Research Article
BibTex RIS Cite

Otomotiv endüstrisi atıksularının koagülasyon- flokülasyon, fenton ve UV/H2O2 prosesleri ile arıtılabilirliğinin incelenmesi

Year 2024, Volume: 13 Issue: 2, 490 - 499, 15.04.2024
https://doi.org/10.28948/ngumuh.1390665

Abstract

Otomotiv endüstrisinde boyama prosesleri, çevresel endişelerin ana kaynaklarından biri olarak ortaya çıkmaktadır. Bu çalışmada otomotiv endüstrisi boyama prosesinden elde edilen atıksuyun koagülasyon-flokülasyon, ultraviyole/hidrojen peroksit (UV/H2O2) ve Fenton prosesleri ile arıtılabilirliği incelenmiştir. Koagülasyon-flokülasyon prosesinde farklı pH, koagülant ve anyonik polimer dozlarının etkisi karşılaştırılmış ve optimum şartlar kimyasal oksijen ihtiyacı (KOİ) ve bulanıklık giderim verimine göre belirlenmiştir. Çalışma sonucunda en yüksek %49.6 KOİ ve %74.4 bulanıklık giderim veriminin elde edildiği koagülant olarak tespit edilen demir (III) klorür için optimum koşullar pH 8, koagülant konsantrasyonu 400 mg L-1 ve anyonik polimer dozu 1 mg L-1 olarak belirlenmiştir. Giderim verimini arttırmak amacıyla koagülasyon-flokülasyon prosesi çıkış suyuna Fenton ve UV/H2O2 prosesleri uygulanmıştır. Sonuçlar değerlendirildiğinde maksimum KOİ giderim verimi pH=3 ve 400 mg L-1 H2O2 konsantrasyonunda uygulanan UV/ H2O2 prosesi ile % 63.4 olarak elde edilmiştir. Ancak Fenton prosesinde ise maksimum %51 KOİ giderimi sağlanabilmiştir. Bu çalışmadan, koagülasyon flokülasyon ardından uygulanacak UV/H2O2 prosesinin giderim verimini arttırdığı ve otomotiv endüstrisi boyama prosesi atıksuları için alternatif ve etkili bir proses olabileceği sonucuna varılmıştır.

References

  • G. Salihoglu ve N. K. Salihoglu, A review on paint sludge from automotive industries: Generation, characteristics and management, Journal of environmental management, 169, 223-235, 2016. https://doi.org/10.1016/j.jenvman.2015.12.039.
  • N. Aleksic, V. Šušteršič, D. Gordić, D. Nikolić ve N. Rakić, Reduction of water consumption in waste water treatment systems in the automotive industry, 2019. https://scidar.kg.ac.rs/handle/123456789/15488.
  • T. Karchiyappan, Studies on treatment of automotive industry wastewater using ozonation, electro-Fenton and chitosan based coagulation process, Current Research in Green and Sustainable Chemistry, 5, 100178, 2022. https://doi.org/10.1016/j.crgsc.2021.10 0178.
  • F. Ansari, Y. K. Pandey, P. Kumar ve P. Pandey, Performance evaluation of effluent treatment plant for automobile industry, International Journal of Energy and Environment (Print), 4, 2013. http://www .ijee.ieefoundation.org/vol4/issue6/IJEE_14_v4n6.pdf.
  • N. K. Salihoglu, S. Ucaroglu ve G. Salihoglu, Bioconversion of industrial wastes: paint sludge from automotive manufacturing, Journal of Material Cycles and Waste Management, 20, 2100-2109, 2018. https://doi.org/10.1007/s10163-018-0764-z.
  • C. W. Leitz, Life cycle cost modeling of automotive paint systems, 2007. http://dspace.mit.edu/handle/17 21.1/7582.
  • S. Papasavva, S. Kia, J. Claya ve R. Gunther, Characterization of automotive paints: an environmental impact analysis, Progress in organic coatings, 43, no. 1-3, 193-206, 2001. https://doi.org/10. 1016/S0300-9440(01)00182-5.
  • R. J. Orsato ve P. Wells, U-turn: the rise and demise of the automobile industry, Journal of Cleaner Production, 15, no. 11-12, 994-1006, 2007. https://doi.org/10 .1016/j.jclepro.2006.05.019.
  • M. H. Ordouei ve A. Elkamel, New composite sustainability indices for Cradle-to-Cradle process design: Case study on thinner recovery from waste paint in auto industries, Journal of Cleaner Production, 166, 253-262, 2017. https://doi.org/10.1016/j.jclepro. 2017.07.247.
  • Ö. Yavaş, Otomotiv endüstrisi kaynaklı atıksuların pac ve demir koagülantı ile arıtılabilirlik ve işletme giderleri yönüyle karşılaştırılması, Ulusal Çevre Bilimleri Araştırma Dergisi, 4, no. 1, 33-40, 2021.
  • R. Wahaab, Assessment of automobile industry wastewater treatment units, Bulletin of environmental contamination and toxicology, 66, 770-776, 2001. https://doi.org/10.1007/s001280075.
  • R. P. Oliveira, J. A. Ghilardi, S. M. Ratusznei, J. A. D. Rodrigues, M. Zaiat ve E. Foresti, Anaerobic sequencing batch biofilm reactor applied to automobile industry wastewater treatment: volumetric loading rate and feed strategy effects, Chemical Engineering and Processing: Process Intensification, 47, no. 8, 1374-1383, 2008. https://doi.org/10.1016/j.cep.2007.06.014.
  • M. Bajaj ve J. Winter, Biogas and biohydrogen production potential of high strength automobile industry wastewater during anaerobic degradation, Journal of environmental management, 128, 522-529, 2013. https://doi.org/10.1016/j.jenvman.2013.06.004.
  • SKKY, Su Kirliliği Kontrolü Yönetmeliği, Resmi Gazete Sayısı, 25687, 2004.
  • E. Kuybu, Otomotiv endüstrisi atıksularının ters osmos yöntemiyle geri kazanımının araştırılması, Yüksek Lisans Tezi, Bursa Uludag University (Turkey), 2013.
  • E. GilPavas, K. Molina-Tirado ve M. Á. Gómez-García, Treatment of automotive industry oily wastewater by electrocoagulation: statistical optimization of the operational parameters, Water Science and Technology, 60, no. 10, 2581-2588, 2009. https://doi.org/10.2166/wst.2009.519.
  • C. Consejo, M. Ormad, J. Sarasa ve J. Ovelleiro, Treatment of wastewater coming from painting processes: application of conventional and advanced oxidation technologies, Ozone: Science and Engineering, 27, no. 4, 279-286, 2005. https://doi. org/10.1080/01919510591006274.
  • A. Tatsi, A. Zouboulis, K. Matis ve P. Samaras, Coagulation–flocculation pretreatment of sanitary landfill leachates, Chemosphere, 53, no. 7, 737-744, 2003. https://doi.org/10.1016/S0045-6535(03)00513-7.
  • Ö. Y. Balık, Boya Endüstrisi Atıksuyunun Koagülasyon ile Ön Arıtımı, Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, 2013.
  • N. Dindar, Tekstil Endüstrisi Atıksularında İleri Arıtma Prosesleri Kullanılarak Organik Madde Giderimi, Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, 2019.
  • A. Gök, Tekstil Endüstrisi Atıksularının Elektro-Fenton Prosesi İle Arıtımı, Yüksek Lisans tezi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, 2019.
  • Z. Song, C. Williams ve R. Edyvean, Treatment of tannery wastewater by chemical coagulation, Desalination, 164, no. 3, 249-259, 2004. https://doi .org/10.1016/S0011-9164(04)00193-6.
  • E. Çokay ve F. Şengül, Toksik Kirleticilerin İleri Oksidasyon Prosesleri İle Arıtımı, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 8, no. 2, 1-9, 2006.
  • S. Bingöl, Fenton ve Fenton Benzeri Proseslerle Azo Boyar Madde Giderimi Üzerine Bir Araştırma, Yüksek Lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü,, 2019.
  • T. S, Foto-Fenton Prosesleri ile Arıtılabilirliğinin İncelenmesi, Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana, Türkiye, 2019.
  • D. Liang, N. Li, J. An, J. Ma, Y. Wu ve H. Liu, Fenton-based technologies as efficient advanced oxidation processes for microcystin-LR degradation, Science of the Total Environment, 753, 141809, 2021. https:// doi.org/10.1016/j.scitotenv.2020.141809.
  • Y. Uysal ve D. Yılancıoğlu, Gaziantep OSB Atıksularından UV/H2O2 Fotooksidasyonu İle Renk Giderimi, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 19, no. 3, 129-134, 2016. https://doi.org/10.17780/ksumbd.282329.
  • H. Gürses, UV/Peroksit (UV/H2O2) Prosesi ile Atıksulardan Non-İyonik Yüzey Aktif Maddenin (NP-10) Uzaklaştırılması, Yüksek Lisans Tezi, Uludağ Üniversitesi Fen Bilimleri Enstitüsü 2016.
  • E. Baştürk, Reaktif mavi 181 boyasının ileri oksidasyon yöntemlerinden UV/H2O2 prosesi ile giderilmesi, Yüksek Lisans Tezi, Aksaray Üniversitesi Fen Bilimleri Enstitüsü, 2012.
  • M. Muruganandham ve M. Swaminathan, Photochemical oxidation of reactive azo dye with UV–H2O2 process, Dyes and pigments, 62, no. 3, 269-275, 2004. https://doi.org/10.1016/j.dyepig.2003.12.006.
  • American Public Health Association/American Water Works Association/Water Environment Federation, Rodger B. Baird, Andrew D. Eaton, Eugene W. Rice (Editors), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, Washington, D.C., American Public Health Association (APHA). 2017.
  • A. Birgül ve S. K. Akal Solmaz, Tekstil endüstrisi atiksulari uzerinde ileri oksidasyon ve kimyasal aritma prosesleri kullanilarak KOI ve renk gideriminin araştirilmasi, Ekoloji, 16, no. 62, 72-80, 2007.
  • S. Meriç, D. Kaptan ve T. Ölmez, Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process, Chemosphere, 54, no. 3, 435-441, 2004. https://doi.org/10.1016/j.chemos phere.2003.08.010.
  • S. G. Cetinkaya, M. H. Morcali, S. Akarsu, C. A. Ziba ve M. Dolaz, Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater, Sustainable Environment Research, 28, no. 4, 165-170, 2018. https://doi.org/10.1016/j.serj.20 18.02.001.
  • Ş. İrdemez, N. Demircioğlu ve Y. Ş. Yildiz, The effects of pH on phosphate removal from wastewater by electrocoagulation with iron plate electrodes, Journal of hazardous materials, 137, no. 2, 1231-1235, 2006. https://doi.org/10.1016/j.jhazmat.2006.04.019.
  • J. Bratby, Coagulation and flocculation in water and wastewater treatment. IWA publishing, 2016.
  • E. Sever, Meşrubat sanayi atıksularının arıtımında elektrokoagülasyon ve kimyasal koagülasyon yöntemlerinin değerlendirilmesi, Yüksek Lisans Tezi, Tekirdağ Namık Kemal Üniversitesi, 2021.
  • A. F. A. Bakar ve A. A. Halim, Treatment of automotive wastewater by coagulation-flocculation using poly-aluminum chloride (PAC), ferric chloride (FeCl 3) and aluminum sulfate (alum), in AIP conference proceedings, 2013, vol. 1571, no. 1, pp. 524-529: American Institute of Physics.
  • S. G. Schrank, J. N. R. Dos Santos, D. S. Souza ve E. E. S. Souza, Decolourisation effects of Vat Green 01 textile dye and textile wastewater using H2O2/UV process, Journal of Photochemistry and Photobiology A: Chemistry, 186, no. 2-3, 125-129, 2007. https:// doi.org/10.1016/j.jphotochem.2006.08.001.
  • T. Z. Péerez, G. Geissler ve F. Hernandez, Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes, Journal of Environmental Sciences, 19, no. 3, 300-305, 2007. https://doi.org/10.1016/S1001-0742 (07)60049-7.
  • N. Azbar, T. Yonar ve K. Kestioglu, Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent, Chemosphere, 55, no. 1, 35-43, 2004. https://doi.org/ 10.1016/j.chemosphere.2003.10.046.
  • A. Assadi ve A. Eslami, Comparision of phenol photodegradation by UV/H2O2 and photo-fenton processes, Environmental Engineering & Management Journal (EEMJ), 9, no. 6, 2010. DOI:10.30638/eemj.2010.107.
  • A. Aleboyeh, M. B. Kasiri ve H. Aleboyeh, Influence of dyeing auxiliaries on AB74 dye degradation by UV/H2O2 process, Journal of environmental management, 113, 426-431, 2012. https://doi.org/10. 1016/j.jenvman.2012.10.008.
  • A. Babuponnusami ve K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering, 2, no. 1, 557-572, 2014. https:// doi.org/10.1016/j.jece.2013.10.011.
  • F. Benitez, J. Acero, F. Real, F. Rubio ve A. Leal, The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions, Water Research, 35, no. 5, 1338-1343, 2001. https://doi.org/ 10.1016/S0043-1354(00)00364-X.
  • S. Sahinkaya, A. Aygun ve M. F. Sevimli, The Application of Fe0/H2O2 for color removal, International Multidisciplinary Scientific GeoConference: SGEM, 1, 803, 2008.
  • Y. W. Kang ve K.-Y. Hwang, Effects of reaction conditions on the oxidation efficiency in the Fenton process, Water research, 34, no. 10, 2786-2790, 2000. https://doi.org/10.1016/S0043-1354(99)00388-7.
  • M. Karim, K. Aziz, K. Omer, Y. Salih, F. Mustafa, K. Rahman ve Y. Mohammad, "Degradation of aqueous organic dye pollutants by heterogeneous photo-assisted Fenton-like process using natural mineral activator: Parameter optimization and degradation kinetics," in IOP Conference Series: Earth and Environmental Science, 2021, vol. 958, no. 1, p. 012011: IOP Publishing.
  • Y. A. Argun, Reaktif Mavi 114 boyasının Fenton prosesi ile giderimi, Yüksek Lisans Tezi, Aksaray Üniversitesi Fen Bilimleri Enstitüsü, 2012.
  • D. Toprak, "Ultrases-Fenton oksidasyon yöntemi ile acid blue 264 boyar maddesinin oksitlenerek renk gideriminin araştırılması," Fen Bilimleri Enstitüsü, 2015.
  • M. F. Gözükızıl, Tekstil endüstrisi atıksularından fenton prosesi ve biyosorpsiyon yöntemi ile renk giderimi ve örnek tesis modeli, Yüksek Lisans Tezi, Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsü, 2013.

Investigation of treatability of automotive industry wastewaters by coagulation-flocculation, fenton and UV/H2O2

Year 2024, Volume: 13 Issue: 2, 490 - 499, 15.04.2024
https://doi.org/10.28948/ngumuh.1390665

Abstract

In the automotive industry, painting operations have emerged as a major source of environmental concerns. In this study, the treatability of wastewater obtained from the automotive industry painting process was investigated by using coagulation-flocculation, ultraviolet/hydrogen peroxide (UV/H2O2), and Fenton processes. The effects of pH, coagulant, and anionic polymer doses were examined for three different coagulants in the coagulation-flocculation process. Optimal conditions were determined based on chemical oxygen demand (COD) and turbidity removal efficiency. As a result of the study, the optimum conditions for the coagulant identified as ferric chloride, which achieved the highest COD removal of 49.6% and turbidity removal of 74.4%, were determined as pH 8, coagulant dose of 400 mg L-1, and anionic polymer dose of 1 mg L-1. In the second stage of the study, Fenton and UV/H2O2 processes were applied to the effluent of the coagulation-flocculation process to increase the removal efficiency. When the results were evaluated, it was observed that the maximum COD removal efficiency of 63.4% was attained under the conditions of pH 3 and 400 mg L-1 H2O2 concentration applied in the UV/H2O2 process. However, in the Fenton process, a maximum COD removal efficiency of only 51% was achieved. From this study, it can be concluded that the UV/ H2O2 process applied after coagulation-flocculation increases the removal efficiency and can be an alternative and effective treatment process for wastewater from the automotive painting process.

Thanks

We would like to thank the Environmental Engineering Department of Aksaray University for providing laboratory equipment for the work described in this paper.

References

  • G. Salihoglu ve N. K. Salihoglu, A review on paint sludge from automotive industries: Generation, characteristics and management, Journal of environmental management, 169, 223-235, 2016. https://doi.org/10.1016/j.jenvman.2015.12.039.
  • N. Aleksic, V. Šušteršič, D. Gordić, D. Nikolić ve N. Rakić, Reduction of water consumption in waste water treatment systems in the automotive industry, 2019. https://scidar.kg.ac.rs/handle/123456789/15488.
  • T. Karchiyappan, Studies on treatment of automotive industry wastewater using ozonation, electro-Fenton and chitosan based coagulation process, Current Research in Green and Sustainable Chemistry, 5, 100178, 2022. https://doi.org/10.1016/j.crgsc.2021.10 0178.
  • F. Ansari, Y. K. Pandey, P. Kumar ve P. Pandey, Performance evaluation of effluent treatment plant for automobile industry, International Journal of Energy and Environment (Print), 4, 2013. http://www .ijee.ieefoundation.org/vol4/issue6/IJEE_14_v4n6.pdf.
  • N. K. Salihoglu, S. Ucaroglu ve G. Salihoglu, Bioconversion of industrial wastes: paint sludge from automotive manufacturing, Journal of Material Cycles and Waste Management, 20, 2100-2109, 2018. https://doi.org/10.1007/s10163-018-0764-z.
  • C. W. Leitz, Life cycle cost modeling of automotive paint systems, 2007. http://dspace.mit.edu/handle/17 21.1/7582.
  • S. Papasavva, S. Kia, J. Claya ve R. Gunther, Characterization of automotive paints: an environmental impact analysis, Progress in organic coatings, 43, no. 1-3, 193-206, 2001. https://doi.org/10. 1016/S0300-9440(01)00182-5.
  • R. J. Orsato ve P. Wells, U-turn: the rise and demise of the automobile industry, Journal of Cleaner Production, 15, no. 11-12, 994-1006, 2007. https://doi.org/10 .1016/j.jclepro.2006.05.019.
  • M. H. Ordouei ve A. Elkamel, New composite sustainability indices for Cradle-to-Cradle process design: Case study on thinner recovery from waste paint in auto industries, Journal of Cleaner Production, 166, 253-262, 2017. https://doi.org/10.1016/j.jclepro. 2017.07.247.
  • Ö. Yavaş, Otomotiv endüstrisi kaynaklı atıksuların pac ve demir koagülantı ile arıtılabilirlik ve işletme giderleri yönüyle karşılaştırılması, Ulusal Çevre Bilimleri Araştırma Dergisi, 4, no. 1, 33-40, 2021.
  • R. Wahaab, Assessment of automobile industry wastewater treatment units, Bulletin of environmental contamination and toxicology, 66, 770-776, 2001. https://doi.org/10.1007/s001280075.
  • R. P. Oliveira, J. A. Ghilardi, S. M. Ratusznei, J. A. D. Rodrigues, M. Zaiat ve E. Foresti, Anaerobic sequencing batch biofilm reactor applied to automobile industry wastewater treatment: volumetric loading rate and feed strategy effects, Chemical Engineering and Processing: Process Intensification, 47, no. 8, 1374-1383, 2008. https://doi.org/10.1016/j.cep.2007.06.014.
  • M. Bajaj ve J. Winter, Biogas and biohydrogen production potential of high strength automobile industry wastewater during anaerobic degradation, Journal of environmental management, 128, 522-529, 2013. https://doi.org/10.1016/j.jenvman.2013.06.004.
  • SKKY, Su Kirliliği Kontrolü Yönetmeliği, Resmi Gazete Sayısı, 25687, 2004.
  • E. Kuybu, Otomotiv endüstrisi atıksularının ters osmos yöntemiyle geri kazanımının araştırılması, Yüksek Lisans Tezi, Bursa Uludag University (Turkey), 2013.
  • E. GilPavas, K. Molina-Tirado ve M. Á. Gómez-García, Treatment of automotive industry oily wastewater by electrocoagulation: statistical optimization of the operational parameters, Water Science and Technology, 60, no. 10, 2581-2588, 2009. https://doi.org/10.2166/wst.2009.519.
  • C. Consejo, M. Ormad, J. Sarasa ve J. Ovelleiro, Treatment of wastewater coming from painting processes: application of conventional and advanced oxidation technologies, Ozone: Science and Engineering, 27, no. 4, 279-286, 2005. https://doi. org/10.1080/01919510591006274.
  • A. Tatsi, A. Zouboulis, K. Matis ve P. Samaras, Coagulation–flocculation pretreatment of sanitary landfill leachates, Chemosphere, 53, no. 7, 737-744, 2003. https://doi.org/10.1016/S0045-6535(03)00513-7.
  • Ö. Y. Balık, Boya Endüstrisi Atıksuyunun Koagülasyon ile Ön Arıtımı, Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, 2013.
  • N. Dindar, Tekstil Endüstrisi Atıksularında İleri Arıtma Prosesleri Kullanılarak Organik Madde Giderimi, Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, 2019.
  • A. Gök, Tekstil Endüstrisi Atıksularının Elektro-Fenton Prosesi İle Arıtımı, Yüksek Lisans tezi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, 2019.
  • Z. Song, C. Williams ve R. Edyvean, Treatment of tannery wastewater by chemical coagulation, Desalination, 164, no. 3, 249-259, 2004. https://doi .org/10.1016/S0011-9164(04)00193-6.
  • E. Çokay ve F. Şengül, Toksik Kirleticilerin İleri Oksidasyon Prosesleri İle Arıtımı, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 8, no. 2, 1-9, 2006.
  • S. Bingöl, Fenton ve Fenton Benzeri Proseslerle Azo Boyar Madde Giderimi Üzerine Bir Araştırma, Yüksek Lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü,, 2019.
  • T. S, Foto-Fenton Prosesleri ile Arıtılabilirliğinin İncelenmesi, Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana, Türkiye, 2019.
  • D. Liang, N. Li, J. An, J. Ma, Y. Wu ve H. Liu, Fenton-based technologies as efficient advanced oxidation processes for microcystin-LR degradation, Science of the Total Environment, 753, 141809, 2021. https:// doi.org/10.1016/j.scitotenv.2020.141809.
  • Y. Uysal ve D. Yılancıoğlu, Gaziantep OSB Atıksularından UV/H2O2 Fotooksidasyonu İle Renk Giderimi, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 19, no. 3, 129-134, 2016. https://doi.org/10.17780/ksumbd.282329.
  • H. Gürses, UV/Peroksit (UV/H2O2) Prosesi ile Atıksulardan Non-İyonik Yüzey Aktif Maddenin (NP-10) Uzaklaştırılması, Yüksek Lisans Tezi, Uludağ Üniversitesi Fen Bilimleri Enstitüsü 2016.
  • E. Baştürk, Reaktif mavi 181 boyasının ileri oksidasyon yöntemlerinden UV/H2O2 prosesi ile giderilmesi, Yüksek Lisans Tezi, Aksaray Üniversitesi Fen Bilimleri Enstitüsü, 2012.
  • M. Muruganandham ve M. Swaminathan, Photochemical oxidation of reactive azo dye with UV–H2O2 process, Dyes and pigments, 62, no. 3, 269-275, 2004. https://doi.org/10.1016/j.dyepig.2003.12.006.
  • American Public Health Association/American Water Works Association/Water Environment Federation, Rodger B. Baird, Andrew D. Eaton, Eugene W. Rice (Editors), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, Washington, D.C., American Public Health Association (APHA). 2017.
  • A. Birgül ve S. K. Akal Solmaz, Tekstil endüstrisi atiksulari uzerinde ileri oksidasyon ve kimyasal aritma prosesleri kullanilarak KOI ve renk gideriminin araştirilmasi, Ekoloji, 16, no. 62, 72-80, 2007.
  • S. Meriç, D. Kaptan ve T. Ölmez, Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process, Chemosphere, 54, no. 3, 435-441, 2004. https://doi.org/10.1016/j.chemos phere.2003.08.010.
  • S. G. Cetinkaya, M. H. Morcali, S. Akarsu, C. A. Ziba ve M. Dolaz, Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater, Sustainable Environment Research, 28, no. 4, 165-170, 2018. https://doi.org/10.1016/j.serj.20 18.02.001.
  • Ş. İrdemez, N. Demircioğlu ve Y. Ş. Yildiz, The effects of pH on phosphate removal from wastewater by electrocoagulation with iron plate electrodes, Journal of hazardous materials, 137, no. 2, 1231-1235, 2006. https://doi.org/10.1016/j.jhazmat.2006.04.019.
  • J. Bratby, Coagulation and flocculation in water and wastewater treatment. IWA publishing, 2016.
  • E. Sever, Meşrubat sanayi atıksularının arıtımında elektrokoagülasyon ve kimyasal koagülasyon yöntemlerinin değerlendirilmesi, Yüksek Lisans Tezi, Tekirdağ Namık Kemal Üniversitesi, 2021.
  • A. F. A. Bakar ve A. A. Halim, Treatment of automotive wastewater by coagulation-flocculation using poly-aluminum chloride (PAC), ferric chloride (FeCl 3) and aluminum sulfate (alum), in AIP conference proceedings, 2013, vol. 1571, no. 1, pp. 524-529: American Institute of Physics.
  • S. G. Schrank, J. N. R. Dos Santos, D. S. Souza ve E. E. S. Souza, Decolourisation effects of Vat Green 01 textile dye and textile wastewater using H2O2/UV process, Journal of Photochemistry and Photobiology A: Chemistry, 186, no. 2-3, 125-129, 2007. https:// doi.org/10.1016/j.jphotochem.2006.08.001.
  • T. Z. Péerez, G. Geissler ve F. Hernandez, Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes, Journal of Environmental Sciences, 19, no. 3, 300-305, 2007. https://doi.org/10.1016/S1001-0742 (07)60049-7.
  • N. Azbar, T. Yonar ve K. Kestioglu, Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent, Chemosphere, 55, no. 1, 35-43, 2004. https://doi.org/ 10.1016/j.chemosphere.2003.10.046.
  • A. Assadi ve A. Eslami, Comparision of phenol photodegradation by UV/H2O2 and photo-fenton processes, Environmental Engineering & Management Journal (EEMJ), 9, no. 6, 2010. DOI:10.30638/eemj.2010.107.
  • A. Aleboyeh, M. B. Kasiri ve H. Aleboyeh, Influence of dyeing auxiliaries on AB74 dye degradation by UV/H2O2 process, Journal of environmental management, 113, 426-431, 2012. https://doi.org/10. 1016/j.jenvman.2012.10.008.
  • A. Babuponnusami ve K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering, 2, no. 1, 557-572, 2014. https:// doi.org/10.1016/j.jece.2013.10.011.
  • F. Benitez, J. Acero, F. Real, F. Rubio ve A. Leal, The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions, Water Research, 35, no. 5, 1338-1343, 2001. https://doi.org/ 10.1016/S0043-1354(00)00364-X.
  • S. Sahinkaya, A. Aygun ve M. F. Sevimli, The Application of Fe0/H2O2 for color removal, International Multidisciplinary Scientific GeoConference: SGEM, 1, 803, 2008.
  • Y. W. Kang ve K.-Y. Hwang, Effects of reaction conditions on the oxidation efficiency in the Fenton process, Water research, 34, no. 10, 2786-2790, 2000. https://doi.org/10.1016/S0043-1354(99)00388-7.
  • M. Karim, K. Aziz, K. Omer, Y. Salih, F. Mustafa, K. Rahman ve Y. Mohammad, "Degradation of aqueous organic dye pollutants by heterogeneous photo-assisted Fenton-like process using natural mineral activator: Parameter optimization and degradation kinetics," in IOP Conference Series: Earth and Environmental Science, 2021, vol. 958, no. 1, p. 012011: IOP Publishing.
  • Y. A. Argun, Reaktif Mavi 114 boyasının Fenton prosesi ile giderimi, Yüksek Lisans Tezi, Aksaray Üniversitesi Fen Bilimleri Enstitüsü, 2012.
  • D. Toprak, "Ultrases-Fenton oksidasyon yöntemi ile acid blue 264 boyar maddesinin oksitlenerek renk gideriminin araştırılması," Fen Bilimleri Enstitüsü, 2015.
  • M. F. Gözükızıl, Tekstil endüstrisi atıksularından fenton prosesi ve biyosorpsiyon yöntemi ile renk giderimi ve örnek tesis modeli, Yüksek Lisans Tezi, Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsü, 2013.
There are 51 citations in total.

Details

Primary Language English
Subjects Environmental Engineering (Other)
Journal Section Research Articles
Authors

Semih Ayberk Aldığ 0000-0003-1593-0422

Gamze Sönmez 0000-0003-3597-1942

Early Pub Date February 15, 2024
Publication Date April 15, 2024
Submission Date November 14, 2023
Acceptance Date January 15, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Aldığ, S. A., & Sönmez, G. (2024). Investigation of treatability of automotive industry wastewaters by coagulation-flocculation, fenton and UV/H2O2. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 490-499. https://doi.org/10.28948/ngumuh.1390665
AMA Aldığ SA, Sönmez G. Investigation of treatability of automotive industry wastewaters by coagulation-flocculation, fenton and UV/H2O2. NOHU J. Eng. Sci. April 2024;13(2):490-499. doi:10.28948/ngumuh.1390665
Chicago Aldığ, Semih Ayberk, and Gamze Sönmez. “Investigation of Treatability of Automotive Industry Wastewaters by Coagulation-Flocculation, Fenton and UV/H2O2”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 2 (April 2024): 490-99. https://doi.org/10.28948/ngumuh.1390665.
EndNote Aldığ SA, Sönmez G (April 1, 2024) Investigation of treatability of automotive industry wastewaters by coagulation-flocculation, fenton and UV/H2O2. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 490–499.
IEEE S. A. Aldığ and G. Sönmez, “Investigation of treatability of automotive industry wastewaters by coagulation-flocculation, fenton and UV/H2O2”, NOHU J. Eng. Sci., vol. 13, no. 2, pp. 490–499, 2024, doi: 10.28948/ngumuh.1390665.
ISNAD Aldığ, Semih Ayberk - Sönmez, Gamze. “Investigation of Treatability of Automotive Industry Wastewaters by Coagulation-Flocculation, Fenton and UV/H2O2”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (April 2024), 490-499. https://doi.org/10.28948/ngumuh.1390665.
JAMA Aldığ SA, Sönmez G. Investigation of treatability of automotive industry wastewaters by coagulation-flocculation, fenton and UV/H2O2. NOHU J. Eng. Sci. 2024;13:490–499.
MLA Aldığ, Semih Ayberk and Gamze Sönmez. “Investigation of Treatability of Automotive Industry Wastewaters by Coagulation-Flocculation, Fenton and UV/H2O2”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 2, 2024, pp. 490-9, doi:10.28948/ngumuh.1390665.
Vancouver Aldığ SA, Sönmez G. Investigation of treatability of automotive industry wastewaters by coagulation-flocculation, fenton and UV/H2O2. NOHU J. Eng. Sci. 2024;13(2):490-9.

download