Research Article
BibTex RIS Cite

Clark-Y uçak kanadı profiline sahip girdap üreteçlerinin konik NACA 0020 kanat üzerindeki etkisi

Year 2024, Volume: 13 Issue: 3, 776 - 784, 15.07.2024
https://doi.org/10.28948/ngumuh.1437429

Abstract

Bu deneysel çalışmada Clark-Y uçak kanadı şekilli girdap üreteçleri ve üçgensel girdap üreteçlerinin (GÜ) konik geriye ok açılı kanat üzerindeki etkileri incelenmiştir. Bu çalışmanın amacı, GÜ'lerin yerleşimi ve tasarımının kanadın aerodinamik özelliklerini nasıl etkilediğini anlamaktır. Testler, ters dönen aero-şekilli girdap üreteçleri x/c = 0.1, 0.2, 0.3, 0.4 ve 0.5 konumlarında, geleneksel girdap üreteçleri x/c=0.1 konumunda kullanılarak Re = 6.0x104 Reynolds sayısında gerçekleştirilmiştir. 0° ila 30° arasında değişen hücum açılarındaki kuvvetleri ölçmek için bir yük hücresi kullanılmıştır. Clark-Y uçak kanadı şekilli GÜ’lerin konumu x/c=0.1'den 0.5'e değişmesiyle CLmax değerinin ve bu değerin elde edildiği hücum açılarının düştüğü görülmektedir. Çalışmadan elde edilen optimal sonuçlar, Clark-Y uçak kanadı şekilli GÜ’lerin x/c=0.1 konumunda, temel modele kıyasla CLmax değerinde %37.5 ve aerodinamik performansta yaklaşık %55 oranında önemli bir artış sağladığını göstermektedir. Düşük hücum açılarında Clark-Y uçak kanadı şekilli GÜ’ler daha iyi taşıma sağlarken, yüksek hücum açılarında üçgensel GÜ’ler daha iyi taşıma oluşturmuştur. Üçgensel GÜ’lerin sürükleme katsayısı düz modele ve uçak kanadı şekilli GÜ’lere göre daha yüksektir. Bu da uçak kanat şekilli GÜ’lerin aerodinamik performansının özellikle düşük açılarda daha yüksek olmasına neden olmaktadır. Bu durum Clark-Y kanat profiline sahip GÜ'lerin kanadın aerodinamik performansını artırmada etkili olduğunu göstermektedir.

References

  • J. Winslow, H. Otsuka, B. Govindarajan, and I. Chopra, Basic understanding of airfoil characteristics at low Reynolds numbers (104–105), Journal of aircraft, 55(3), 1050–1061, 2018. https://doi.org/10.2514/1.C034415.
  • Q. Liu, W. Ager, C. Hall, and A. P. S. Wheeler, Low Reynolds Number Effects on the Separation and Wake of a Compressor Blade, Journal of Turbomachinery, 144(10), 101008, 2022. https://doi.org/10.1115/1.4054148.
  • Zhao, Z., Jiang, R., Feng, J., Liu, H., Wang, T., Shen, W., and Liu, Y. Researches on vortex generators applied to wind turbines: A review, Ocean Engineering, 253, 111266, 2022. https://doi.org/10.1016/j.oceaneng.2022.111266.
  • M. Gad-el-Hak, Flow control: The future”, Journal of aircraft, 38(3), 402–418, 2001. https://doi.org/10.2514/2.2796.
  • T. Moghaddam and N. B. Neishabouri, On the Active and Passive Flow Separation Control Techniques over Airfoils, IOP Conference Series: Materials Science and Engineering, 248, 1, 2017. https://doi.org/10.1088/1757-899X/248/1/012009.
  • H. D. Taylor, The elimination of diffuser separation by vortex generators, Res. Dep. Rep. r-4012-3, United Aircraft Corporation. East Hartford, Connecticut, 103, 1947.
  • K. Yang, L. Zhang, and J. Xu, Simulation of aerodynamic performance affected by vortex generators on blunt trailing-edge airfoils, Science in China Technological Sciences, 53(1), 1–7, 2010. https://doi.org/10.1007/s11431-009-0425-5.
  • J. C. Lin, Review of research on low-profile vortex generators to control boundary-layer separation, 38, 4–5, 2002. https://doi.org/10.1016/S0376-0421(02)00010-6.
  • A. Seshagiri, E. Cooper, and L. W. Traub, Effects of vortex generators on an airfoil at low reynolds numbers, Journal of aircraft, 46(1), 116–122, 2009. https://doi.org/10.2514/1.36241.
  • O. M. Fouatih, B. Imine, and M. Medale, Numerical/experimental investigations on reducing drag penalty of passive vortex generators on a NACA 4415 airfoil, Wind Energy, 22(7), 1003–1017, 2019. https://doi.org/10.1002/we.2330.
  • O. M. Fouatih, M. Medale, O. Imine, and B. Imine, Design optimization of the aerodynamic passive flow control on NACA 4415 airfoil using vortex generators, European Journal of Mechanics-B/Fluids, 56, 82–96, 2016. https://doi.org/10.1016/j.euromechflu.2015.11.006.
  • M. B. Bragg and G. M. Gregorek, Experimental study of airfoil performance with vortex generators, Journal of aircraft, 24(5), 305–309, 1987. https://doi.org/10.2514/3.45445.
  • X. Li, K. Yang, and X. Wang, Experimental and numerical analysis of the effect of vortex generator height on vortex characteristics and airfoil aerodynamic performance, Energies, 12(5), 2019. https://doi.org/10.3390/en12050959.
  • X. kai Li, W. Liu, T. jun Zhang, P. ming Wang, and X. dong Wang, Analysis of the effect of vortex generator spacing on boundary layer flow separation control, Applied Sciences, 9(24), 2019. https://doi.org/10.3390/app9245495.
  • A. Cheawchan, M. A. Mohamed, B. F. Ng, and T. H. New, Flow Structures of Wishbone Vortex Generators and Their Interactions with a Backward-Facing Ramp, Journal of Aerospace Engineering, 36(1), 4022120, 2023. https://doi.org/10.1061/JAEEEZ.ASENG-4537.
  • S. Arunvinthan, V. S. Raatan, S. Nadaraja Pillai, A. A. Pasha, M. M. Rahman, and K. A. Juhany, Aerodynamic characteristics of shark scale-based vortex generators upon symmetrical airfoil, Energies, 14(7), 2021, https://doi.org/10.3390/en14071808.
  • E. Natarajan, L. Inácio Freitas, G. Rui Chang, A. Abdulaziz Majeed Al-Talib, C. S. Hassan, and S. Ramesh, The hydrodynamic behaviour of biologically inspired bristled shark skin vortex generator in submarine, Materials Today: Proceedings, 46, 83945–3950, 2021. https://doi.org/10.1016/j.matpr.2021.02.471.
  • A. G. Domel, M. Saadat, J. C. Weaver, H. Haj-Hariri, K. Bertoldi, and G. V. Lauder, Shark skin-inspired designs that improve aerodynamic performance, Journal of Royal Society Interface, 15(139), 1–9, 2018. https://doi.org/10.1098/rsif.2017.0828.
  • M. O. L. Hansen vd., Aerodynamically shaped vortex generators, Wind Energy, 19(3), 563–567, 2016. https://doi.org/10.1002/we.1842.
  • Q. Wang, S. Yang, H. Wang, ve J. Wang, Aerodynamic shape integrated design of wind turbine airfoils and vortex generators, International Journal of Green Energy, 19(7), 747–756, 2022. https://doi.org/10.1080/15435075.2021.1961261.
  • B. Méndez and R. Gutiérrez, Non-conventional vortex generators calculated with CFD, Journal of Physics: Conference Series, 1037(2), 2018, https://doi.org/10.1088/1742-6596/1037/2/022029.
  • J. Martinez Suarez, P. Flaszyński, and P. Doerffer, Streamwise vortex generator for separation reduction on wind turbine profile, Journal of Physics: Conference Series, 760(1), 2016. https://doi.org/10.1088/1742-6596/760/1/012018.
  • A. L. Heyes and D. A. R. Smith, Modification of a wing tip vortex by vortex generators, Aerospace science and Technology, 9(6), 469–475, 2005. https://doi.org/10.1016/j.ast.2005.04.003.
  • M. Algan, M. Seyhan, and M. Sarıoğlu, Effect of aero-shaped vortex generators on NACA 4415 airfoil, 291, 116482, 2024. https://doi.org/10.1016/j.oceaneng.2023.116482.
  • C. K. Choi and D. K. Kwon, Wind tunnel blockage effects on aerodynamic behavior of bluff body, Wind and Structures, 1(4), 351–364, 1998. https://doi.org/10.12989/was.1998.1.4.351.
  • J. Katz and R. Walters, Investigation of Wind-Tunnel Wall Effects in High Blockage Testing, AIAA Pap., 95–0438, 1995.
  • M. Seyhan, M. Sarıoğlu, and Y. E. Akansu, Influence of leading-edge tubercle with amplitude modulation on NACA 0015 airfoil. AIAA Journal, 59(10), 3965-3978, 2021. https://doi.org/10.2514/1.J060180
  • B. Carmichael, Low Reynolds number airfoil survey, NASA-CR-165803- VOL-1 (NASA Lab, 1981).
  • P. Lissaman, Low-Reynolds-number airfoils, Annu. Rev. Fluid Mech. 15, 223–239, 1983. https://doi.org/10.1146/annurev.fl.15.010183.001255
  • G. Godard and M. Stanislas, Control of a decelerating boundary layer. Part 1: Optimization of passive vortex generators, Aerospace Science and Technology, 10(3), 181–191, 2006. https://doi.org/10.1016/j.ast.2005.11.007.
  • Hugh W. Coleman and W. Glenn Steele, Experimentation, validation, and uncertainty analysis for engineers, John Wiley & Sons, 1989.
  • Seshagiri, Amith, Evan Cooper, and Lance W. Traub. Effects of vortex generators on an airfoil at low Reynolds numbers. Journal of Aircraft 461, 116-122, 2009. https://doi.org/10.2514/1.36241.

The effect of Clark-Y airfoil vortex generators on tapered NACA 0020 wing

Year 2024, Volume: 13 Issue: 3, 776 - 784, 15.07.2024
https://doi.org/10.28948/ngumuh.1437429

Abstract

In the experimental study, the effects of vortex generators (VGs) having Clark-Y airfoil and triangular VGs were investigated. The aim was to understand how the placement and design of the VGs impact the aerodynamic characteristics of wing. The tests were carried out on a tapered swept-back wing at Re = 6.0×104 using counter-rotating vortex generators having Clark-Y airfoil at five different locations (x/c = 0.1, 0.2, 0.3, 0.4, and 0.5) and triangular VGs at the x/c = 0.1 location. A load cell is used to measure forces at angles of attack (AoA) ranging from 0° to 30°. It is observed that the maximum lift coefficient (CLmax) and aerodynamic performance of VGs having Clark-Y airfoil decrease when the position of the vortex generators changes from 0.1 to 0.5. The optimal results obtained from the study show that the tapered swept-back wing with the VGs having Clark-Y airfoil exhibits a significant increase of 37.5% in the CLmax and approximately 55% in the lift to drag ratio (L/D) at x/c = 0.1 compared with the baseline. At low AoA, the VGs having Clark-Y airfoil provided better lift, whereas at high AoA, the triangular VGs provided better lift. The drag coefficient of triangular VGs is higher than that of the baseline model and airfoil shaped VGs. This causes airfoil shaped VGs to have higher aerodynamic performance specifically at low AoA. This indicates that VGs having Clark-Y airfoil are effective in improving the aerodynamic performance of the wing.

References

  • J. Winslow, H. Otsuka, B. Govindarajan, and I. Chopra, Basic understanding of airfoil characteristics at low Reynolds numbers (104–105), Journal of aircraft, 55(3), 1050–1061, 2018. https://doi.org/10.2514/1.C034415.
  • Q. Liu, W. Ager, C. Hall, and A. P. S. Wheeler, Low Reynolds Number Effects on the Separation and Wake of a Compressor Blade, Journal of Turbomachinery, 144(10), 101008, 2022. https://doi.org/10.1115/1.4054148.
  • Zhao, Z., Jiang, R., Feng, J., Liu, H., Wang, T., Shen, W., and Liu, Y. Researches on vortex generators applied to wind turbines: A review, Ocean Engineering, 253, 111266, 2022. https://doi.org/10.1016/j.oceaneng.2022.111266.
  • M. Gad-el-Hak, Flow control: The future”, Journal of aircraft, 38(3), 402–418, 2001. https://doi.org/10.2514/2.2796.
  • T. Moghaddam and N. B. Neishabouri, On the Active and Passive Flow Separation Control Techniques over Airfoils, IOP Conference Series: Materials Science and Engineering, 248, 1, 2017. https://doi.org/10.1088/1757-899X/248/1/012009.
  • H. D. Taylor, The elimination of diffuser separation by vortex generators, Res. Dep. Rep. r-4012-3, United Aircraft Corporation. East Hartford, Connecticut, 103, 1947.
  • K. Yang, L. Zhang, and J. Xu, Simulation of aerodynamic performance affected by vortex generators on blunt trailing-edge airfoils, Science in China Technological Sciences, 53(1), 1–7, 2010. https://doi.org/10.1007/s11431-009-0425-5.
  • J. C. Lin, Review of research on low-profile vortex generators to control boundary-layer separation, 38, 4–5, 2002. https://doi.org/10.1016/S0376-0421(02)00010-6.
  • A. Seshagiri, E. Cooper, and L. W. Traub, Effects of vortex generators on an airfoil at low reynolds numbers, Journal of aircraft, 46(1), 116–122, 2009. https://doi.org/10.2514/1.36241.
  • O. M. Fouatih, B. Imine, and M. Medale, Numerical/experimental investigations on reducing drag penalty of passive vortex generators on a NACA 4415 airfoil, Wind Energy, 22(7), 1003–1017, 2019. https://doi.org/10.1002/we.2330.
  • O. M. Fouatih, M. Medale, O. Imine, and B. Imine, Design optimization of the aerodynamic passive flow control on NACA 4415 airfoil using vortex generators, European Journal of Mechanics-B/Fluids, 56, 82–96, 2016. https://doi.org/10.1016/j.euromechflu.2015.11.006.
  • M. B. Bragg and G. M. Gregorek, Experimental study of airfoil performance with vortex generators, Journal of aircraft, 24(5), 305–309, 1987. https://doi.org/10.2514/3.45445.
  • X. Li, K. Yang, and X. Wang, Experimental and numerical analysis of the effect of vortex generator height on vortex characteristics and airfoil aerodynamic performance, Energies, 12(5), 2019. https://doi.org/10.3390/en12050959.
  • X. kai Li, W. Liu, T. jun Zhang, P. ming Wang, and X. dong Wang, Analysis of the effect of vortex generator spacing on boundary layer flow separation control, Applied Sciences, 9(24), 2019. https://doi.org/10.3390/app9245495.
  • A. Cheawchan, M. A. Mohamed, B. F. Ng, and T. H. New, Flow Structures of Wishbone Vortex Generators and Their Interactions with a Backward-Facing Ramp, Journal of Aerospace Engineering, 36(1), 4022120, 2023. https://doi.org/10.1061/JAEEEZ.ASENG-4537.
  • S. Arunvinthan, V. S. Raatan, S. Nadaraja Pillai, A. A. Pasha, M. M. Rahman, and K. A. Juhany, Aerodynamic characteristics of shark scale-based vortex generators upon symmetrical airfoil, Energies, 14(7), 2021, https://doi.org/10.3390/en14071808.
  • E. Natarajan, L. Inácio Freitas, G. Rui Chang, A. Abdulaziz Majeed Al-Talib, C. S. Hassan, and S. Ramesh, The hydrodynamic behaviour of biologically inspired bristled shark skin vortex generator in submarine, Materials Today: Proceedings, 46, 83945–3950, 2021. https://doi.org/10.1016/j.matpr.2021.02.471.
  • A. G. Domel, M. Saadat, J. C. Weaver, H. Haj-Hariri, K. Bertoldi, and G. V. Lauder, Shark skin-inspired designs that improve aerodynamic performance, Journal of Royal Society Interface, 15(139), 1–9, 2018. https://doi.org/10.1098/rsif.2017.0828.
  • M. O. L. Hansen vd., Aerodynamically shaped vortex generators, Wind Energy, 19(3), 563–567, 2016. https://doi.org/10.1002/we.1842.
  • Q. Wang, S. Yang, H. Wang, ve J. Wang, Aerodynamic shape integrated design of wind turbine airfoils and vortex generators, International Journal of Green Energy, 19(7), 747–756, 2022. https://doi.org/10.1080/15435075.2021.1961261.
  • B. Méndez and R. Gutiérrez, Non-conventional vortex generators calculated with CFD, Journal of Physics: Conference Series, 1037(2), 2018, https://doi.org/10.1088/1742-6596/1037/2/022029.
  • J. Martinez Suarez, P. Flaszyński, and P. Doerffer, Streamwise vortex generator for separation reduction on wind turbine profile, Journal of Physics: Conference Series, 760(1), 2016. https://doi.org/10.1088/1742-6596/760/1/012018.
  • A. L. Heyes and D. A. R. Smith, Modification of a wing tip vortex by vortex generators, Aerospace science and Technology, 9(6), 469–475, 2005. https://doi.org/10.1016/j.ast.2005.04.003.
  • M. Algan, M. Seyhan, and M. Sarıoğlu, Effect of aero-shaped vortex generators on NACA 4415 airfoil, 291, 116482, 2024. https://doi.org/10.1016/j.oceaneng.2023.116482.
  • C. K. Choi and D. K. Kwon, Wind tunnel blockage effects on aerodynamic behavior of bluff body, Wind and Structures, 1(4), 351–364, 1998. https://doi.org/10.12989/was.1998.1.4.351.
  • J. Katz and R. Walters, Investigation of Wind-Tunnel Wall Effects in High Blockage Testing, AIAA Pap., 95–0438, 1995.
  • M. Seyhan, M. Sarıoğlu, and Y. E. Akansu, Influence of leading-edge tubercle with amplitude modulation on NACA 0015 airfoil. AIAA Journal, 59(10), 3965-3978, 2021. https://doi.org/10.2514/1.J060180
  • B. Carmichael, Low Reynolds number airfoil survey, NASA-CR-165803- VOL-1 (NASA Lab, 1981).
  • P. Lissaman, Low-Reynolds-number airfoils, Annu. Rev. Fluid Mech. 15, 223–239, 1983. https://doi.org/10.1146/annurev.fl.15.010183.001255
  • G. Godard and M. Stanislas, Control of a decelerating boundary layer. Part 1: Optimization of passive vortex generators, Aerospace Science and Technology, 10(3), 181–191, 2006. https://doi.org/10.1016/j.ast.2005.11.007.
  • Hugh W. Coleman and W. Glenn Steele, Experimentation, validation, and uncertainty analysis for engineers, John Wiley & Sons, 1989.
  • Seshagiri, Amith, Evan Cooper, and Lance W. Traub. Effects of vortex generators on an airfoil at low Reynolds numbers. Journal of Aircraft 461, 116-122, 2009. https://doi.org/10.2514/1.36241.
There are 32 citations in total.

Details

Primary Language English
Subjects Aerodynamics (Excl. Hypersonic Aerodynamics)
Journal Section Research Articles
Authors

Mehmet Seyhan 0000-0002-5927-9128

Aleyna Çolak 0000-0001-5043-2870

Mustafa Sarıoğlu 0000-0002-4295-7607

Early Pub Date May 31, 2024
Publication Date July 15, 2024
Submission Date February 15, 2024
Acceptance Date April 3, 2024
Published in Issue Year 2024 Volume: 13 Issue: 3

Cite

APA Seyhan, M., Çolak, A., & Sarıoğlu, M. (2024). The effect of Clark-Y airfoil vortex generators on tapered NACA 0020 wing. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(3), 776-784. https://doi.org/10.28948/ngumuh.1437429
AMA Seyhan M, Çolak A, Sarıoğlu M. The effect of Clark-Y airfoil vortex generators on tapered NACA 0020 wing. NOHU J. Eng. Sci. July 2024;13(3):776-784. doi:10.28948/ngumuh.1437429
Chicago Seyhan, Mehmet, Aleyna Çolak, and Mustafa Sarıoğlu. “The Effect of Clark-Y Airfoil Vortex Generators on Tapered NACA 0020 Wing”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 3 (July 2024): 776-84. https://doi.org/10.28948/ngumuh.1437429.
EndNote Seyhan M, Çolak A, Sarıoğlu M (July 1, 2024) The effect of Clark-Y airfoil vortex generators on tapered NACA 0020 wing. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 3 776–784.
IEEE M. Seyhan, A. Çolak, and M. Sarıoğlu, “The effect of Clark-Y airfoil vortex generators on tapered NACA 0020 wing”, NOHU J. Eng. Sci., vol. 13, no. 3, pp. 776–784, 2024, doi: 10.28948/ngumuh.1437429.
ISNAD Seyhan, Mehmet et al. “The Effect of Clark-Y Airfoil Vortex Generators on Tapered NACA 0020 Wing”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/3 (July 2024), 776-784. https://doi.org/10.28948/ngumuh.1437429.
JAMA Seyhan M, Çolak A, Sarıoğlu M. The effect of Clark-Y airfoil vortex generators on tapered NACA 0020 wing. NOHU J. Eng. Sci. 2024;13:776–784.
MLA Seyhan, Mehmet et al. “The Effect of Clark-Y Airfoil Vortex Generators on Tapered NACA 0020 Wing”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 3, 2024, pp. 776-84, doi:10.28948/ngumuh.1437429.
Vancouver Seyhan M, Çolak A, Sarıoğlu M. The effect of Clark-Y airfoil vortex generators on tapered NACA 0020 wing. NOHU J. Eng. Sci. 2024;13(3):776-84.

download