Üniversite toplu kullanım alanlarında iç ortam hava kalitesinin iş sağlığı ve güvenliği açısından değerlendirilmesi
Year 2023,
Volume: 12 Issue: 4, 1392 - 1402, 15.10.2023
Yeşim Yılmaz
,
Ayşegül Bayın Sarıahmetoğlu
Abstract
Üniversite çalışanları ve öğrenciler yaşamlarının büyük bir bölümünü kapalı ortamlarda geçirmekte ve bu ortamlarda bulunan hava kirleticilerine maruz kalmaktadırlar. Bir devlet üniversitesinde yapılan bu çalışmada, ders çalışma, yemek yeme ve sosyal aktivitede bulunma gibi farklı aktivitelerin yapıldığı alanlarda, iç ortam hava kalitesi (İOHK) parametrelerinden sıcaklık, nem ve CO2 konsantrasyonu ölçümleri yapılmış ve sonuçları analiz edilmiştir. Farklı havalandırma tesisatlarına sahip bu alanlardan alınan veriler sonucunda, İOHK parametrelerinden CO2 konsantrasyonunu ile sıcaklığın kişi sayısı ve yapılan aktiviteye göre doğrusal değiştiği tespit edilmiştir. CO2 konsantrasyon verilerinin yemek yeme alanlarında 1000 ppm üzerine çıktığı, ders çalışma aktivitesinin yapıldığı alanlarda havalandırma tesisatı olmasına rağmen kişi sayısının artmasıyla bu değerlerin 1000 ppm civarında olduğu görülmüştür. Nem ve sıcaklık değerlendirmesinde, ortamda havalandırma tesisatı bulunmasıyla birlikte, maruz kalınan değerlerin standart limit değerlerini aşmadığı görülmüştür. Sonuçlar, sürdürülebilir iş sağlığı ve güvenliği bakış açısıyla irdelenmiş, mühendislik tedbirleri yönünden değerlendirme yapılarak çözüm önerileri sunulmuştur.
Supporting Institution
İTÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi
Thanks
Bu proje çalışması, İstanbul Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından, 43415 Proje No ile Genel Araştırma Projesi kapsamında “İÇ ORTAM HAVA KALİTESİNİN İŞ SAĞLIĞI VE GÜVENLİĞİ AÇISINDAN ÇALIŞANLAR ÜZERİNDEKİ ETKİLERİNİN BELİRLENMESİ: İSTANBUL TEKNİK ÜNİVERSİTESİ AYAZAĞA KAMPÜSÜ ÖRNEĞİ” başlığıyla desteklenmiştir. İTÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi' ne teşekkürlerimizi sunarız.
References
- Indoor Air Quality Research, Euro Report and Studies. World Health Organization (WHO), No:103, 1988.
- M. Frontczak and P. Wargocki, Literature survey on how different factors influence human comfort in indoor environments. World Health Organization, Building and Environment, 46(4), 922–937, 2011. https://doi.org/10.1016/j.buildenv.2010. 10.021
- I. Sarbu and C. Sebarchievici, Aspects of indoor environmental quality assessment in buildings. Energy and Buildings 60, 410–419, 2013. http://dx.doi.org/10.1016/j.enbuild.2013.02.005
- R. M. Almeida, V. P. De Freitas, J. M. Delgado, School buildings rehabilitation: indoor environmental quality and enclosure optimization. Springer International Publishing, 35-83, 2015.
- T. Kubo, T. Mizoue, R. Ide, N. Tokuı, Y. Fujino, P. T. Minh, K. Shirane, T. Matsumoto, T. Yoshimura, Visual Display Terminal Work and Sick Building Syndrome – The Role of Psychosocial -Distress in the Relationship. Journal of Occupational Health, 107112, 2006. https://doi.org/10.1539/joh.48.107
- Ü. Bulut Karaca, İç Ortam Kalitesinin Önemi Üzerine Bir Araştırma. Kent Akademisi Dergisi, 15(4):1724-1741, 2022. https://doi.org/10.35674/kent.1118122
- P. L. Ooi, K. T. Goh, M. H. Phoon, S. C. Foo, M. H. Yap, Epidemiology of Sick Building Syndrome and its Associated Risk Factors in Singapore. Occupucational Environment Med., 55, 188-193, 1998. https://doi.org/10.1136/oem.55.3.188
- 6331 Sayılı İş Sağlığı ve Güvenliği Kanunu. Çalışma ve Sosyal Güvenlik Bakanlığı, Ankara, 2012.
- İş Sağlığı ve Güvenliği Risk Değerlendirmesi Yönetmeliği. Çalışma ve Sosyal Güvenlik Bakanlığı, Ankara, 2012.
- İş Hijyeni Ölçüm, Test Ve Analizleri Hakkında Yönetmelik. Çalışma ve Sosyal Güvenlik Bakanlığı, Ankara, 2017.
- İş Ekipmanlarının Kullanımında Sağlık ve Güvenlik Şartları Yönetmeliği. Çalışma ve Sosyal Güvenlik Bakanlığı, Ankara, 2013.
- ASHRAE 62.1-2022, Ventilation and Acceptable Indoor Air Quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2022.
- ASHRAE 62.2-2022, Ventilation and Acceptable Indoor Air Quality in Residential Buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2022.
- ASHRAE 55-2020, Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2020.
- I. Mujan, A. S. Anđelkovič, V. Munčan, M. Kljajič, D. Ružić, Influence of indoor environmental quality on human health and productivity - A review. Journal of Cleaner Production 217, 646-657, 2019. https://doi.org/10.1016/j.jclepro.2019.01.307
- ISO 773, Rectangular or square parallel keys and their corresponding keyways (Dimensions in millimetres). International Organization for Standardization, 1969.
- L. Schibuola, C. Tambani, High Energy Efficiency Ventilation to Limit COVID-19 contagion in School Environments. Energy Build, 240, 110882, 2021. https://doi.org/10.1016/j.enbuild.2021.110882
- L. Schibuola, M. Scarpa, C. Tambani, Natural Ventilation Level Assessment in a School Building by CO2 Concentration Measures. Energy Procedia 257-264, 2016. https://doi.org/10.1016/j.egypro.2016.11.033
- N. Mahyuddin, H. B. Awbi, A Review of CO2 Measurement Procedures İn Ventilation Research. Int. J. Vent., 353-370, 2012. https://doi.org/10.1080/14733315.2012.11683961
- E. Işık, S. Çibuk, Yemekhaneler ve kantinlerde iç hava kalitesi ile ilgili ölçüm sonuçları ve analizi -Tunceli Üniversitesi örneği. Dicle Üniversitesi Mühendislik Fakültesi Dergisi, 6:1, 39-50, 2015.
- I. Annesi-Maesano, N. Baiz, S. Banerjee, P. Rudnai, S. Rive, Indoor air quality and sources in schools and related health effects. Journal of Toxicology and Environmental Health, Part B, 16, 491–550, 2013. https://doi.org/10.1080/10937404.2013.853609
- Z. Bakó-Biró, D. Clements-Croome, N. Kochhar, Awbi, H. M. Williams, Ventilation rates in schools and pupils’ performance. Building and Environment, 48: 215–223,2012.
https://doi.org/10.1016/j.buildenv.2011.08.018
- U. Haverinen-Shaughnessy, D.J. Moschandreas and R.J. Shaughnessy, Association between substandard classroom ventilation rates and students’ academic achievement. Indoor Air, 21, 121–131, 2011. https://doi.org/10.1111/j.1600-0668.2010.00686.x
- M.J. Mendell, E.A. Eliseeva, M.M. Davies, M. Spears, A. Lobscheid, W.J. Fisk, and M.G. Apte, Association of classroom ventilation with reduced illness absence: a prospective study in California elementary schools. Indoor Air, 23, 515–528, 2013. https://doi.org/10.1111/ina.12042
- E. Simons, S. Hwang, E.F. Fitzgerald, C. Kielb and S. Lin, The impact of school building conditions on student absenteeism in upstate New York. Am. J. Public Health, 100(9), 1679–1686, 2010. https://doi.org/10.2105/AJPH.2009.165324
- C.C. Vassella, J. Koch, A. Henzi, A. Jordan, R. Waeber, R. Iannaccone, R. Charrière, From spontaneous to strategic natural window ventilation: Improving indoor air quality in Swiss schools. Int. J. Hyg. Environ, Health 234, 113746, 2021. https://doi.org/10.1016/j.ijheh.2021.113746
- L.M. Geelen, M.A.J. Huijbregts, A.M. Ragas, R.W. Bretveld, H.W. Jans, W.J. Van Doorn, S.J. Evertz, A. Van der Zijden, Comparing The Effectiveness Of İnterventions To İmprove Ventilation Behavior İn Primary Schools. Indoor Air 18, 416-424, 2008. https://doi.org/10.1111/j.1600-0668.2008.00542.x
- A.C. Gielen, D. Sleet, Application Of Behavior-Change Theories And Methods To İnjury Prevention Epidemiol. Rev., Volume 25. 65-76, 2003. https://doi.org/10.1093/epirev/mxg004
- J. Zemitis, R. Bogdanovics, S. Bogdanovica, The Study of CO2 Concentration in A Classroom During The Covid-19 Safety Measures. E3S Web Conf. 246, 01004, 2021. https://doi.org/10.1051/e3sconf/202124601004
- C. Tam, Y. Zhao, Z. Liao, L. Zhao, Mitigation Strategies for Overheating and High Carbon Dioxide Concentration within Institutional Buildings: A Case Study in Toronto. Buildings, 10, 124, 2020. https://doi.org/10.3390/buildings10070124
- M.W. Ahmad, J. Hippolyte, J. Reynolds, M. Mourshed, Y. Rezgui, Optimal Scheduling Strategy For Enhancing IAQ, Thermal Comfort And Visual Using A Genetic Algorithm. In Proceedings Of The ASHRAE IAQ 2016, Alexandria, VA, USA, 12–14, September 2016.
- B. Chenari, F.B. Lamas, A.R. Gaspar, M.G. da Silva, Simulation Of Occupancy And CO2-Based Demand-Controlled Mechanical Ventilation Strategies İn An Office Room Using Energy Plus. Energy Procedia 2017, 113, 51–57., 2017. https://doi.org/10.1016/j.egypro.2017.04.013
- H. Bulut, Havalandırma ve İç Hava Kalitesi Açısından CO2 Miktarının Analizi. Tesisat Mühendisliği, 128. Sayı, 61-70, 2012.
- E. Bas, Indoor Air Quality-A Guide for Facility Managers. The Fairmont Pres, 2004. https://doi.org/10.1201/9781003151074
- İşçi Sağlığı ve İş Güvenliği Tüzüğü. Çalışma Bakanlığı, Ankara, 1974.
- B. Karaca, İç Ortam Kalitesinin Önemi Üzerine Bir Araştırma. Kent Akademisi Dergisi, 15(4), 1724-1741, 2022. https://doi.org/10.35674/kent.1118122
- F.C. Güney, Yüksel, F. Seçer, Kariptaş, F. Kariptaş, Ofis İç Mekanının Covid-19 Pandemisi Sonrası Yeniden Düzenlenmesi. bāb Journal of FSMVU Faculty of Architecture and Design. 3 (1), 85-102, 2022.
Indoor air quality in university public use areas evaluation in terms of occupational health and safety
Year 2023,
Volume: 12 Issue: 4, 1392 - 1402, 15.10.2023
Yeşim Yılmaz
,
Ayşegül Bayın Sarıahmetoğlu
Abstract
University staff and students spend most of their lives indoors and are exposed to air pollutants in these environments. In this study conducted at a state university, temperature, humidity and CO2 concentration measurements were made from indoor air quality (IAQ) parameters and the results were analyzed in areas where different activities such as study, eating and social activities are carried out. As a result of the data obtained from these areas with different ventilation installations, it has been determined that the CO2 concentration and temperature, which are among the IOHK parameters, vary linearly according to the number of people and the activity. CO2 concentration data was found to exceed 1000 ppm in dining areas, and although there is ventilation in the areas where study activities are carried out, these values were observed to be around 1000 ppm as the number of people increased. In the humidity and temperature evaluation, it was observed that the exposure values did not exceed the standard limit values, even though there was a ventilation system in the environment. The results were examined from the perspective of sustainable occupational health and safety, and solutions were presented by evaluating in terms of engineering measures.
References
- Indoor Air Quality Research, Euro Report and Studies. World Health Organization (WHO), No:103, 1988.
- M. Frontczak and P. Wargocki, Literature survey on how different factors influence human comfort in indoor environments. World Health Organization, Building and Environment, 46(4), 922–937, 2011. https://doi.org/10.1016/j.buildenv.2010. 10.021
- I. Sarbu and C. Sebarchievici, Aspects of indoor environmental quality assessment in buildings. Energy and Buildings 60, 410–419, 2013. http://dx.doi.org/10.1016/j.enbuild.2013.02.005
- R. M. Almeida, V. P. De Freitas, J. M. Delgado, School buildings rehabilitation: indoor environmental quality and enclosure optimization. Springer International Publishing, 35-83, 2015.
- T. Kubo, T. Mizoue, R. Ide, N. Tokuı, Y. Fujino, P. T. Minh, K. Shirane, T. Matsumoto, T. Yoshimura, Visual Display Terminal Work and Sick Building Syndrome – The Role of Psychosocial -Distress in the Relationship. Journal of Occupational Health, 107112, 2006. https://doi.org/10.1539/joh.48.107
- Ü. Bulut Karaca, İç Ortam Kalitesinin Önemi Üzerine Bir Araştırma. Kent Akademisi Dergisi, 15(4):1724-1741, 2022. https://doi.org/10.35674/kent.1118122
- P. L. Ooi, K. T. Goh, M. H. Phoon, S. C. Foo, M. H. Yap, Epidemiology of Sick Building Syndrome and its Associated Risk Factors in Singapore. Occupucational Environment Med., 55, 188-193, 1998. https://doi.org/10.1136/oem.55.3.188
- 6331 Sayılı İş Sağlığı ve Güvenliği Kanunu. Çalışma ve Sosyal Güvenlik Bakanlığı, Ankara, 2012.
- İş Sağlığı ve Güvenliği Risk Değerlendirmesi Yönetmeliği. Çalışma ve Sosyal Güvenlik Bakanlığı, Ankara, 2012.
- İş Hijyeni Ölçüm, Test Ve Analizleri Hakkında Yönetmelik. Çalışma ve Sosyal Güvenlik Bakanlığı, Ankara, 2017.
- İş Ekipmanlarının Kullanımında Sağlık ve Güvenlik Şartları Yönetmeliği. Çalışma ve Sosyal Güvenlik Bakanlığı, Ankara, 2013.
- ASHRAE 62.1-2022, Ventilation and Acceptable Indoor Air Quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2022.
- ASHRAE 62.2-2022, Ventilation and Acceptable Indoor Air Quality in Residential Buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2022.
- ASHRAE 55-2020, Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2020.
- I. Mujan, A. S. Anđelkovič, V. Munčan, M. Kljajič, D. Ružić, Influence of indoor environmental quality on human health and productivity - A review. Journal of Cleaner Production 217, 646-657, 2019. https://doi.org/10.1016/j.jclepro.2019.01.307
- ISO 773, Rectangular or square parallel keys and their corresponding keyways (Dimensions in millimetres). International Organization for Standardization, 1969.
- L. Schibuola, C. Tambani, High Energy Efficiency Ventilation to Limit COVID-19 contagion in School Environments. Energy Build, 240, 110882, 2021. https://doi.org/10.1016/j.enbuild.2021.110882
- L. Schibuola, M. Scarpa, C. Tambani, Natural Ventilation Level Assessment in a School Building by CO2 Concentration Measures. Energy Procedia 257-264, 2016. https://doi.org/10.1016/j.egypro.2016.11.033
- N. Mahyuddin, H. B. Awbi, A Review of CO2 Measurement Procedures İn Ventilation Research. Int. J. Vent., 353-370, 2012. https://doi.org/10.1080/14733315.2012.11683961
- E. Işık, S. Çibuk, Yemekhaneler ve kantinlerde iç hava kalitesi ile ilgili ölçüm sonuçları ve analizi -Tunceli Üniversitesi örneği. Dicle Üniversitesi Mühendislik Fakültesi Dergisi, 6:1, 39-50, 2015.
- I. Annesi-Maesano, N. Baiz, S. Banerjee, P. Rudnai, S. Rive, Indoor air quality and sources in schools and related health effects. Journal of Toxicology and Environmental Health, Part B, 16, 491–550, 2013. https://doi.org/10.1080/10937404.2013.853609
- Z. Bakó-Biró, D. Clements-Croome, N. Kochhar, Awbi, H. M. Williams, Ventilation rates in schools and pupils’ performance. Building and Environment, 48: 215–223,2012.
https://doi.org/10.1016/j.buildenv.2011.08.018
- U. Haverinen-Shaughnessy, D.J. Moschandreas and R.J. Shaughnessy, Association between substandard classroom ventilation rates and students’ academic achievement. Indoor Air, 21, 121–131, 2011. https://doi.org/10.1111/j.1600-0668.2010.00686.x
- M.J. Mendell, E.A. Eliseeva, M.M. Davies, M. Spears, A. Lobscheid, W.J. Fisk, and M.G. Apte, Association of classroom ventilation with reduced illness absence: a prospective study in California elementary schools. Indoor Air, 23, 515–528, 2013. https://doi.org/10.1111/ina.12042
- E. Simons, S. Hwang, E.F. Fitzgerald, C. Kielb and S. Lin, The impact of school building conditions on student absenteeism in upstate New York. Am. J. Public Health, 100(9), 1679–1686, 2010. https://doi.org/10.2105/AJPH.2009.165324
- C.C. Vassella, J. Koch, A. Henzi, A. Jordan, R. Waeber, R. Iannaccone, R. Charrière, From spontaneous to strategic natural window ventilation: Improving indoor air quality in Swiss schools. Int. J. Hyg. Environ, Health 234, 113746, 2021. https://doi.org/10.1016/j.ijheh.2021.113746
- L.M. Geelen, M.A.J. Huijbregts, A.M. Ragas, R.W. Bretveld, H.W. Jans, W.J. Van Doorn, S.J. Evertz, A. Van der Zijden, Comparing The Effectiveness Of İnterventions To İmprove Ventilation Behavior İn Primary Schools. Indoor Air 18, 416-424, 2008. https://doi.org/10.1111/j.1600-0668.2008.00542.x
- A.C. Gielen, D. Sleet, Application Of Behavior-Change Theories And Methods To İnjury Prevention Epidemiol. Rev., Volume 25. 65-76, 2003. https://doi.org/10.1093/epirev/mxg004
- J. Zemitis, R. Bogdanovics, S. Bogdanovica, The Study of CO2 Concentration in A Classroom During The Covid-19 Safety Measures. E3S Web Conf. 246, 01004, 2021. https://doi.org/10.1051/e3sconf/202124601004
- C. Tam, Y. Zhao, Z. Liao, L. Zhao, Mitigation Strategies for Overheating and High Carbon Dioxide Concentration within Institutional Buildings: A Case Study in Toronto. Buildings, 10, 124, 2020. https://doi.org/10.3390/buildings10070124
- M.W. Ahmad, J. Hippolyte, J. Reynolds, M. Mourshed, Y. Rezgui, Optimal Scheduling Strategy For Enhancing IAQ, Thermal Comfort And Visual Using A Genetic Algorithm. In Proceedings Of The ASHRAE IAQ 2016, Alexandria, VA, USA, 12–14, September 2016.
- B. Chenari, F.B. Lamas, A.R. Gaspar, M.G. da Silva, Simulation Of Occupancy And CO2-Based Demand-Controlled Mechanical Ventilation Strategies İn An Office Room Using Energy Plus. Energy Procedia 2017, 113, 51–57., 2017. https://doi.org/10.1016/j.egypro.2017.04.013
- H. Bulut, Havalandırma ve İç Hava Kalitesi Açısından CO2 Miktarının Analizi. Tesisat Mühendisliği, 128. Sayı, 61-70, 2012.
- E. Bas, Indoor Air Quality-A Guide for Facility Managers. The Fairmont Pres, 2004. https://doi.org/10.1201/9781003151074
- İşçi Sağlığı ve İş Güvenliği Tüzüğü. Çalışma Bakanlığı, Ankara, 1974.
- B. Karaca, İç Ortam Kalitesinin Önemi Üzerine Bir Araştırma. Kent Akademisi Dergisi, 15(4), 1724-1741, 2022. https://doi.org/10.35674/kent.1118122
- F.C. Güney, Yüksel, F. Seçer, Kariptaş, F. Kariptaş, Ofis İç Mekanının Covid-19 Pandemisi Sonrası Yeniden Düzenlenmesi. bāb Journal of FSMVU Faculty of Architecture and Design. 3 (1), 85-102, 2022.