Research Article
BibTex RIS Cite

Activated carbon production and characterization from hazelnut bagasse and coffee waste

Year 2024, Volume: 13 Issue: 2, 593 - 599, 15.04.2024
https://doi.org/10.28948/ngumuh.1339138

Abstract

Activated carbon is a porous material with a wide range of applications. Activated carbons derived from natural and agricultural sources are more cost effective and sustainable. Therefore, studies on activated carbons synthesized from biomass have increased. The aim of this study was to utilize waste resources such as hazelnut meal and waste coffee grounds as activated carbon. Activated carbons with impregnation ratios of 2:1, 3:1 and carbonization temperatures of 400°C, 500°C, 600°C were prepared from hazelnut bagasse and coffee waste by chemical activation with ZnCl2. BET, SEM-EDS and FTIR analyses were performed to determine the surface properties of the activated carbons. The highest surface area of 846 m2/g was obtained in activated carbons obtained from hazelnut bagasse at 3:1 impregnation ratio and 500°C temperature. The largest total pore volume was obtained as 0.645 cm3/g. The highest surface area of 747.5 m2/g was obtained for the coffee waste activated carbons at 3:1 impregnation ratio and 500 °C temperature.

Project Number

FHD-2021-1717

References

  • R. C. Bansal and M. Goyal, Activated Carbon Adsorption. CRC Press, 2005.
  • Y. Ji, T. Li, L. Zhu, X. Wang, and Q. Lin, Preparation of activated carbons by microwave heating KOH activation, Applied Surface Science, 254, (2), 506–512, 2007. https://doi.org/10.1016/j.apsusc.2007.06.034
  • J. Bedia, J. M. Rosas, D. Vera, J. Rodríguez-Mirasol, and T. Cordero, Isopropanol decomposition on carbon based acid and basic catalysts, Catalysis Today, 158, (1–2), 89–96, 2010. https://doi.org/10.1016/j.cattod.20 10.04.043
  • T. Vernersson, Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation, Bioresource Technology, 83, 2, 95–104, 2002. https://doi.org/10.1016/S0960-8524(01)00205-X
  • Y. Ding et al., A novel approach for preparing in-situ nitrogen doped carbon via pyrolysis of bean pulp for supercapacitors, Energy, 216, 119227, 2021. https://doi.org/10.1016/j.energy.2020.119227
  • C. A. Okonkwo, M. C. Menkiti, I. A. Obiora-Okafo, and O. N. Ezenwa, Controlled pyrolysis of sugarcane bagasse enhanced mesoporous carbon for improving capacitance of supercapacitor electrode, Biomass and Bioenergy, 146, 105996, 2021. https://doi.org/10.1016 /j.biombioe.2021.105996
  • P. Ozpinar et al., Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis, Renewable Energy, 189, 535–548, 2022. https://doi.org/10.1016/j .renene.2022.02.126
  • S. Kaya et al., Enhanced hydrogen production via methanolysis and energy storage on novel poplar sawdust-based biomass-derived activated carbon catalyst, J Appl Electrochem, 2023. https://doi.org/10. 1007/s10800-023-01873-4
  • S. A. Borghei et al., Synthesis of multi-application activated carbon from oak seeds by KOH activation for methylene blue adsorption and electrochemical supercapacitor electrode, Arabian Journal of Chemistry, 14, (2), 102958, 2021. https://doi.org/10 .1016/j.arabjc.2020.102958
  • B. Gezer, Ultrases Yöntemi İle Hazirlanan Deniz Kestanesinden Elde Edilen Aktif Karbon İle Cu (II) Adsorpsiyonu, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9, (2), 770-780, 2020. https://doi.org/10.28948/ngumuh.700773
  • Q. Han, J. Wang, B. A. Goodman, J. Xie, and Z. Liu, High adsorption of methylene blue by activated carbon prepared from phosphoric acid treated eucalyptus residue, Powder Technology, 366, 239–248, 2020. https://doi.org/10.1016/j.powtec.2020.02.013
  • A. Mamaní, N. Ramírez, C. Deiana, M. Giménez, and F. Sardella, Highly microporous sorbents from lignocellulosic biomass: Different activation routes and their application to dyes adsorption, Journal of Environmental Chemical Engineering, 7, (5), 103148, 2019. https://doi.org/10.1016/j.jece.2019.103148
  • B. Heibati et al., Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods, Journal of Molecular Liquids, 208, (99–105), 2015. https://doi.org/10.1016/j.molliq.2015.03.057
  • K. Selvi, Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon, Bioresource Technology, 80, (1), 87–89, 2001. https://doi.org/10. 1016/S0960-8524(01)00068-2
  • M. K. Rai et al., Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4, Resource-Efficient Technologies, 2, S63–S70, 2016. https://doi.org/10.10 16/j.reffit.2016.11.011
  • E. Demirbas, N. Dizge, M. T. Sulak, and M. Kobya, Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon, Chemical Engineering Journal, 148, (2–3), 480–487, May 2009, https://doi.org/10.1016/j.cej.20 08.09.027
  • J. Zhao, L. Yu, H. Ma, F. Zhou, K. Yang, and G. Wu, Corn stalk-based activated carbon synthesized by a novel activation method for high-performance adsorption of hexavalent chromium in aqueous solutions, Journal of Colloid and Interface Science, 578, 650–659, 2020. https://doi.org/10.1016/j.jcis.202 0.06.031
  • K. Li, Z. Zheng, and Y. Li, Characterization and lead adsorption properties of activated carbons prepared from cotton stalk by one-step H3PO4 activation, Journal of Hazardous Materials, vol. 181, (1–3), 440–447, Sep. 2010. https://doi.org/10.1016/j.jhazmat.2010.05.030
  • I. Rahman, B. Saad, S. Shaidan, and E. Syarizal, Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical–thermal process, Bioresource Technology, 96, (14), 1578–1583, 2005. https://doi.org/10.1016 /j.biortech.2004.12.015
  • X. Ma and F. Ouyang, Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation, Applied Surface Science, 268, 566–570, 2013. https://doi.org/10.1016/j.apsusc.2013.01.009
  • L. Giraldo-Gutiérrez and J. C. Moreno-Piraján, Pb(II) and Cr(VI) adsorption from aqueous solution on activated carbons obtained from sugar cane husk and sawdust, Journal of Analytical and Applied Pyrolysis, 81, (2), 278–284, 2008. https://doi.org/10.1016/j.ja ap.2007.12.007
  • D. Yıldız, Orman biyokütlesinden (paulownia elongota ağacı) aktif karbon ve katalitik piroliz ile biyoyakıt üretiminin incelenmesi, doctoralThesis, ESOGÜ, Fen Bilimleri Enstitüsü, 2015. Accessed: Oct. 11, 2023. [Online]. Available: http://openaccess.ogu.edu.tr:80 80/xmlui/handle/11684/502
  • S. Yorgun, N. Vural, and H. Demiral, Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation, Microporous and Mesoporous Materials, 122, (1–3), 189–194, 2009. https://doi.org/10.1016/j.micromeso.2009.02.032
  • A. Ould-Idriss et al., Preparation of activated carbons from olive-tree wood revisited. I. Chemical activation with H3PO4, Fuel Processing Technology, 92, (2), 261–265, 2011. https://doi.org/10.1016/j.fuproc.2010 .05.01
  • R. T. Yang, Adsorbents: Fundamentals and Applications. John Wiley & Sons, 2003.
  • V. Thithai, X. Jin, M. Ajaz Ahmed, and J.-W. Choi, Physicochemical Properties of Activated Carbons Produced from Coffee Waste and Empty Fruit Bunch by Chemical Activation Method, Energies, 14, (11), 3002, 2021. https://doi.org/10.3390/en14113002
  • H. Demiral, İ. Demiral, F. Tümsek, and B. Karabacakoğlu, Pore structure of activated carbon prepared from hazelnut bagasse by chemical activation, Surf. Interface Anal., 40, (3–4), 616–619, 2008. https://doi.org/10.1002/sia.2631
  • C. Saka et al., A novel hazelnutt bagasse based activated carbon as sodium borohydride methanolysis and electrooxidation catalyst, International Journal of Hydrogen Energy, S0360319923013848, 2023. https://doi.org/10.1016/j.ijhydene.2023.03.261
  • M. Kaya, Evaluating organic waste sources (spent coffee ground) as metal-free catalyst for hydrogen generation by the methanolysis of sodium borohydride, International Journal of Hydrogen Energy, 45, (23), 12743–12754, 2020. https://doi.org/10.1016/j.ijhyden e.2019.10.180
  • K. Kante, C. Nieto-Delgado, J. R. Rangel-Mendez, and T. J. Bandosz, Spent coffee-based activated carbon: Specific surface features and their importance for H2S separation process, Journal of Hazardous Materials, 201–202, 141–147, 2012. https://doi.org/10.1016/j.jhaz mat.2011.11.053
  • H.-J. Kim and S.-C. Oh, Hydrothermal Carbonization of Spent Coffee Grounds, Applied Sciences, 11, (14), 6542, 2021. https://doi.org/10.3390/app11146542.
  • D. Angin, Production and characterization of activated carbon from sour cherry stones by zinc chloride, Fuel, 115, 804–811, 2014. https://doi.org/10.1016/j.fuel.201 3.04.060.
  • H. S. Karapınar, Adsorption performance of activated carbon synthesis by ZnCl2, KOH, H3PO4 with different activation temperatures from mixed fruit seeds, Environmental Technology, 43, (9), 1417–1435, 2022. https://doi.org/10.1080/09593330.2021.1968507.
  • M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, and H. R. Kermani, Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone, Journal of Hazardous Materials, 150, (2), 322–327, 2008. https://doi.org /10.1016/j.jhazmat.2007.04.118
  • A. Şencan, M. Karaboyacı, and M. Kılıç, Determination of lead (II) sorption capacity of hazelnut shell and activated carbon obtained from hazelnut shell activated with ZnCl2, Environmental Science and Pollution Research, 22, (5), 3238–3248, 2015. https://doi.org/10.1007/s11356-014-2974-9
  • M. S. Shafeeyan, W. M. A. W. Daud, A. Houshmand, and A. Arami-Niya, Ammonia modification of activated carbon to enhance carbon dioxide adsorption: effect of pre-oxidation, Applied Surface Science, 257, (9), 3936–3942, 2011. https://doi.org/10.1016/j.apsusc. 2010.11.127
  • R. Hoseinzadeh Hesas, A. Arami-Niya, W. M. A. Wan Daud, and J. N. Sahu, Preparation and Characterization of Activated Carbon from Apple Waste by Microwave-Assisted Phosphoric Acid Activation: Application in Methylene Blue Adsorption, BioResources, 8, (2), 2950–2966, 2013. doi: 10.15376/biores.8.2.2950-2966.
  • H. K. Yağmur and İ. Kaya, Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue, Journal of Molecular Structure, 1232, 130071, 2021. https://doi.org/10.1016/j.molstruc.202 1.130071
  • A. Kumar and H. M. Jena, Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4, Results in Physics, 6, 651–658, 2016. https://doi.org/10.1016/j.rinp.2016.09.012

Fındık küspesi ve kahve atığından aktif karbon üretimi ve karakterizasyonu

Year 2024, Volume: 13 Issue: 2, 593 - 599, 15.04.2024
https://doi.org/10.28948/ngumuh.1339138

Abstract

Aktif karbon, çok geniş kullanım alanına sahip, gözenekli karbonlu bir malzemedir. Doğal ve tarımsal kaynaklardan elde edilen aktif karbonlar daha düşük maliyetli ve sürdürülebilirdir. Bu nedenle biyokütleden sentezlenen aktif karbonlar üzerine yapılan çalışmalar artmıştır. Bu çalışmada, fındık küspesi ve atık kahve telvesi gibi atık olarak nitelendirilen kaynakların aktif karbon olarak değerlendirilmesi hedeflenmiştir. Fındık küspesi ve kahve atığından, ZnCl2 kimyasal aktivasyonu ile 2:1, 3:1 emdirme oranlarında ve 400°C, 500°C, 600°C karbonizasyon sıcaklıklarında aktif karbon üretilmiştir. Aktif karbonların yüzey özelliklerini belirlemek üzere BET, SEM-EDS ve FTIR analizleri gerçekleştirilmiştir. Fındık küspesinden elde edilen aktif karbonlarda en yüksek yüzey alanı 846 m2/g olarak 3:1 emdirme oranında ve 500°C sıcaklıkta elde edilmiştir. En büyük toplam gözenek hacmi ise 0.645 cm3/g olarak elde edilmiştir. Atık kahveden elde edilen aktif karbonlarda ise en yüksek yüzey alanı 747.5 m2/g olarak 3:1 emdirme oranında ve 500 °C sıcaklıkta elde edilmiştir.

Supporting Institution

Eskişehir Osmangazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FHD-2021-1717

References

  • R. C. Bansal and M. Goyal, Activated Carbon Adsorption. CRC Press, 2005.
  • Y. Ji, T. Li, L. Zhu, X. Wang, and Q. Lin, Preparation of activated carbons by microwave heating KOH activation, Applied Surface Science, 254, (2), 506–512, 2007. https://doi.org/10.1016/j.apsusc.2007.06.034
  • J. Bedia, J. M. Rosas, D. Vera, J. Rodríguez-Mirasol, and T. Cordero, Isopropanol decomposition on carbon based acid and basic catalysts, Catalysis Today, 158, (1–2), 89–96, 2010. https://doi.org/10.1016/j.cattod.20 10.04.043
  • T. Vernersson, Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation, Bioresource Technology, 83, 2, 95–104, 2002. https://doi.org/10.1016/S0960-8524(01)00205-X
  • Y. Ding et al., A novel approach for preparing in-situ nitrogen doped carbon via pyrolysis of bean pulp for supercapacitors, Energy, 216, 119227, 2021. https://doi.org/10.1016/j.energy.2020.119227
  • C. A. Okonkwo, M. C. Menkiti, I. A. Obiora-Okafo, and O. N. Ezenwa, Controlled pyrolysis of sugarcane bagasse enhanced mesoporous carbon for improving capacitance of supercapacitor electrode, Biomass and Bioenergy, 146, 105996, 2021. https://doi.org/10.1016 /j.biombioe.2021.105996
  • P. Ozpinar et al., Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis, Renewable Energy, 189, 535–548, 2022. https://doi.org/10.1016/j .renene.2022.02.126
  • S. Kaya et al., Enhanced hydrogen production via methanolysis and energy storage on novel poplar sawdust-based biomass-derived activated carbon catalyst, J Appl Electrochem, 2023. https://doi.org/10. 1007/s10800-023-01873-4
  • S. A. Borghei et al., Synthesis of multi-application activated carbon from oak seeds by KOH activation for methylene blue adsorption and electrochemical supercapacitor electrode, Arabian Journal of Chemistry, 14, (2), 102958, 2021. https://doi.org/10 .1016/j.arabjc.2020.102958
  • B. Gezer, Ultrases Yöntemi İle Hazirlanan Deniz Kestanesinden Elde Edilen Aktif Karbon İle Cu (II) Adsorpsiyonu, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9, (2), 770-780, 2020. https://doi.org/10.28948/ngumuh.700773
  • Q. Han, J. Wang, B. A. Goodman, J. Xie, and Z. Liu, High adsorption of methylene blue by activated carbon prepared from phosphoric acid treated eucalyptus residue, Powder Technology, 366, 239–248, 2020. https://doi.org/10.1016/j.powtec.2020.02.013
  • A. Mamaní, N. Ramírez, C. Deiana, M. Giménez, and F. Sardella, Highly microporous sorbents from lignocellulosic biomass: Different activation routes and their application to dyes adsorption, Journal of Environmental Chemical Engineering, 7, (5), 103148, 2019. https://doi.org/10.1016/j.jece.2019.103148
  • B. Heibati et al., Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods, Journal of Molecular Liquids, 208, (99–105), 2015. https://doi.org/10.1016/j.molliq.2015.03.057
  • K. Selvi, Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon, Bioresource Technology, 80, (1), 87–89, 2001. https://doi.org/10. 1016/S0960-8524(01)00068-2
  • M. K. Rai et al., Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4, Resource-Efficient Technologies, 2, S63–S70, 2016. https://doi.org/10.10 16/j.reffit.2016.11.011
  • E. Demirbas, N. Dizge, M. T. Sulak, and M. Kobya, Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon, Chemical Engineering Journal, 148, (2–3), 480–487, May 2009, https://doi.org/10.1016/j.cej.20 08.09.027
  • J. Zhao, L. Yu, H. Ma, F. Zhou, K. Yang, and G. Wu, Corn stalk-based activated carbon synthesized by a novel activation method for high-performance adsorption of hexavalent chromium in aqueous solutions, Journal of Colloid and Interface Science, 578, 650–659, 2020. https://doi.org/10.1016/j.jcis.202 0.06.031
  • K. Li, Z. Zheng, and Y. Li, Characterization and lead adsorption properties of activated carbons prepared from cotton stalk by one-step H3PO4 activation, Journal of Hazardous Materials, vol. 181, (1–3), 440–447, Sep. 2010. https://doi.org/10.1016/j.jhazmat.2010.05.030
  • I. Rahman, B. Saad, S. Shaidan, and E. Syarizal, Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical–thermal process, Bioresource Technology, 96, (14), 1578–1583, 2005. https://doi.org/10.1016 /j.biortech.2004.12.015
  • X. Ma and F. Ouyang, Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation, Applied Surface Science, 268, 566–570, 2013. https://doi.org/10.1016/j.apsusc.2013.01.009
  • L. Giraldo-Gutiérrez and J. C. Moreno-Piraján, Pb(II) and Cr(VI) adsorption from aqueous solution on activated carbons obtained from sugar cane husk and sawdust, Journal of Analytical and Applied Pyrolysis, 81, (2), 278–284, 2008. https://doi.org/10.1016/j.ja ap.2007.12.007
  • D. Yıldız, Orman biyokütlesinden (paulownia elongota ağacı) aktif karbon ve katalitik piroliz ile biyoyakıt üretiminin incelenmesi, doctoralThesis, ESOGÜ, Fen Bilimleri Enstitüsü, 2015. Accessed: Oct. 11, 2023. [Online]. Available: http://openaccess.ogu.edu.tr:80 80/xmlui/handle/11684/502
  • S. Yorgun, N. Vural, and H. Demiral, Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation, Microporous and Mesoporous Materials, 122, (1–3), 189–194, 2009. https://doi.org/10.1016/j.micromeso.2009.02.032
  • A. Ould-Idriss et al., Preparation of activated carbons from olive-tree wood revisited. I. Chemical activation with H3PO4, Fuel Processing Technology, 92, (2), 261–265, 2011. https://doi.org/10.1016/j.fuproc.2010 .05.01
  • R. T. Yang, Adsorbents: Fundamentals and Applications. John Wiley & Sons, 2003.
  • V. Thithai, X. Jin, M. Ajaz Ahmed, and J.-W. Choi, Physicochemical Properties of Activated Carbons Produced from Coffee Waste and Empty Fruit Bunch by Chemical Activation Method, Energies, 14, (11), 3002, 2021. https://doi.org/10.3390/en14113002
  • H. Demiral, İ. Demiral, F. Tümsek, and B. Karabacakoğlu, Pore structure of activated carbon prepared from hazelnut bagasse by chemical activation, Surf. Interface Anal., 40, (3–4), 616–619, 2008. https://doi.org/10.1002/sia.2631
  • C. Saka et al., A novel hazelnutt bagasse based activated carbon as sodium borohydride methanolysis and electrooxidation catalyst, International Journal of Hydrogen Energy, S0360319923013848, 2023. https://doi.org/10.1016/j.ijhydene.2023.03.261
  • M. Kaya, Evaluating organic waste sources (spent coffee ground) as metal-free catalyst for hydrogen generation by the methanolysis of sodium borohydride, International Journal of Hydrogen Energy, 45, (23), 12743–12754, 2020. https://doi.org/10.1016/j.ijhyden e.2019.10.180
  • K. Kante, C. Nieto-Delgado, J. R. Rangel-Mendez, and T. J. Bandosz, Spent coffee-based activated carbon: Specific surface features and their importance for H2S separation process, Journal of Hazardous Materials, 201–202, 141–147, 2012. https://doi.org/10.1016/j.jhaz mat.2011.11.053
  • H.-J. Kim and S.-C. Oh, Hydrothermal Carbonization of Spent Coffee Grounds, Applied Sciences, 11, (14), 6542, 2021. https://doi.org/10.3390/app11146542.
  • D. Angin, Production and characterization of activated carbon from sour cherry stones by zinc chloride, Fuel, 115, 804–811, 2014. https://doi.org/10.1016/j.fuel.201 3.04.060.
  • H. S. Karapınar, Adsorption performance of activated carbon synthesis by ZnCl2, KOH, H3PO4 with different activation temperatures from mixed fruit seeds, Environmental Technology, 43, (9), 1417–1435, 2022. https://doi.org/10.1080/09593330.2021.1968507.
  • M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, and H. R. Kermani, Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone, Journal of Hazardous Materials, 150, (2), 322–327, 2008. https://doi.org /10.1016/j.jhazmat.2007.04.118
  • A. Şencan, M. Karaboyacı, and M. Kılıç, Determination of lead (II) sorption capacity of hazelnut shell and activated carbon obtained from hazelnut shell activated with ZnCl2, Environmental Science and Pollution Research, 22, (5), 3238–3248, 2015. https://doi.org/10.1007/s11356-014-2974-9
  • M. S. Shafeeyan, W. M. A. W. Daud, A. Houshmand, and A. Arami-Niya, Ammonia modification of activated carbon to enhance carbon dioxide adsorption: effect of pre-oxidation, Applied Surface Science, 257, (9), 3936–3942, 2011. https://doi.org/10.1016/j.apsusc. 2010.11.127
  • R. Hoseinzadeh Hesas, A. Arami-Niya, W. M. A. Wan Daud, and J. N. Sahu, Preparation and Characterization of Activated Carbon from Apple Waste by Microwave-Assisted Phosphoric Acid Activation: Application in Methylene Blue Adsorption, BioResources, 8, (2), 2950–2966, 2013. doi: 10.15376/biores.8.2.2950-2966.
  • H. K. Yağmur and İ. Kaya, Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue, Journal of Molecular Structure, 1232, 130071, 2021. https://doi.org/10.1016/j.molstruc.202 1.130071
  • A. Kumar and H. M. Jena, Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4, Results in Physics, 6, 651–658, 2016. https://doi.org/10.1016/j.rinp.2016.09.012
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Environmental and Sustainable Processes, Materials Science and Technologies
Journal Section Research Articles
Authors

Derya Yıldız 0000-0002-5628-8424

Project Number FHD-2021-1717
Early Pub Date February 23, 2024
Publication Date April 15, 2024
Submission Date August 7, 2023
Acceptance Date February 14, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Yıldız, D. (2024). Fındık küspesi ve kahve atığından aktif karbon üretimi ve karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 593-599. https://doi.org/10.28948/ngumuh.1339138
AMA Yıldız D. Fındık küspesi ve kahve atığından aktif karbon üretimi ve karakterizasyonu. NOHU J. Eng. Sci. April 2024;13(2):593-599. doi:10.28948/ngumuh.1339138
Chicago Yıldız, Derya. “Fındık küspesi Ve Kahve atığından Aktif Karbon üretimi Ve Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 2 (April 2024): 593-99. https://doi.org/10.28948/ngumuh.1339138.
EndNote Yıldız D (April 1, 2024) Fındık küspesi ve kahve atığından aktif karbon üretimi ve karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 593–599.
IEEE D. Yıldız, “Fındık küspesi ve kahve atığından aktif karbon üretimi ve karakterizasyonu”, NOHU J. Eng. Sci., vol. 13, no. 2, pp. 593–599, 2024, doi: 10.28948/ngumuh.1339138.
ISNAD Yıldız, Derya. “Fındık küspesi Ve Kahve atığından Aktif Karbon üretimi Ve Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (April 2024), 593-599. https://doi.org/10.28948/ngumuh.1339138.
JAMA Yıldız D. Fındık küspesi ve kahve atığından aktif karbon üretimi ve karakterizasyonu. NOHU J. Eng. Sci. 2024;13:593–599.
MLA Yıldız, Derya. “Fındık küspesi Ve Kahve atığından Aktif Karbon üretimi Ve Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 2, 2024, pp. 593-9, doi:10.28948/ngumuh.1339138.
Vancouver Yıldız D. Fındık küspesi ve kahve atığından aktif karbon üretimi ve karakterizasyonu. NOHU J. Eng. Sci. 2024;13(2):593-9.

download