Research Article
BibTex RIS Cite

Conversion of chicory to valuable chemical LA and by-products with LABSA and BSA

Year 2024, Volume: 13 Issue: 3, 815 - 825, 15.07.2024
https://doi.org/10.28948/ngumuh.1442011

Abstract

This work examined the hydrothermal breakdown of biomass into platform chemicals, including acetic acid (AA), formic acid (FA), 5-hydroxy methyl furfural (5-HMF), and levulinic acid (LA). Chicory was selected as feedstock because of its high potential to produce valuable chemicals. Reactions were performed with BSA (benzenesulfonic acid) and LABSA (linear alkyl benzene sulfonic acid) as sulfonic acid catalysts. The studies were conducted with different catalyst concentrations (100, 300, and 600 mM) for 110 minutes at 200 °C with a biomass-to-solvent ratio of 1g/25 mL. The variation of product yield and composition on parameters such as time, sulfonic acid concentration, and type of catalyst were investigated. The maximum levulinic acid yields in wt.% achieved through the experiments of this study were 22.65 wt.% (9.05 g/L) for 600 mM BSA and 85.93 wt.% (34.37 g/L) for 600 mM LABSA at 200 °C.

Project Number

FGA-2019-20183

References

  • F.D. James H. Clark, Introduction to Chemicals from Biomass, John Wiley & Sons, 2015.
  • M. Signoretto, S. Taghavi, E. Ghedini, F. Menegazzo, Catalytic production of levulinic acid (LA) from Actual Biomass, Molecules. 24, 1–20, 2019. https://doi.org/10.3390/molecules24152760.
  • Z. Fang, R.L. Smith, X. Qi, Production of platform chemicals from sustainable resources, Springer Singapore, 2017.
  • Q. Qing, Q. Guo, P. Wang, H. Qian, X. Gao, Y. Zhang, Kinetics study of levulinic acid production from corncobs by tin tetrachloride as a catalyst, Bioresour. Technol. 260, 150–156, 2018. https://doi.org/https://doi.org/10.1016/j.biortech.2018.03.073.
  • S. Kang, J. Fu, G. Zhang, From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis, Renew. Sustain. Energy Rev. 94, 340–362, 2018. https://doi.org/10.1016/j.rser.2018.06.016.
  • A. Mukherjee, M.-J. Dumont, V. Raghavan, Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities, Biomass and Bioenergy. 72, 143–183, 2015. https://doi.org/https://doi.org/10.1016/j.biombioe.2014.11.007.
  • C. Liu, X. Lu, Z. Yu, J. Xiong, H. Bai, R. Zhang, Production of levulinic acid from cellulose and cellulosic biomass in different catalytic systems, Catalysts. 10 1–22, 2020. https://doi.org/10.3390/catal10091006.
  • W. Wei, S. Wu, Experimental and kinetic study of glucose conversion to levulinic acid in aqueous medium over Cr/HZSM-5 catalyst, Fuel. 225, 311–321, 2018. https://doi.org/https://doi.org/10.1016/j.fuel.2018.03.120.
  • C. Antonetti, D. Licursi, S. Fulignati, G. Valentini, A.M.R. Galletti, New frontiers in the catalytic synthesis of levulinic acid: From sugars to raw and waste biomass as starting feedstock, Catalysts, 6, 1–29, 2016. https://doi.org/10.3390/catal6120196.
  • K. Kumar, S. Pathak, S. Upadhyayula, 2nd generation biomass-derived glucose conversion to 5-hydroxymethylfurfural and levulinic acid catalyzed by ionic liquid and transition metal sulfate: Elucidation of kinetics and mechanism, J. Clean. Prod. 256, 120292, 2020,. https://doi.org/10.1016/j.jclepro.2020.120292.
  • X. Cheng, Q. Feng, D. Ma, F. Xing, X. Zeng, X. Huang, J. Teng, L. Feng, Kinetics for glucose conversion to levulinic acid over solid acid catalyst in γ-valerolactone solution, Biochem. Eng. J. 180, 108360, 2022. https://doi.org/10.1016/j.bej.2022.108360.
  • J.F. Saeman, Kinetics of Wood Saccharification - Hydrolysis of Cellulose and Decomposition of Sugars in Dilute Acid at High Temperature, Ind. Eng. Chem. 37, 43–52, 1945. https://doi.org/10.1021/ie50421a009.
  • X. Zheng, Z. Zhi, X. Gu, X. Li, R. Zhang, X. Lu, Kinetic study of levulinic acid production from corn stalk at mild temperature using FeCl3 as catalyst, Fuel, 2017. https://doi.org/10.1016/j.fuel.2016.09.019.
  • N.A.S. Ramli, N.A.S. Amin, Kinetic study of glucose conversion to levulinic acid over Fe/HY zeolite catalyst, Chem. Eng. J. 283, 150–159, 2017. https://doi.org/10.1016/j.cej.2015.07.044.
  • W. Weiqi, W. Shubin, Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids, Chem. Eng. J. 307, 389–398, 2017. https://doi.org/10.1016/J.CEJ.2016.08.099.
  • W.J.M. Meijer, E.W.J.M. Mathijssen, Crop characteristics and inulin production in chicory, Eur. J. Agron. 1, 99–108, 1992. https://doi.org/https://doi.org/10.1016/S1161-0301(14)80007-5.
  • X.H. Long, H.B. Shao, L. Liu, L.P. Liu, Z.P. Liu, Jerusalem artichoke: A sustainable biomass feedstock for biorefinery, Renew. Sustain. Energy Rev. 54, 1382–1388, 2016. https://doi.org/10.1016/j.rser.2015.10.063.
  • P.J.V. Soest, Use of detergents in the analysis of fibrous feeds. II. A Rapid Method for the Determination of Fiber and Lignin, J. Assoc. Off. Agric. Chem. 46, 829–835, 1963.
  • B. Girisuta, L.P.B.M. Janssen, H.J. Heeres, A kinetic study on the decomposition of 5-hydroxymethyl furfural into levulinic acid, Green Chem. 8, 701–709, 2006. https://doi.org/10.1039/B518176C.
  • B. Girisuta, K. Dussan, D. Haverty, J.J. Leahy, M.H.B. Hayes, A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid, Chem. Eng. J. 217, 61–70, 2013. https://doi.org/https://doi.org/10.1016/j.cej.2012.11.094.
  • D.E. Yüksel, L. Ballice, N. Cengiz, M. Sağlam, M. Yüksel, Aromatic sulfonic acid-catalyzed conversion of safflower stalk into levulinic acid, Biomass Convers. Biorefinery, 14, 1105-1116, 2024. https://doi.org/10.1007/s13399-022-02920-4.
  • S. Kang, G. Zhang, X. Yang, H. Yin, X. Fu, J. Liao, J. Tu, X. Huang, F.G.F. Qin, Y. Xu, Effects of p-Toluenesulfonic Acid in the conversion of glucose for levulinic acid and sulfonated carbon production, Energy and Fuels, 31, 2847–2854, 2017. https://doi.org/10.1021/acs.energyfuels.6b02675.
  • H. Jeong, S.Y. Park, G.H. Ryu, J.H. Choi, J.H. Kim, W.S. Choi, S.M. Lee, J.W. Choi, I.G. Choi, Catalytic conversion of hemicellulosic sugars derived from biomass to levulinic acid, Catal. Commun. 117, 19–25, 2018. https://doi.org/10.1016/j.catcom.2018.04.016.
  • C. Chang, X. Ma, P. Cen, Kinetic studies on wheat straw hydrolysis to levulinic acid, Chinese J. Chem. Eng. 17835–839, 2009. https://doi.org/https://doi.org/10.1016/S1004-9541(08)60284-0.
  • E.S. Lopes, E.C. Rivera, J.C. de Jesus Gariboti, L.H.Z. Feistel, J.V. Dutra, R. Maciel Filho, L.P. Tovar, Kinetic insights into the lignocellulosic biomass-based levulinic acid production by a mechanistic model, Cellulose. 27, 5641–5663, 2020. https://doi.org/10.1007/s10570-020-03183-w.
  • J. Shen, C.E. Wyman, Center, Hydrochloric Acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields, AIChE J. 59, 215–228, 2012. https://doi.org/10.1002/aic.
  • G.T. Jeong, Catalytic conversion of Helianthus tuberosus L. to sugars, 5-hydroxymethylfurfural and levulinic acid using hydrothermal reaction, Biomass and Bioenergy. 74, 113–121, 2015. https://doi.org/10.1016/j.biombioe.2015.01.014.
  • C. Chang, P. Cen, X. Ma, Levulinic acid production from wheat straw, Bioresour. Technol. 98, 1448–1453, 2007. https://doi.org/10.1016/j.biortech.2006.03.031.

Hindibanın LABSA ve BSA katalizörleri ile değerli kimyasal LA ve yan ürünlere dönüştürülmesi

Year 2024, Volume: 13 Issue: 3, 815 - 825, 15.07.2024
https://doi.org/10.28948/ngumuh.1442011

Abstract

Bu çalışmada biyokütlenin levulinik asit, 5-hidroksi metilfurfural, formik asit ve asetik asit gibi değerli kimyasallara hidrotermal dönüşümü araştırılmıştır. Değerli kimyasalların üretimi amacıyla yüksek potansiyeli sebebiyle hindiba biyokütle olarak seçildi. Reaksiyonlar, sülfonik asit katalizörleri olarak BSA (Benzensülfonik asit) ve LABSA (Doğrusal alkil benzen sülfonik asit) varlığında gerçekleştirildi. Deneyler, 110 dakikalık bir reaksiyon süresinde, 200°C sıcaklıkta, 1g/25mL biyokütle/çözücü oranında ve değişen kataliözör konsantrasyonlarında (100, 300 ve 600 mM) yapılmıştır. Ürün verimi ve bileşiminin zaman, sülfonik asit konsantrasyonu ve katalizör türü gibi parametreler ile ilişkisi araştırıldı. Bu çalışmada elde edilen maksimum levulinik asit verimi olarak, 200°'de 600 mM BSA için ağırlıkça %22.65 (9.58 g/L) ve 600 mM LABSA için ağırlıkça %85.93 (34.37 g/L) elde edilmiştir.

Ethical Statement

Hindibanın sülfonik asit katalizörleri ile değerli kimyasal LA ve yan ürünlere dönüştürülmesi” isimli makalemiz ile ilgili herhangi bir kurum, kuruluş, kişi ile mali çıkar çatışması yoktur ve yazarlar arasında çıkar çatışması bulunmamaktadır. Yazarlar çıkar çatışması olmadığını beyan etmektedir.

Supporting Institution

E.Ü. Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

FGA-2019-20183

Thanks

We are appreciative of Ege University's financing of the FGA-2019-20183 research project. We express our gratitude to Prof. Dr. Levent BALLİCE for his tremendous contributions and assistance over the entire project.

References

  • F.D. James H. Clark, Introduction to Chemicals from Biomass, John Wiley & Sons, 2015.
  • M. Signoretto, S. Taghavi, E. Ghedini, F. Menegazzo, Catalytic production of levulinic acid (LA) from Actual Biomass, Molecules. 24, 1–20, 2019. https://doi.org/10.3390/molecules24152760.
  • Z. Fang, R.L. Smith, X. Qi, Production of platform chemicals from sustainable resources, Springer Singapore, 2017.
  • Q. Qing, Q. Guo, P. Wang, H. Qian, X. Gao, Y. Zhang, Kinetics study of levulinic acid production from corncobs by tin tetrachloride as a catalyst, Bioresour. Technol. 260, 150–156, 2018. https://doi.org/https://doi.org/10.1016/j.biortech.2018.03.073.
  • S. Kang, J. Fu, G. Zhang, From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis, Renew. Sustain. Energy Rev. 94, 340–362, 2018. https://doi.org/10.1016/j.rser.2018.06.016.
  • A. Mukherjee, M.-J. Dumont, V. Raghavan, Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities, Biomass and Bioenergy. 72, 143–183, 2015. https://doi.org/https://doi.org/10.1016/j.biombioe.2014.11.007.
  • C. Liu, X. Lu, Z. Yu, J. Xiong, H. Bai, R. Zhang, Production of levulinic acid from cellulose and cellulosic biomass in different catalytic systems, Catalysts. 10 1–22, 2020. https://doi.org/10.3390/catal10091006.
  • W. Wei, S. Wu, Experimental and kinetic study of glucose conversion to levulinic acid in aqueous medium over Cr/HZSM-5 catalyst, Fuel. 225, 311–321, 2018. https://doi.org/https://doi.org/10.1016/j.fuel.2018.03.120.
  • C. Antonetti, D. Licursi, S. Fulignati, G. Valentini, A.M.R. Galletti, New frontiers in the catalytic synthesis of levulinic acid: From sugars to raw and waste biomass as starting feedstock, Catalysts, 6, 1–29, 2016. https://doi.org/10.3390/catal6120196.
  • K. Kumar, S. Pathak, S. Upadhyayula, 2nd generation biomass-derived glucose conversion to 5-hydroxymethylfurfural and levulinic acid catalyzed by ionic liquid and transition metal sulfate: Elucidation of kinetics and mechanism, J. Clean. Prod. 256, 120292, 2020,. https://doi.org/10.1016/j.jclepro.2020.120292.
  • X. Cheng, Q. Feng, D. Ma, F. Xing, X. Zeng, X. Huang, J. Teng, L. Feng, Kinetics for glucose conversion to levulinic acid over solid acid catalyst in γ-valerolactone solution, Biochem. Eng. J. 180, 108360, 2022. https://doi.org/10.1016/j.bej.2022.108360.
  • J.F. Saeman, Kinetics of Wood Saccharification - Hydrolysis of Cellulose and Decomposition of Sugars in Dilute Acid at High Temperature, Ind. Eng. Chem. 37, 43–52, 1945. https://doi.org/10.1021/ie50421a009.
  • X. Zheng, Z. Zhi, X. Gu, X. Li, R. Zhang, X. Lu, Kinetic study of levulinic acid production from corn stalk at mild temperature using FeCl3 as catalyst, Fuel, 2017. https://doi.org/10.1016/j.fuel.2016.09.019.
  • N.A.S. Ramli, N.A.S. Amin, Kinetic study of glucose conversion to levulinic acid over Fe/HY zeolite catalyst, Chem. Eng. J. 283, 150–159, 2017. https://doi.org/10.1016/j.cej.2015.07.044.
  • W. Weiqi, W. Shubin, Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids, Chem. Eng. J. 307, 389–398, 2017. https://doi.org/10.1016/J.CEJ.2016.08.099.
  • W.J.M. Meijer, E.W.J.M. Mathijssen, Crop characteristics and inulin production in chicory, Eur. J. Agron. 1, 99–108, 1992. https://doi.org/https://doi.org/10.1016/S1161-0301(14)80007-5.
  • X.H. Long, H.B. Shao, L. Liu, L.P. Liu, Z.P. Liu, Jerusalem artichoke: A sustainable biomass feedstock for biorefinery, Renew. Sustain. Energy Rev. 54, 1382–1388, 2016. https://doi.org/10.1016/j.rser.2015.10.063.
  • P.J.V. Soest, Use of detergents in the analysis of fibrous feeds. II. A Rapid Method for the Determination of Fiber and Lignin, J. Assoc. Off. Agric. Chem. 46, 829–835, 1963.
  • B. Girisuta, L.P.B.M. Janssen, H.J. Heeres, A kinetic study on the decomposition of 5-hydroxymethyl furfural into levulinic acid, Green Chem. 8, 701–709, 2006. https://doi.org/10.1039/B518176C.
  • B. Girisuta, K. Dussan, D. Haverty, J.J. Leahy, M.H.B. Hayes, A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid, Chem. Eng. J. 217, 61–70, 2013. https://doi.org/https://doi.org/10.1016/j.cej.2012.11.094.
  • D.E. Yüksel, L. Ballice, N. Cengiz, M. Sağlam, M. Yüksel, Aromatic sulfonic acid-catalyzed conversion of safflower stalk into levulinic acid, Biomass Convers. Biorefinery, 14, 1105-1116, 2024. https://doi.org/10.1007/s13399-022-02920-4.
  • S. Kang, G. Zhang, X. Yang, H. Yin, X. Fu, J. Liao, J. Tu, X. Huang, F.G.F. Qin, Y. Xu, Effects of p-Toluenesulfonic Acid in the conversion of glucose for levulinic acid and sulfonated carbon production, Energy and Fuels, 31, 2847–2854, 2017. https://doi.org/10.1021/acs.energyfuels.6b02675.
  • H. Jeong, S.Y. Park, G.H. Ryu, J.H. Choi, J.H. Kim, W.S. Choi, S.M. Lee, J.W. Choi, I.G. Choi, Catalytic conversion of hemicellulosic sugars derived from biomass to levulinic acid, Catal. Commun. 117, 19–25, 2018. https://doi.org/10.1016/j.catcom.2018.04.016.
  • C. Chang, X. Ma, P. Cen, Kinetic studies on wheat straw hydrolysis to levulinic acid, Chinese J. Chem. Eng. 17835–839, 2009. https://doi.org/https://doi.org/10.1016/S1004-9541(08)60284-0.
  • E.S. Lopes, E.C. Rivera, J.C. de Jesus Gariboti, L.H.Z. Feistel, J.V. Dutra, R. Maciel Filho, L.P. Tovar, Kinetic insights into the lignocellulosic biomass-based levulinic acid production by a mechanistic model, Cellulose. 27, 5641–5663, 2020. https://doi.org/10.1007/s10570-020-03183-w.
  • J. Shen, C.E. Wyman, Center, Hydrochloric Acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields, AIChE J. 59, 215–228, 2012. https://doi.org/10.1002/aic.
  • G.T. Jeong, Catalytic conversion of Helianthus tuberosus L. to sugars, 5-hydroxymethylfurfural and levulinic acid using hydrothermal reaction, Biomass and Bioenergy. 74, 113–121, 2015. https://doi.org/10.1016/j.biombioe.2015.01.014.
  • C. Chang, P. Cen, X. Ma, Levulinic acid production from wheat straw, Bioresour. Technol. 98, 1448–1453, 2007. https://doi.org/10.1016/j.biortech.2006.03.031.
There are 28 citations in total.

Details

Primary Language English
Subjects Environmental and Sustainable Processes
Journal Section Research Articles
Authors

Özge Biçer 0009-0003-2590-4938

Nihal Üremek 0000-0002-6572-7046

Project Number FGA-2019-20183
Early Pub Date July 3, 2024
Publication Date July 15, 2024
Submission Date February 23, 2024
Acceptance Date May 1, 2024
Published in Issue Year 2024 Volume: 13 Issue: 3

Cite

APA Biçer, Ö., & Üremek, N. (2024). Conversion of chicory to valuable chemical LA and by-products with LABSA and BSA. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(3), 815-825. https://doi.org/10.28948/ngumuh.1442011
AMA Biçer Ö, Üremek N. Conversion of chicory to valuable chemical LA and by-products with LABSA and BSA. NOHU J. Eng. Sci. July 2024;13(3):815-825. doi:10.28948/ngumuh.1442011
Chicago Biçer, Özge, and Nihal Üremek. “Conversion of Chicory to Valuable Chemical LA and by-Products With LABSA and BSA”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 3 (July 2024): 815-25. https://doi.org/10.28948/ngumuh.1442011.
EndNote Biçer Ö, Üremek N (July 1, 2024) Conversion of chicory to valuable chemical LA and by-products with LABSA and BSA. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 3 815–825.
IEEE Ö. Biçer and N. Üremek, “Conversion of chicory to valuable chemical LA and by-products with LABSA and BSA”, NOHU J. Eng. Sci., vol. 13, no. 3, pp. 815–825, 2024, doi: 10.28948/ngumuh.1442011.
ISNAD Biçer, Özge - Üremek, Nihal. “Conversion of Chicory to Valuable Chemical LA and by-Products With LABSA and BSA”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/3 (July 2024), 815-825. https://doi.org/10.28948/ngumuh.1442011.
JAMA Biçer Ö, Üremek N. Conversion of chicory to valuable chemical LA and by-products with LABSA and BSA. NOHU J. Eng. Sci. 2024;13:815–825.
MLA Biçer, Özge and Nihal Üremek. “Conversion of Chicory to Valuable Chemical LA and by-Products With LABSA and BSA”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 3, 2024, pp. 815-2, doi:10.28948/ngumuh.1442011.
Vancouver Biçer Ö, Üremek N. Conversion of chicory to valuable chemical LA and by-products with LABSA and BSA. NOHU J. Eng. Sci. 2024;13(3):815-2.

download