • X. Zhu, Z. Wang, D. Yellezuome, R. Liu, X. Liu, C. Sun, M.H. Abd-Alla and A.-H.M. Rasmey, Effects of Trace Elements Supplementation on Methane Enhancement and Microbial Community Dynamics in Mesophilic Anaerobic Digestion of Food Waste. Waste and Biomass Valorization, 14, 2323–2334, 2022. https://doi.org/10.1007/s12649-022-02024-0.
  • A. Karlsson, X. Truong, J. Gustavsson, B.H. Svensson, F. Nilsson and J. Ejlertsson, Anaerobic treatment of activated sludge from Swedish pulp and paper mills–biogas production potential and limitations. Environmental Technology, 32, 1559–1571, 2011. https://doi.org/10.1080/09593330.2010.543932.
  • D. Toprak, T. Yilmaz and D. Uçar, Increasing biomethane production from paper industry wastewater with optimum trace element supplementation. International Journal of Environmental Science and Technology, 20, 2635–2648, 2023. https://doi.org/10. 1007/s13762-022-04156-1.
  • H.M. Lo, C.F. Chiang, H.C. Tsao, T.Y. Pai, M.H. Liu, T.A. Kurniawan, K.P. Chao, C.T. Liou, K.C. Lin and C.Y. Chang, Effects of spiked metals on the MSW anaerobic digestion. Waste Management& Research:The Journal for a Sustainable Circular Economy, 30, 3248, 2012. https://doi.org/10.1177 07 34242X10383079.
  • Y. Cai, Z. Zheng, Y. Zhao, Y. Zhang, S. Guo, Z. Cui and X. Wang, Effects of molybdenum, selenium and manganese supplementation on the performance of anaerobic digestion and the characteristics of bacterial community in acidogenic stage. Bioresource Technology, 266, 166175, 2018. https://doi.org/10.10 16/j.biortech.2018.06.061.
  • C. Schmidt-Dannert and F.H. Arnold, Directed evolution of industrial enzymes. Trends Biotechnology, 17, 135136, 1999. https://doi.org/10 .1016/S0167-7799(98)01283-9.
  • J.G. Ferry, Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass., Current Opinion in Biotechnology, 22, 351357, 2011. https://doi.org/10.1016/j.copbio.2011.04.011.
  • V. Kapoor, X. Li, M. Elk, K. Chandran, C.A. Impellitteri and J.W. Santo Domingo, Impact of heavy metals on transcriptional and physiological activity of nitrifying bacteria. Environmental Science Technology, 49, 13454–13462, 2015. https://doi.org/1 0.1021/acs.est.5b02748.
  • S. Bayr, O. Pakarinen, A. Korppoo, S. Liuksia, A. Väisänen, P. Kaparaju and J. Rintala, Effect of additives on process stability of mesophilic anaerobic monodigestion of pig slaughterhouse waste. Bioresource Technology, 120, 106113, 2012. https://doi.org/10.1016/j.biortech.2012.06.009.
  • D. Mara and N.J. Horan, Handbook of water and wastewater microbiology. Elsevier, London, 2003.
  • A. Hochheimer, R. Hedderich and R.K. Thauer, The formylmethanofuran dehydrogenase isoenzymes in Methanobacterium wolfei and Methanobacterium thermoautotrophicum: induction of the molybdenum isoenzyme by molybdate and constitutive synthesis of the tungsten isoenzyme. Archives of Microbiology, 170, 389393, 1998. https://doi.org/10.1007/s0020300 50658.
  • H.V.M. Hamelers, A. Ter Heijne, T.H.J.A. Sleutels, A.W. Jeremiasse, D.P. Strik and C.J.N. Buisman, New applications and performance of bioelectrochemical systems. Applied Microbiology and Biotechnology, 85, 1673–1685, 2010. https://doi.org/10.1007/s00253-009-2357-1.
  • C.-E. Marcato, E. Pinelli, M. Cecchi, P. Winterton and M. Guiresse, Bioavailability of Cu and Zn in raw and anaerobically digested pig slurry. Ecotoxicology and Environmental Safety, 72, 15381544, 2009. https:/ /doi.org/10.1016/j.ecoenv.2008.12.010.
  • M. He, G. Tian and X. Liang, Phytotoxicity and speciation of copper, zinc and lead during the aerobic composting of sewage sludge. Journal of Hazardous Materials, 163, 671677, 2009. https://doi.org/10.1016 /j.jhazmat.2008.07.013.
  • M.H. Zandvoort, E.D. van Hullebusch, F.G. Fermoso and P.N.L. Lens, Trace metals in anaerobic granular sludge reactors: Bioavailability and dosing strategies. Engineering in Life Science, 6, 293301, 2006. https://doi.org/10.1002/elsc.200620129.
  • J. Gustavsson, S.S. Yekta, A. Karlsson, U. Skyllberg and B.H. Svensson, Potential bioavailability and chemical forms of Co and Ni in the biogas process—an evaluation based on sequential and acid volatile sulfide extractions. Engineering in Life Science, 13, 572579, 2013. https://doi.org/10.1002/elsc.201200162.
  • F.G. Fermoso, J. Bartacek, R. Manzano, H.P. Van Leeuwen and P.N.L. Lens, Dosing of anaerobic granular sludge bioreactors with cobalt: impact of cobalt retention on methanogenic activity. Bioresource Technology, 101, 9429–9437, 2010. https://doi.org/10 .1016/j.biortech.2010.07.053.
  • S. Myszograj, A. Stadnik and E. P. Koropczuk, The influence of trace elements on anaerobic digestion process. Civil and Environmental Engineering Reports, 28, 105115, 2018. https://doi.org/10.2478/ce er-2018-0054
  • S.S. Yekta, U. Skyllberg, Å. Danielsson, A. Björn and B.H. Svensson, Chemical speciation of sulfur and metals in biogas reactors–Implications for cobalt and nickel bio-uptake processes. Journal of Hazardous Materials, 324, 110116, 2017. https://doi.org/10.1016 /j.jhazmat.2015.12.058.
  • W.P. Barber and D.C. Stuckey, Metal bioavailability and trivalent chromium removal in ABR. Journal of Environmental Engineering, 126, 649656, 2000. https://doi.org/10.1061/(ASCE)07339372(2000)126:7(649).
  • F.G. Fermoso, G. Collins, J. Bartacek, V. O’Flaherty and P. Lens, Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors. Biodegradation, 19, 725737, 2008. https://doi.org/10. 1007/s10532-008-9177-3.
  • X. Jin, X. Li, N. Zhao, I. Angelidaki and Y. Zhang, An innovative process for biogas upgrading by the microbial electrolysis cell. Sustain-ATV Conference, pp.1, Kgs. Lyngby, Denmark, 2016.
  • Y. Cai, L. Janke, X. Meng, Z. Zheng, X. Zhao, J. Pröter and F. Schäfer, The absolute concentration and bioavailability of trace elements: Two vital parameters affecting anaerobic digestion performance of chicken manure leachate. Bioresource Technology, 350, 126909, 2022. https://doi.org/10.1016/j.biortech.2022 .126909.
  • X. Jiang, Q. Lyu, L. Bi, Y. Liu, Y. Xie, G. Ji, C. Huan, L. Xu and Z. Yan, Improvement of sewage sludge anaerobic digestion through synergistic effect combined trace elements enhancer with enzyme pretreatment and microbial community response. Chemosphere, 286, 131356, 2022. https://doi.org/10 .1016/j.chemosphere.2021.13135.
  • O. Hijazi, E. Abdelsalam, M. Samer, B.M.A. Amer, I.H. Yacoub, M.A. Moselhy, Y.A. Attia and H. Bernhardt, Environmental impacts concerning the addition of trace metals in the process of biogas roduction from anaerobic digestion of slurry. Journal of Cleaner Production, 243, 118593, 2020. https://doi .org/10.1016/j.jclepro.2019.118593
There are 73 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Articles
Authors

Dilan Toprak 0000-0003-3879-4064

Early Pub Date September 25, 2023
Publication Date October 15, 2023
Submission Date March 11, 2023
Acceptance Date September 5, 2023
Published in Issue Year 2023 Volume: 12 Issue: 4

Cite

APA Toprak, D. (2023). Anaerobik parçalanma süreçlerine iz element ilavesi ve etki mekanizmaları. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1092-1100. https://doi.org/10.28948/ngumuh.1242942
AMA Toprak D. Anaerobik parçalanma süreçlerine iz element ilavesi ve etki mekanizmaları. NOHU J. Eng. Sci. October 2023;12(4):1092-1100. doi:10.28948/ngumuh.1242942
Chicago Toprak, Dilan. “Anaerobik parçalanma süreçlerine Iz Element Ilavesi Ve Etki Mekanizmaları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 4 (October 2023): 1092-1100. https://doi.org/10.28948/ngumuh.1242942.
EndNote Toprak D (October 1, 2023) Anaerobik parçalanma süreçlerine iz element ilavesi ve etki mekanizmaları. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 4 1092–1100.
IEEE D. Toprak, “Anaerobik parçalanma süreçlerine iz element ilavesi ve etki mekanizmaları”, NOHU J. Eng. Sci., vol. 12, no. 4, pp. 1092–1100, 2023, doi: 10.28948/ngumuh.1242942.
ISNAD Toprak, Dilan. “Anaerobik parçalanma süreçlerine Iz Element Ilavesi Ve Etki Mekanizmaları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/4 (October 2023), 1092-1100. https://doi.org/10.28948/ngumuh.1242942.
JAMA Toprak D. Anaerobik parçalanma süreçlerine iz element ilavesi ve etki mekanizmaları. NOHU J. Eng. Sci. 2023;12:1092–1100.
MLA Toprak, Dilan. “Anaerobik parçalanma süreçlerine Iz Element Ilavesi Ve Etki Mekanizmaları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 4, 2023, pp. 1092-00, doi:10.28948/ngumuh.1242942.
Vancouver Toprak D. Anaerobik parçalanma süreçlerine iz element ilavesi ve etki mekanizmaları. NOHU J. Eng. Sci. 2023;12(4):1092-100.

download