Research Article
BibTex RIS Cite

Comparison of microstructure, mechanical and corrosion properties of Zn-%1Mg alloy produced by different casting methods

Year 2023, Volume: 12 Issue: 4, 1606 - 1614, 15.10.2023
https://doi.org/10.28948/ngumuh.1348335

Abstract

Zn alloys have recently attracted attention in the search for biodegradable materials due to their high biocompatibility, moderate (compared to biodegradable Mg and Fe) degradation rate, and high strength. In particular, the mechanical and corrosion properties of Zn-based alloys are investigated by alloying with different elements. In this study, the Zn-1% Mg alloys were produced using three different casting methods: gravity casting, gravity casting under a magnetic field, and high-pressure casting (HPDC). Their microstructure, mechanical, and corrosion properties were compared. It was determined that the Zn dendritic matrix phase and Mg2Zn11 eutectic structure were formed in all three casting methods. It has been observed that applying a magnetic field at the time of solidification thins the dendritic and eutectic structures. It has been observed that applying a magnetic field during solidification in gravity casting improves the mechanical and corrosion properties of the Zn-Mg alloy. While the highest Vickers hardness value was obtained by the high pressure die casting method, the lowest corrosion rate was obtained in the gravity casting sample performed under a magnetic field.

References

  • N. Tipan, A. Pandey and P. Mishra, Magnesium based alloys for biodegradable implants applications using additive manufacturing technique: a review. Journal of Mechanics in Medicine and Biology, 22 (06), 2250042, 2022. https://doi.org/10.1142/S0219519422500427
  • F. Abdiyan, A. Khanlarkhani, V. Zahedi Asl, P. Biabani, J. Zhao, S. Najafi and Y. Palizdar, Effect of adding Y and Ce on corrosion behaviour of the extruded ZK60 magnesium alloy. Corrosion Engineering, Science and Technology, 57 (1), 1-6, 2022. https://doi.org/10.1080/1478422X.2021.1976085
  • M.M. Zerankeshi, and R. Alizadeh, Ag-incorporated biodegradable Mg alloys. Materialia, 23, 101445, 2022. https://doi.org/10.1016/j.mtla.2022.101445
  • Y. Shi, Z. Xue, P. Li, S. Yang, D. Zhang, S. Zhou, Z. Guan, Y. Li and L.N. Wang, Surface modification on biodegradable zinc alloys. Journal of Materials Research and Technology, 2003. https://doi.org/10.1016/j.jmrt.2023.06.149
  • H. Hermawan, D. Dubé and D. Mantovani, Developments in metallic biodegradable stents. Acta biomaterialia, 6(5), 1693-1697, 2010. https://doi.org/10.1016/j.actbio.2009.10.006
  • D. Pierson, J. Edick, A. Tauscher, E. Pokorney, P. Bowen, J. Gelbaugh, J. Stinson, H. Getty, C.H. Lee, J. Drelich and J. Goldman, A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100 (1): 58-67, 2012. https://doi.org/10.1002/jbm.b.31922
  • P.K. Bowen, J. Drelich, R.E. Buxbaum, R.M. Rajachar and J. Goldman, New approaches in evaluating metallic candidates for bioabsorbable stents. Emerging Materials Research, 1(5), 237-255, 2012. https://doi.org/10.1680/emr.12.00017
  • J. Duan, L. Li, C. Liu, Y. Suo, X. Wang and Y. Yang, Novel Zn-2Cu-0.2 Mn-xLi (x= 0, 0.1 and 0.38) alloys developed for potential biodegradable implant applications. Journal of Alloys and Compounds, 916, 165478, 2022. https://doi.org/10.1016/j.jallcom.2022.165478
  • H. Yang, B. Jia, Z. Zhang, X. Qu, G. Li, W. Lin, D. Zhu, K. Dai and Y. Zheng, Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nature communications, 11(1), 401, 2020. https://doi.org/10.1038/s41467-019-14153-7
  • D. Vojtěch, J. Kubásek, J. Šerák and P. Novák, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta biomaterialia, 7(9), 3515-3522, 2011. https://doi.org/10.1016/j.actbio.2011.05.008
  • H. Kabir, K. Munir, C. Wen and Y. Li, Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioactive materials, 6(3), 836-879, 2021. https://doi.org/10.1016/j.bioactmat.2020.09.013
  • J. Venezuela and M.S. Dargusch, The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: a comprehensive review. Acta biomaterialia, 87, 1-40, 2019. https://doi.org/10.1016/j.actbio.2019.01.035
  • Z.Z. Shi, X.X. Gao, H.J. Zhang, X.F. Liu, H.Y. Li, C. Zhou, Y.X. Yin and L.N. Wang, Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties. Bioactive materials, 5(2), 210-218, 2020. https://doi.org/10.1016/j.bioactmat.2020.02.010
  • E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A.G. Demir, B. Previtali, D. Mantovani, R. Beanland and M. Vedani, Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation. Journal of the mechanical behavior of biomedical materials, 60, 581-602, 2016. https://doi.org/10.1016/j.jmbbm.2016.03.018
  • D. Vojtěch, J. Kubásek, J. Šerák and P. Novák, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta biomaterialia, 7(9), 3515-3522, 2011. https://doi.org/10.1016/j.actbio.2011.05.008
  • R.H. Galib and A. Sharif, Development of Zn-Mg alloys as a degradable biomaterial. Advanced in Alloys and Compounds, 1, 1-7, 2015. https://doi.org/doi:10.7726/aac.2016.1001
  • H. Liu, H. Huang, Y. Zhang, Y. Xu, C. Wang, J. Sun, J. Jiang, A. Ma, F. Xue and J. Bai, Evolution of Mg–Zn second phases during ECAP at different processing temperatures and its impact on mechanical properties of Zn-1.6 Mg (wt.%) alloys. Journal of Alloys and Compounds, 811, 151987, 2019. https://doi.org/10.1016/j.jallcom.2019.151987
  • P. Xue, M. Ma, Y. Li, X. Li, J. Yuan, G. Shi, K. Wang and K. Zhang, Microstructure, mechanical properties, and in vitro corrosion behavior of biodegradable Zn-1Fe-xMg alloy. Materials, 13(21), 4835, 2020. https://doi.org/10.3390/ma13214835
  • L.Q. Wang, Y.P. Ren, S.N. Sun, H. Zhao, S. Li and G.W. Qin, Microstructure, mechanical properties and fracture behavior of as-extruded Zn–Mg binary alloys. Acta Metallurgica Sinica (English Letters), 30, 931-940, 2017. https://doi.org/10.1007/s40195-017-0585-4
  • H. Jin, S. Zhao, R. Guillory, P.K. Bowen, Z. Yin, A. Griebel, J. Schaffer, E.J. Earley, J. Goldman and J.W. Drelich, Novel high-strength, low-alloys Zn-Mg (< 0.1 wt% Mg) and their arterial biodegradation. Materials Science and Engineering: C, 84, 67-79, 2018. https://doi.org/10.1016/j.msec.2017.11.021
  • L. Wang, Y. He, H. Zhao, H. Xie, S. Li, S., Y. Ren and G. Qin, Effect of cumulative strain on the microstructural and mechanical properties of Zn-0.02 wt% Mg alloy wires during room-temperature drawing process. Journal of Alloys and Compounds, 740, 949-957, 2018. https://doi.org/10.1016/j.jallcom.2018.01.059
  • S. Lin, Q. Wang, X. Yan, X. Ran, L. Wang, J.G. Zhou, T. Hu and G. Wang, Mechanical properties, degradation behaviors and biocompatibility evaluation of a biodegradable Zn-Mg-Cu alloy for cardiovascular implants. Materials Letters, 234, 294-297, 2019. https://doi.org/10.1016/j.matlet.2018.09.092
  • A. Pola, M. Tocci and F.E. Goodwin, Review of microstructures and properties of zinc alloys. Metals, 10(2), 253, 2020. https://doi.org/10.3390/met10020253
  • Page, M.A.M and S., Hartmann, Experimental characterization, material modeling, identification and finite element simulation of the thermo-mechanical behavior of a zinc die-casting alloy. International Journal of Plasticity, 101, 74-105, 2018. https://doi.org/10.1016/j.ijplas.2017.10.010
  • H. Li, Y. Fautrelle, L. Hou, D. Du, Y. Zhang, Z. Ren, X. Lu, R. Moreau and X. Li, Effect of a weak transverse magnetic field on the morphology and orientation of directionally solidified Al–Ni alloys. Journal of Crystal Growth, 436, 68-75, 2016. https://doi.org/10.1016/j.jcrysgro.2015.10.039
  • G.R., Li, Wang, F.F., Wang, H.M. and Cheng, J.F., July. Microstructure and mechanical properties of TC4 titanium alloy subjected to high static magnetic field. In Materials Science Forum, 898, 345-354, 2017. https://doi.org/10.4028/www.scientific.net/MSF.898.345
  • Q. Wang, T. Liu, K. Wang, P. Gao, Y. Liu and J. He, Progress on high magnetic field-controlled transport phenomena and their effects on solidification microstructure. ISIJ international, 54(3), 516-525, 2014. https://doi.org/10.2355/isijinternational.54.516
  • X. Li, A. Gagnoud, J. Wang, X. Li, Y. Fautrelle, Z. Ren, X. Lu, G. Reinhart and H. Nguyen-Thi, Effect of a high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys. Acta materialia, 73, 83-96,2014. https://doi.org/10.1016/j.actamat.2014.03.057
  • ASM Handbook, Alloy Phase Diagrams v.3, pp. 1114, 1999.
  • C. Yao, Z. Wang, S.L. Tay, T. Zhu and W. Gao, Effects of Mg on microstructure and corrosion properties of Zn–Mg alloy. Journal of Alloys and Compounds, 602, 101-107, 2014. https://doi.org/10.1016/j.jallcom.2014.03.025
  • T. Prosek, A. Nazarov, U. Bexell, D. Thierry and J. Serak, Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions. Corrosion Science, 50(8), 2216-2231, 2008. https://doi.org/10.1016/j.corsci.2008.06.008
  • Z. Zhao, Y. Chai, S. Zheng, L. Wang and Y. Xiao, Electromagnetic field assisted metallic materials processing: A review. steel research international, 88(5), 1600273, 2017. https://doi.org/10.1002/srin.201600273
  • Z.H.I. Sun, M. Guo, J. Vleugels, O. Van der Biest and B. Blanpain, Strong static magnetic field processing of metallic materials: A review. Current Opinion in Solid State and Materials Science, 16(5), 254-267, 2012. https://doi.org/10.1016/j.cossms.2012.08.001
  • T.A. Vida, C. Brito, T.S. Lima, J.E. Spinelli, N. Cheung and A. Garcia, Near-eutectic Zn-Mg alloys: Interrelations of solidification thermal parameters, microstructure length scale and tensile/corrosion properties. Current applied physics, 19(5), 582-598, 2019. https://doi.org/10.1016/j.cap.2019.02.013
  • Y. Dong, S. Shuai, J. Yu, W. Xuan, Z. Zhang, J. Wang and Z. Ren, Effect of high static magnetic field on the microstructure and mechanical properties of directionally solidified alloy 2024. Journal of Alloys and Compounds, 749, 978-989, 2018. https://doi.org/10.1016/j.jallcom.2018.03.259
  • G.M. Oreper and J. Szekely, The effect of an externally imposed magnetic field on buoyancy driven flow in a rectangular cavity. Journal of Crystal Growth, 64(3), 505-515, 1983. https://doi.org/10.1016/0022-0248(83)90335-4
  • J.A. Shercliff, Thermoelectric magnetohydrodynamics. Journal of fluid mechanics, 91(2), 231-251, 1979. https://doi.org/10.1017/S0022112079000136
  • S. Otarawanna, C.M. Gourlay, H.I. Laukli, and A.K. Dahle, Microstructure formation in high pressure die casting. Transactions of the Indian Institute of Metals, 62(4), 499-503, 2009. https://doi.org/10.1007/s12666-009-0081-2
  • S. Liu, D. Kent, N. Doan, M. Dargusch and G. Wang, Effects of deformation twinning on the mechanical properties of biodegradable Zn-Mg alloys. Bioactive materials, 4, 8-16, 2019. https://doi.org/10.1016/j.bioactmat.2018.11.001
  • P.R. Goulart, J.E. Spinelli, N. Cheung and A. Garcia, The effects of cell spacing and distribution of intermetallic fibers on the mechanical properties of hypoeutectic Al–Fe alloys. Materials Chemistry and Physics, 119(1-2), 272-278, 2010. https://doi.org/10.1016/j.matchemphys.2009.08.063
  • W.R. Osório, D.R. Leiva, L.C. Peixoto, L.R. Garcia and A. Garcia, Mechanical properties of Sn–Ag lead-free solder alloys based on the dendritic array and Ag3Sn morphology. Journal of Alloys and Compounds, 562, 194-204, 2013. https://doi.org/10.1016/j.jallcom.2013.02.050
  • T.A. Costa, M. Dias, E.S. Freitas, L.C. Casteletti and A. Garcia, The effect of microstructure length scale on dry sliding wear behaviour of monotectic Al-Bi-Sn alloys. Journal of Alloys and Compounds, 689, 767-776, 2016. https://doi.org/10.1016/j.jallcom.2016.08.051
  • P. Volovitch, C. Allely and K. Ogle, Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg alloying in Zn–Mg coating on steel. Corrosion science, 51(6), 1251-1262, 2009. https://doi.org/10.1016/j.corsci.2009.03.005
  • R. Krieg, A. Vimalanandan and M. Rohwerder, Corrosion of zinc and Zn-Mg alloys with varying microstructures and magnesium contents. Journal of The Electrochemical Society, 161(3), C156, 2014. https://doi.org/10.1149/2.103403jes
  • T. Prosek, D. Persson, J. Stoulil and D. Thierry, Composition of corrosion products formed on Zn–Mg, Zn–Al and Zn–Al–Mg coatings in model atmospheric conditions. Corrosion Science, 86, 231-238, 2014. https://doi.org/10.1016/j.corsci.2014.05.016
  • H. Gong, K. Wang, R. Strich and J.G. Zhou, In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103(8), 1632-1640, 2015. https://doi.org/10.1002/jbm.b.33341
  • L. Ye, H. Huang, C. Sun, X. Zhuo, Q. Dong, H. Liu, J. Ju, F. Xue, J. Bai and J. Jiang, Effect of grain size and volume fraction of eutectic structure on mechanical properties and corrosion behavior of as-cast Zn–Mg binary alloys. Journal of Materials Research and Technology, 16, 1673-1685, 2022. https://doi.org/10.1016/j.jmrt.2021.12.101
  • N. Birbilis, K.D. Ralston, S. Virtanen, H.I. Fraser and C.H.J. Davies, Grain character influences on corrosion of ECAPed pure magnesium. Corrosion Engineering, Science and Technology, 45(3), 224-230, 2010. https://doi.org/10.1179/147842209X12559428167805
  • S.H. Ettefagh Far, A. Rahimi, M. Chaghazardi and A. Davoodi, Microstructure characterization and electrochemical corrosion behavior of Zn and Zn/Mg alloys in H 2 SO 4 solution. Journal of Central South University, 22, 2007-2013, 2015. https://doi.org/10.1007/s11771-015-2722-4

Farklı döküm yöntemleriyle üretilen Zn-%1Mg alaşımının mikroyapı, mekanik ve korozyon özelliklerinin karşılaştırılması

Year 2023, Volume: 12 Issue: 4, 1606 - 1614, 15.10.2023
https://doi.org/10.28948/ngumuh.1348335

Abstract

Zn alaşımları sahip oldukları yüksek biyouyumluluk, nispeten yavaş (biyobozunur Mg ve Fe’ye göre) bozunma hızı ve yüksek mukavemetleri nedeniyle son zamanlarda biyobozunur malzeme arayışında dikkat çekmeye başlamıştır. Özellikle farklı elementler ile alaşımlama yapılarak Zn esaslı alaşımların mekanik ve korozyon özellikleri incelenmektedir. Bu çalışmada Zn-%1 Mg alaşımları; gravite (yerçekimi) döküm, manyetik alan altında gravite döküm ve yüksek basınçlı döküm (HPDC) yöntemi olmak üzere üç farklı döküm yöntemiyle üretilerek mikroyapı, mekanik ve korozyon özellikleri karşılaştırılmıştır. Her üç döküm yönteminde de Zn dendritik matris fazının ve Mg2Zn11 ötektik yapının oluştuğu tespit edilmiştir. Katılaşma anında manyetik alan uygulanmasının dendritik ve ötektik yapıyı incelttiği ettiği görülmüştür. Gravite dökümde katılaşma anında manyetik alan uygulanmasının Zn-Mg alaşımının mekanik ve korozyon özelliklerini geliştirdiği görülmüştür. En yüksek Vickers sertlik değeri yüksek basınçlı döküm yöntemi ile elde edilirken, en düşük korozyon hızı manyetik alan altında gerçekleştirilen gravite döküm numunesinde elde edilmiştir.

References

  • N. Tipan, A. Pandey and P. Mishra, Magnesium based alloys for biodegradable implants applications using additive manufacturing technique: a review. Journal of Mechanics in Medicine and Biology, 22 (06), 2250042, 2022. https://doi.org/10.1142/S0219519422500427
  • F. Abdiyan, A. Khanlarkhani, V. Zahedi Asl, P. Biabani, J. Zhao, S. Najafi and Y. Palizdar, Effect of adding Y and Ce on corrosion behaviour of the extruded ZK60 magnesium alloy. Corrosion Engineering, Science and Technology, 57 (1), 1-6, 2022. https://doi.org/10.1080/1478422X.2021.1976085
  • M.M. Zerankeshi, and R. Alizadeh, Ag-incorporated biodegradable Mg alloys. Materialia, 23, 101445, 2022. https://doi.org/10.1016/j.mtla.2022.101445
  • Y. Shi, Z. Xue, P. Li, S. Yang, D. Zhang, S. Zhou, Z. Guan, Y. Li and L.N. Wang, Surface modification on biodegradable zinc alloys. Journal of Materials Research and Technology, 2003. https://doi.org/10.1016/j.jmrt.2023.06.149
  • H. Hermawan, D. Dubé and D. Mantovani, Developments in metallic biodegradable stents. Acta biomaterialia, 6(5), 1693-1697, 2010. https://doi.org/10.1016/j.actbio.2009.10.006
  • D. Pierson, J. Edick, A. Tauscher, E. Pokorney, P. Bowen, J. Gelbaugh, J. Stinson, H. Getty, C.H. Lee, J. Drelich and J. Goldman, A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100 (1): 58-67, 2012. https://doi.org/10.1002/jbm.b.31922
  • P.K. Bowen, J. Drelich, R.E. Buxbaum, R.M. Rajachar and J. Goldman, New approaches in evaluating metallic candidates for bioabsorbable stents. Emerging Materials Research, 1(5), 237-255, 2012. https://doi.org/10.1680/emr.12.00017
  • J. Duan, L. Li, C. Liu, Y. Suo, X. Wang and Y. Yang, Novel Zn-2Cu-0.2 Mn-xLi (x= 0, 0.1 and 0.38) alloys developed for potential biodegradable implant applications. Journal of Alloys and Compounds, 916, 165478, 2022. https://doi.org/10.1016/j.jallcom.2022.165478
  • H. Yang, B. Jia, Z. Zhang, X. Qu, G. Li, W. Lin, D. Zhu, K. Dai and Y. Zheng, Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nature communications, 11(1), 401, 2020. https://doi.org/10.1038/s41467-019-14153-7
  • D. Vojtěch, J. Kubásek, J. Šerák and P. Novák, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta biomaterialia, 7(9), 3515-3522, 2011. https://doi.org/10.1016/j.actbio.2011.05.008
  • H. Kabir, K. Munir, C. Wen and Y. Li, Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioactive materials, 6(3), 836-879, 2021. https://doi.org/10.1016/j.bioactmat.2020.09.013
  • J. Venezuela and M.S. Dargusch, The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: a comprehensive review. Acta biomaterialia, 87, 1-40, 2019. https://doi.org/10.1016/j.actbio.2019.01.035
  • Z.Z. Shi, X.X. Gao, H.J. Zhang, X.F. Liu, H.Y. Li, C. Zhou, Y.X. Yin and L.N. Wang, Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties. Bioactive materials, 5(2), 210-218, 2020. https://doi.org/10.1016/j.bioactmat.2020.02.010
  • E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A.G. Demir, B. Previtali, D. Mantovani, R. Beanland and M. Vedani, Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation. Journal of the mechanical behavior of biomedical materials, 60, 581-602, 2016. https://doi.org/10.1016/j.jmbbm.2016.03.018
  • D. Vojtěch, J. Kubásek, J. Šerák and P. Novák, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta biomaterialia, 7(9), 3515-3522, 2011. https://doi.org/10.1016/j.actbio.2011.05.008
  • R.H. Galib and A. Sharif, Development of Zn-Mg alloys as a degradable biomaterial. Advanced in Alloys and Compounds, 1, 1-7, 2015. https://doi.org/doi:10.7726/aac.2016.1001
  • H. Liu, H. Huang, Y. Zhang, Y. Xu, C. Wang, J. Sun, J. Jiang, A. Ma, F. Xue and J. Bai, Evolution of Mg–Zn second phases during ECAP at different processing temperatures and its impact on mechanical properties of Zn-1.6 Mg (wt.%) alloys. Journal of Alloys and Compounds, 811, 151987, 2019. https://doi.org/10.1016/j.jallcom.2019.151987
  • P. Xue, M. Ma, Y. Li, X. Li, J. Yuan, G. Shi, K. Wang and K. Zhang, Microstructure, mechanical properties, and in vitro corrosion behavior of biodegradable Zn-1Fe-xMg alloy. Materials, 13(21), 4835, 2020. https://doi.org/10.3390/ma13214835
  • L.Q. Wang, Y.P. Ren, S.N. Sun, H. Zhao, S. Li and G.W. Qin, Microstructure, mechanical properties and fracture behavior of as-extruded Zn–Mg binary alloys. Acta Metallurgica Sinica (English Letters), 30, 931-940, 2017. https://doi.org/10.1007/s40195-017-0585-4
  • H. Jin, S. Zhao, R. Guillory, P.K. Bowen, Z. Yin, A. Griebel, J. Schaffer, E.J. Earley, J. Goldman and J.W. Drelich, Novel high-strength, low-alloys Zn-Mg (< 0.1 wt% Mg) and their arterial biodegradation. Materials Science and Engineering: C, 84, 67-79, 2018. https://doi.org/10.1016/j.msec.2017.11.021
  • L. Wang, Y. He, H. Zhao, H. Xie, S. Li, S., Y. Ren and G. Qin, Effect of cumulative strain on the microstructural and mechanical properties of Zn-0.02 wt% Mg alloy wires during room-temperature drawing process. Journal of Alloys and Compounds, 740, 949-957, 2018. https://doi.org/10.1016/j.jallcom.2018.01.059
  • S. Lin, Q. Wang, X. Yan, X. Ran, L. Wang, J.G. Zhou, T. Hu and G. Wang, Mechanical properties, degradation behaviors and biocompatibility evaluation of a biodegradable Zn-Mg-Cu alloy for cardiovascular implants. Materials Letters, 234, 294-297, 2019. https://doi.org/10.1016/j.matlet.2018.09.092
  • A. Pola, M. Tocci and F.E. Goodwin, Review of microstructures and properties of zinc alloys. Metals, 10(2), 253, 2020. https://doi.org/10.3390/met10020253
  • Page, M.A.M and S., Hartmann, Experimental characterization, material modeling, identification and finite element simulation of the thermo-mechanical behavior of a zinc die-casting alloy. International Journal of Plasticity, 101, 74-105, 2018. https://doi.org/10.1016/j.ijplas.2017.10.010
  • H. Li, Y. Fautrelle, L. Hou, D. Du, Y. Zhang, Z. Ren, X. Lu, R. Moreau and X. Li, Effect of a weak transverse magnetic field on the morphology and orientation of directionally solidified Al–Ni alloys. Journal of Crystal Growth, 436, 68-75, 2016. https://doi.org/10.1016/j.jcrysgro.2015.10.039
  • G.R., Li, Wang, F.F., Wang, H.M. and Cheng, J.F., July. Microstructure and mechanical properties of TC4 titanium alloy subjected to high static magnetic field. In Materials Science Forum, 898, 345-354, 2017. https://doi.org/10.4028/www.scientific.net/MSF.898.345
  • Q. Wang, T. Liu, K. Wang, P. Gao, Y. Liu and J. He, Progress on high magnetic field-controlled transport phenomena and their effects on solidification microstructure. ISIJ international, 54(3), 516-525, 2014. https://doi.org/10.2355/isijinternational.54.516
  • X. Li, A. Gagnoud, J. Wang, X. Li, Y. Fautrelle, Z. Ren, X. Lu, G. Reinhart and H. Nguyen-Thi, Effect of a high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys. Acta materialia, 73, 83-96,2014. https://doi.org/10.1016/j.actamat.2014.03.057
  • ASM Handbook, Alloy Phase Diagrams v.3, pp. 1114, 1999.
  • C. Yao, Z. Wang, S.L. Tay, T. Zhu and W. Gao, Effects of Mg on microstructure and corrosion properties of Zn–Mg alloy. Journal of Alloys and Compounds, 602, 101-107, 2014. https://doi.org/10.1016/j.jallcom.2014.03.025
  • T. Prosek, A. Nazarov, U. Bexell, D. Thierry and J. Serak, Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions. Corrosion Science, 50(8), 2216-2231, 2008. https://doi.org/10.1016/j.corsci.2008.06.008
  • Z. Zhao, Y. Chai, S. Zheng, L. Wang and Y. Xiao, Electromagnetic field assisted metallic materials processing: A review. steel research international, 88(5), 1600273, 2017. https://doi.org/10.1002/srin.201600273
  • Z.H.I. Sun, M. Guo, J. Vleugels, O. Van der Biest and B. Blanpain, Strong static magnetic field processing of metallic materials: A review. Current Opinion in Solid State and Materials Science, 16(5), 254-267, 2012. https://doi.org/10.1016/j.cossms.2012.08.001
  • T.A. Vida, C. Brito, T.S. Lima, J.E. Spinelli, N. Cheung and A. Garcia, Near-eutectic Zn-Mg alloys: Interrelations of solidification thermal parameters, microstructure length scale and tensile/corrosion properties. Current applied physics, 19(5), 582-598, 2019. https://doi.org/10.1016/j.cap.2019.02.013
  • Y. Dong, S. Shuai, J. Yu, W. Xuan, Z. Zhang, J. Wang and Z. Ren, Effect of high static magnetic field on the microstructure and mechanical properties of directionally solidified alloy 2024. Journal of Alloys and Compounds, 749, 978-989, 2018. https://doi.org/10.1016/j.jallcom.2018.03.259
  • G.M. Oreper and J. Szekely, The effect of an externally imposed magnetic field on buoyancy driven flow in a rectangular cavity. Journal of Crystal Growth, 64(3), 505-515, 1983. https://doi.org/10.1016/0022-0248(83)90335-4
  • J.A. Shercliff, Thermoelectric magnetohydrodynamics. Journal of fluid mechanics, 91(2), 231-251, 1979. https://doi.org/10.1017/S0022112079000136
  • S. Otarawanna, C.M. Gourlay, H.I. Laukli, and A.K. Dahle, Microstructure formation in high pressure die casting. Transactions of the Indian Institute of Metals, 62(4), 499-503, 2009. https://doi.org/10.1007/s12666-009-0081-2
  • S. Liu, D. Kent, N. Doan, M. Dargusch and G. Wang, Effects of deformation twinning on the mechanical properties of biodegradable Zn-Mg alloys. Bioactive materials, 4, 8-16, 2019. https://doi.org/10.1016/j.bioactmat.2018.11.001
  • P.R. Goulart, J.E. Spinelli, N. Cheung and A. Garcia, The effects of cell spacing and distribution of intermetallic fibers on the mechanical properties of hypoeutectic Al–Fe alloys. Materials Chemistry and Physics, 119(1-2), 272-278, 2010. https://doi.org/10.1016/j.matchemphys.2009.08.063
  • W.R. Osório, D.R. Leiva, L.C. Peixoto, L.R. Garcia and A. Garcia, Mechanical properties of Sn–Ag lead-free solder alloys based on the dendritic array and Ag3Sn morphology. Journal of Alloys and Compounds, 562, 194-204, 2013. https://doi.org/10.1016/j.jallcom.2013.02.050
  • T.A. Costa, M. Dias, E.S. Freitas, L.C. Casteletti and A. Garcia, The effect of microstructure length scale on dry sliding wear behaviour of monotectic Al-Bi-Sn alloys. Journal of Alloys and Compounds, 689, 767-776, 2016. https://doi.org/10.1016/j.jallcom.2016.08.051
  • P. Volovitch, C. Allely and K. Ogle, Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg alloying in Zn–Mg coating on steel. Corrosion science, 51(6), 1251-1262, 2009. https://doi.org/10.1016/j.corsci.2009.03.005
  • R. Krieg, A. Vimalanandan and M. Rohwerder, Corrosion of zinc and Zn-Mg alloys with varying microstructures and magnesium contents. Journal of The Electrochemical Society, 161(3), C156, 2014. https://doi.org/10.1149/2.103403jes
  • T. Prosek, D. Persson, J. Stoulil and D. Thierry, Composition of corrosion products formed on Zn–Mg, Zn–Al and Zn–Al–Mg coatings in model atmospheric conditions. Corrosion Science, 86, 231-238, 2014. https://doi.org/10.1016/j.corsci.2014.05.016
  • H. Gong, K. Wang, R. Strich and J.G. Zhou, In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103(8), 1632-1640, 2015. https://doi.org/10.1002/jbm.b.33341
  • L. Ye, H. Huang, C. Sun, X. Zhuo, Q. Dong, H. Liu, J. Ju, F. Xue, J. Bai and J. Jiang, Effect of grain size and volume fraction of eutectic structure on mechanical properties and corrosion behavior of as-cast Zn–Mg binary alloys. Journal of Materials Research and Technology, 16, 1673-1685, 2022. https://doi.org/10.1016/j.jmrt.2021.12.101
  • N. Birbilis, K.D. Ralston, S. Virtanen, H.I. Fraser and C.H.J. Davies, Grain character influences on corrosion of ECAPed pure magnesium. Corrosion Engineering, Science and Technology, 45(3), 224-230, 2010. https://doi.org/10.1179/147842209X12559428167805
  • S.H. Ettefagh Far, A. Rahimi, M. Chaghazardi and A. Davoodi, Microstructure characterization and electrochemical corrosion behavior of Zn and Zn/Mg alloys in H 2 SO 4 solution. Journal of Central South University, 22, 2007-2013, 2015. https://doi.org/10.1007/s11771-015-2722-4
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Material Characterization
Journal Section Articles
Authors

Selma Özarslan 0000-0002-7225-1613

Early Pub Date October 6, 2023
Publication Date October 15, 2023
Submission Date August 22, 2023
Acceptance Date September 27, 2023
Published in Issue Year 2023 Volume: 12 Issue: 4

Cite

APA Özarslan, S. (2023). Farklı döküm yöntemleriyle üretilen Zn-%1Mg alaşımının mikroyapı, mekanik ve korozyon özelliklerinin karşılaştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1606-1614. https://doi.org/10.28948/ngumuh.1348335
AMA Özarslan S. Farklı döküm yöntemleriyle üretilen Zn-%1Mg alaşımının mikroyapı, mekanik ve korozyon özelliklerinin karşılaştırılması. NOHU J. Eng. Sci. October 2023;12(4):1606-1614. doi:10.28948/ngumuh.1348335
Chicago Özarslan, Selma. “Farklı döküm yöntemleriyle üretilen Zn-%1Mg alaşımının mikroyapı, Mekanik Ve Korozyon özelliklerinin karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 4 (October 2023): 1606-14. https://doi.org/10.28948/ngumuh.1348335.
EndNote Özarslan S (October 1, 2023) Farklı döküm yöntemleriyle üretilen Zn-%1Mg alaşımının mikroyapı, mekanik ve korozyon özelliklerinin karşılaştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 4 1606–1614.
IEEE S. Özarslan, “Farklı döküm yöntemleriyle üretilen Zn-%1Mg alaşımının mikroyapı, mekanik ve korozyon özelliklerinin karşılaştırılması”, NOHU J. Eng. Sci., vol. 12, no. 4, pp. 1606–1614, 2023, doi: 10.28948/ngumuh.1348335.
ISNAD Özarslan, Selma. “Farklı döküm yöntemleriyle üretilen Zn-%1Mg alaşımının mikroyapı, Mekanik Ve Korozyon özelliklerinin karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/4 (October 2023), 1606-1614. https://doi.org/10.28948/ngumuh.1348335.
JAMA Özarslan S. Farklı döküm yöntemleriyle üretilen Zn-%1Mg alaşımının mikroyapı, mekanik ve korozyon özelliklerinin karşılaştırılması. NOHU J. Eng. Sci. 2023;12:1606–1614.
MLA Özarslan, Selma. “Farklı döküm yöntemleriyle üretilen Zn-%1Mg alaşımının mikroyapı, Mekanik Ve Korozyon özelliklerinin karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 4, 2023, pp. 1606-14, doi:10.28948/ngumuh.1348335.
Vancouver Özarslan S. Farklı döküm yöntemleriyle üretilen Zn-%1Mg alaşımının mikroyapı, mekanik ve korozyon özelliklerinin karşılaştırılması. NOHU J. Eng. Sci. 2023;12(4):1606-14.

download