Research Article
BibTex RIS Cite

Raspberry Pi 3 tabanlı, bulut destekli, sıcaklık kontrollü spektrofotometre tasarımı

Year 2025, Volume: 14 Issue: 1, 1 - 9, 15.01.2025
https://doi.org/10.28948/ngumuh.1456578

Abstract

Spektrofotometreler, çözeltideki madde miktarını bulmak için kullanılan bir tür fotometredir. Spektrofotometreler, numune haznesindeki çözelti tarafından absorbe edilmeyen radyasyon miktarını tespit eder ve numunedeki madde miktarı hakkında bilgi verir. Spektrofotometreler kimya, tıp, jeoloji, çevre mühendisliği ve tarım gibi birçok farklı alanda kullanılmaktadır. Atık su, içme suyu, ilaç gibi insanları doğrudan etkileyecek numuneler yüksek doğrulukla analiz edilmekte ve olası tehlikelerin önüne geçilmektedir. Bu çalışmada Salmonella bakterilerinin tespitinde kullanılabilecek bir cihaz modellenmiştir. Cihazın ısıtıcı ünitesinin test mekanizması üzerinde olması, dış ortamda ısıtma ihtiyacını ortadan kaldırmıştır ve test verilerinin internet bağlantısının mevcut olması durumunda bulut ortamında saklanabilmesi, bu çalışmanın sağlamış olduğu avantajdır. Raspberry Pi 3 ve Python yazılım dili kullanılarak bir spektrofotometre cihazı geliştirilmiştir. Cihazda 470 nm optik filtre kullanılmıştır. Standart spektrofotometrelerin özelliklerine ek olarak numune sıcaklığını istenilen değerde tutabilen ısıtma özelliği eklenmiştir. Bu özellik açma-kapama yöntemi kullanılarak geliştirilmiştir. Optik ölçümlerin lineer regresyonu, 0.1 gram ile 0.2 gram arasındaki yoğunluk testlerinde R2 değeri 0.9982 olarak hesaplanmıştır. Cihaz Raspberry Pi 3 mini bilgisayarı ile geliştirilmiştir, ayrıca harici bir bilgisayara ihtiyaç duyulmamaktadır. Raspberry Pi 3'ün internete bağlanabilme özelliği sayesinde analiz sonuçları bulut ortamına aktarılarak, kullanıcının cihaz başında değilken bile sonuçları görebilmesi sağlanmıştır.

References

  • K. Virkler, I. K. Lednev, Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Science International, 188.1-3 1-17. 2009. https://doi.org/10.1016/j.forsciint.2009.02.013.
  • D. F. Malley, L. Yesmin, D. Wray, and S. Edwards, Application of near‐infrared spectroscopy in analysis of soil mineral nutrients. Communications in Soil Science and Plant Analysis. 30 (7–8), 999–1012, 2019 https://doi.org/10. 1080/00103629909370263.
  • B. P. Kafle, Chemical Analysis And Material Characterization By Spectrophotometry. Elsevier, 2019. https://doi.org/10.1016/C2017-0-02426-6
  • X. Zhang, Y. Fang, and Y. Zhao, A portable spectrophotometer for water quality analysis. Sensors & Transducers, 148.1, 47, 2013.
  • F. C. Hawthorne, Spectroscopic Methods In Mineralogy And Geology. Vol. 18. Walter de Gruyter GmbH & Co KG, 2018.
  • T. Karaman, E.Altintas, T. T Yildirim, A. Bozoglan, Yaş ve cinsiyete göre maksiller santral diş rengi dağılımının spektrofotometre ile ölçülmesi, Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 28(3), 358-364, 2018. https://doi.org/ 10.17567/ataunidfd.473 279.
  • Ş. Açikgöz, Su örneklerinde organik reaktifler ve UV-Vis spektrofotometre kullanarak metal tayini için bir dağıtıcı sıvı-sıvı mikroekstraksiyon (DLLME) yöntemi geliştirme. Yüksek Lisans Tezi, Bozok Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2014.
  • E. Şenol, H. Ugur, K. Kaynar, H. Ş. Güven, M. Z. Durak, Farklı yörelerden toplanan geleneksel fermente ürünlerin (turşu suyu, tarhana ve ekşi maya) probiyotik içeriğinin fourier dönüşümlü infrared spektrofotometre (FTIR) ile belirlenmesi. İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1 (3), 9-13, 2019.
  • O. Olawale, F. A. Oyawale, Characterization of rice husk via atomic absorption spectrophotometer for optimal silica production, International Journal of Science and Technology, 2 (4), 210-213, 2012.
  • A. Guntarti, M. Ahda, A. Kusbandari, S. W. Prihandoko, Analysis of lard in sausage using Fourier transform infrared spectrophotometer combined with chemometrics. Journal of Pharmacy & Bioallied Sciences, 11 (4), 594, 2019. https:/doi.org/10.4103/jpb s.JPBS_209_19
  • K. Mahmoud, S. Park, S. N. Park, S. D. H. Lee, An imaging spectrophotometer for measuring the two-dimensional distribution of spectral reflectance. Metrologia, 51 (6), 293, 2014. https:/doi.org/10.1088 /0026-1394/51/6/S293
  • N. Chaianantakul, K. Wutthi, N. Kamput, N. Pramanpol, P. Janphuang, W. Pummar, R. Phatthanakun, Development of mini spectrophotometer for determination of plasma glucose, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 204, 670-676, 2018. https://doi.org/10.1016/j.saa.2018.06.107
  • K. Laganovska, A. Zolotarjovs, M. Vázquez, K. Mc Donnell, J. Liepins, H. Ben-Yoav, K. Smits, Portable low-cost open-source wireless spectrophotometer for fast and reliable measurements, HardwareX, (7), e00108, 2020. https://doi.org/10.1016/j.ohx.2020. e00108
  • B. S. Hosker, Demonstrating principles of spectrophotometry by constructing a simple, low-cost, functional spectrophotometer utilizing the light sensor on a smartphone, Journal of Chemical Education, 95 (1), 178-181, 2018. http://doi.org/10.1021/ acs.jchemed.7b00548
  • S. Taha, G. Rafat, F. Aboshosha, F. R. Mansour, A Simple homemade spectrophotometer. Journal of Analytical Chemistry, 72 (2), 239-242, 2017. https://doi.org/10.1134/S1061934817020113
  • Y. T. Wu, C. E. Yang, C. H. Ko, Y. N. Wang, C. C. Liu, L. M. Fu, Microfluidic detection platform with integrated micro-spectrometer system. Chemical Engineering Journal, 393, 124700, 2020. https://doi.org/10.1016/j.cej.2020.124700
  • P. Prasanth, G. Viswan, K. Bennaceur, Development of a low-cost portable spectrophotometer for milk quality analysis, Materials Today: Proceedings, 46, 4863-4868, 2021. http://dx.doi.org/10.1016/j.matpr.2020. 10.327
  • S. Isaak, Y. Yusof, N.H. Ngajikin, N. Ramli, C.M. Wen, A low-cost spectroscopy with Raspberry Pi for soil macronutrient monitoring. Telkomnika Telecommunication Computing Electronics and Control, 17 (4), 1867-1873, 2019. http://doi.org/10.12928/telkomnika.v17i4.12775
  • M. Rivai, F. Budiman, Suwito, M. B. Gemintang and H. Pirngadi. Classification of the quality of milk using spectrophotometer system based on Raspberry Pi. 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, pp. 61-67, 2019. doi: 10.1109/ISITIA.2019.8937267.
  • V. G. Böcekçi, K. Yıldız, Hand-held spectrophotometer design for textile fabrics, In AIP Conference Proceedings, 1884 (1), p. 030009. AIP Publishing LLC, 2017. http://dx.doi.org/10.1063/1.5002519
  • N. A. Alhamdi, M. J. Aboudiah, Implementation of LED based spectrophotometer using SoC_FPGA, I IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA, pp. 166-170, IEEE, 2021. http://dx.doi.org/10.1109/MI-STA52233.2021.9464495
  • H. Sümbül, A. H. Yüzer, Design and implementation of a spirometric measurement system that can measure COPD parameters. Pamukkale Unıv. Muh Bilim Derg, 28 (5), 661-667, 2022. https://dx.doi.org/10.5505/ pajes.2021.23835
  • H. Sümbül, Deneyap kart kullanarak pozisyonel uyku apnesi tespiti ve IOT uygulaması. GUFBD/GUJS, 13 (4), 1033-1045, 2023. https://doi.org/10.17714/ gumusfenbil.1262913
  • V.G. Böcekçi, O. Özyetgin, K. Toker, H. Korkmaz, Personal computer-based visible spectrophotometer design, Measurement and Control, 51 (7-8), 311-320, 2018. https://doi.org/10.1177/0020294018786
  • P. K. Chiu, D. Chiang, W. H. Cho, C. N. Hsiao, C. T. Lee, F. Z. Chen, Transmittance uncertainty evaluation for a broadband spectrophotometer system, IEEE International Conference on Applied System Invention (ICASI), pp. 1304-1308, 2018. doi: 10.1109/ICASI.2018.8394532.
  • N. C. Abd Rashid, N. H. Ngajikin, A. I. Azmi, R. Arsat, S. Isaak, N. A. Cholan, N. E. Azmi, Spectrophotometer with enhanced sensitivity for uric acid detection, Chinese Optics Letters, 17 (8), 081701, 2019. http://dx.doi.org/10.3788/COL201917.081701
  • B. Aslan, Z. Özomay, E. Köse, Ofset Baskıda Mürekkebin Kuruma Sürecinde Renk Değişimlerinin Tespit Edilmesi, Politeknik Dergisi, 13 (2), 151-158, 2010.
  • A. Kaur, A. Ruhela, P. Sharma, H. Khariwal, S. Seth, A. Kumar, D. Kalyanasundaram, Simultaneous and high sensitive detection of Salmonella typhi and Salmonella paratyphi a in human clinical blood samples using an affordable and portable device, Biomedical Microdevices, 21 (4), 1-12, 2019. https:// doi.org/10.1007/s10544-019-0441-6

Raspberry Pi 3 based cloud supported temperature-controlled spectrophotometer design

Year 2025, Volume: 14 Issue: 1, 1 - 9, 15.01.2025
https://doi.org/10.28948/ngumuh.1456578

Abstract

Spectrophotometers are a kind of photometers that are used to find the amount of substance in the solution. Spectrophotometers detect the amount of radiation that is not absorbed by the solution in the sample chamber and gives information about the amount of substance in the sample. Spectrophotometers are used in many different fields such as chemistry, medicine, geology, environmental engineering and agriculture. Samples that will directly affect people, such as wastewater, drinking water, pharmaceuticals, are analyzed with high accuracy and possible hazards are avoided. In this study, a device that can be used in the detection of Salmonella bacteria is modeled. In addition, the fact that the heater unit of the device is on the test mechanism eliminates the need for heating in the external environment and the test data can be saved in the cloud environment over the internet connection, which is the novelty of this study. A spectrophotometer device was developed using Raspberry Pi 3 and Python software language. A 470 nm optical filter was used in the device. In addition to the features of standard spectrophotometers, the heating feature that can keep the sample temperature at the desired value has been added. This feature has been developed using the on-off logic method. Linear regression of optical measurements, R2 value was calculated as 0.9982 in density tests between 0.1 gram and 0.2 gram. The device was developed with a Raspberry Pi 3 minicomputer, it does not need an external computer for use. Thanks to the internet connection ability of Raspberry Pi 3, the analysis results are transferred to the cloud environment, allowing the user to see the results even when they are not at the device.

References

  • K. Virkler, I. K. Lednev, Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Science International, 188.1-3 1-17. 2009. https://doi.org/10.1016/j.forsciint.2009.02.013.
  • D. F. Malley, L. Yesmin, D. Wray, and S. Edwards, Application of near‐infrared spectroscopy in analysis of soil mineral nutrients. Communications in Soil Science and Plant Analysis. 30 (7–8), 999–1012, 2019 https://doi.org/10. 1080/00103629909370263.
  • B. P. Kafle, Chemical Analysis And Material Characterization By Spectrophotometry. Elsevier, 2019. https://doi.org/10.1016/C2017-0-02426-6
  • X. Zhang, Y. Fang, and Y. Zhao, A portable spectrophotometer for water quality analysis. Sensors & Transducers, 148.1, 47, 2013.
  • F. C. Hawthorne, Spectroscopic Methods In Mineralogy And Geology. Vol. 18. Walter de Gruyter GmbH & Co KG, 2018.
  • T. Karaman, E.Altintas, T. T Yildirim, A. Bozoglan, Yaş ve cinsiyete göre maksiller santral diş rengi dağılımının spektrofotometre ile ölçülmesi, Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 28(3), 358-364, 2018. https://doi.org/ 10.17567/ataunidfd.473 279.
  • Ş. Açikgöz, Su örneklerinde organik reaktifler ve UV-Vis spektrofotometre kullanarak metal tayini için bir dağıtıcı sıvı-sıvı mikroekstraksiyon (DLLME) yöntemi geliştirme. Yüksek Lisans Tezi, Bozok Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2014.
  • E. Şenol, H. Ugur, K. Kaynar, H. Ş. Güven, M. Z. Durak, Farklı yörelerden toplanan geleneksel fermente ürünlerin (turşu suyu, tarhana ve ekşi maya) probiyotik içeriğinin fourier dönüşümlü infrared spektrofotometre (FTIR) ile belirlenmesi. İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1 (3), 9-13, 2019.
  • O. Olawale, F. A. Oyawale, Characterization of rice husk via atomic absorption spectrophotometer for optimal silica production, International Journal of Science and Technology, 2 (4), 210-213, 2012.
  • A. Guntarti, M. Ahda, A. Kusbandari, S. W. Prihandoko, Analysis of lard in sausage using Fourier transform infrared spectrophotometer combined with chemometrics. Journal of Pharmacy & Bioallied Sciences, 11 (4), 594, 2019. https:/doi.org/10.4103/jpb s.JPBS_209_19
  • K. Mahmoud, S. Park, S. N. Park, S. D. H. Lee, An imaging spectrophotometer for measuring the two-dimensional distribution of spectral reflectance. Metrologia, 51 (6), 293, 2014. https:/doi.org/10.1088 /0026-1394/51/6/S293
  • N. Chaianantakul, K. Wutthi, N. Kamput, N. Pramanpol, P. Janphuang, W. Pummar, R. Phatthanakun, Development of mini spectrophotometer for determination of plasma glucose, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 204, 670-676, 2018. https://doi.org/10.1016/j.saa.2018.06.107
  • K. Laganovska, A. Zolotarjovs, M. Vázquez, K. Mc Donnell, J. Liepins, H. Ben-Yoav, K. Smits, Portable low-cost open-source wireless spectrophotometer for fast and reliable measurements, HardwareX, (7), e00108, 2020. https://doi.org/10.1016/j.ohx.2020. e00108
  • B. S. Hosker, Demonstrating principles of spectrophotometry by constructing a simple, low-cost, functional spectrophotometer utilizing the light sensor on a smartphone, Journal of Chemical Education, 95 (1), 178-181, 2018. http://doi.org/10.1021/ acs.jchemed.7b00548
  • S. Taha, G. Rafat, F. Aboshosha, F. R. Mansour, A Simple homemade spectrophotometer. Journal of Analytical Chemistry, 72 (2), 239-242, 2017. https://doi.org/10.1134/S1061934817020113
  • Y. T. Wu, C. E. Yang, C. H. Ko, Y. N. Wang, C. C. Liu, L. M. Fu, Microfluidic detection platform with integrated micro-spectrometer system. Chemical Engineering Journal, 393, 124700, 2020. https://doi.org/10.1016/j.cej.2020.124700
  • P. Prasanth, G. Viswan, K. Bennaceur, Development of a low-cost portable spectrophotometer for milk quality analysis, Materials Today: Proceedings, 46, 4863-4868, 2021. http://dx.doi.org/10.1016/j.matpr.2020. 10.327
  • S. Isaak, Y. Yusof, N.H. Ngajikin, N. Ramli, C.M. Wen, A low-cost spectroscopy with Raspberry Pi for soil macronutrient monitoring. Telkomnika Telecommunication Computing Electronics and Control, 17 (4), 1867-1873, 2019. http://doi.org/10.12928/telkomnika.v17i4.12775
  • M. Rivai, F. Budiman, Suwito, M. B. Gemintang and H. Pirngadi. Classification of the quality of milk using spectrophotometer system based on Raspberry Pi. 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, pp. 61-67, 2019. doi: 10.1109/ISITIA.2019.8937267.
  • V. G. Böcekçi, K. Yıldız, Hand-held spectrophotometer design for textile fabrics, In AIP Conference Proceedings, 1884 (1), p. 030009. AIP Publishing LLC, 2017. http://dx.doi.org/10.1063/1.5002519
  • N. A. Alhamdi, M. J. Aboudiah, Implementation of LED based spectrophotometer using SoC_FPGA, I IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA, pp. 166-170, IEEE, 2021. http://dx.doi.org/10.1109/MI-STA52233.2021.9464495
  • H. Sümbül, A. H. Yüzer, Design and implementation of a spirometric measurement system that can measure COPD parameters. Pamukkale Unıv. Muh Bilim Derg, 28 (5), 661-667, 2022. https://dx.doi.org/10.5505/ pajes.2021.23835
  • H. Sümbül, Deneyap kart kullanarak pozisyonel uyku apnesi tespiti ve IOT uygulaması. GUFBD/GUJS, 13 (4), 1033-1045, 2023. https://doi.org/10.17714/ gumusfenbil.1262913
  • V.G. Böcekçi, O. Özyetgin, K. Toker, H. Korkmaz, Personal computer-based visible spectrophotometer design, Measurement and Control, 51 (7-8), 311-320, 2018. https://doi.org/10.1177/0020294018786
  • P. K. Chiu, D. Chiang, W. H. Cho, C. N. Hsiao, C. T. Lee, F. Z. Chen, Transmittance uncertainty evaluation for a broadband spectrophotometer system, IEEE International Conference on Applied System Invention (ICASI), pp. 1304-1308, 2018. doi: 10.1109/ICASI.2018.8394532.
  • N. C. Abd Rashid, N. H. Ngajikin, A. I. Azmi, R. Arsat, S. Isaak, N. A. Cholan, N. E. Azmi, Spectrophotometer with enhanced sensitivity for uric acid detection, Chinese Optics Letters, 17 (8), 081701, 2019. http://dx.doi.org/10.3788/COL201917.081701
  • B. Aslan, Z. Özomay, E. Köse, Ofset Baskıda Mürekkebin Kuruma Sürecinde Renk Değişimlerinin Tespit Edilmesi, Politeknik Dergisi, 13 (2), 151-158, 2010.
  • A. Kaur, A. Ruhela, P. Sharma, H. Khariwal, S. Seth, A. Kumar, D. Kalyanasundaram, Simultaneous and high sensitive detection of Salmonella typhi and Salmonella paratyphi a in human clinical blood samples using an affordable and portable device, Biomedical Microdevices, 21 (4), 1-12, 2019. https:// doi.org/10.1007/s10544-019-0441-6
There are 28 citations in total.

Details

Primary Language English
Subjects Cloud Computing, Electronic Device and System Performance Evaluation, Testing and Simulation, Electronics, Sensors and Digital Hardware (Other)
Journal Section Research Articles
Authors

Osman Çağatay Değirmenci 0000-0002-6374-1493

Veysel Böcekçi 0000-0003-4559-7173

Pınar Özkan 0000-0002-2321-6539

Early Pub Date January 8, 2025
Publication Date January 15, 2025
Submission Date March 21, 2024
Acceptance Date September 6, 2024
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Değirmenci, O. Ç., Böcekçi, V., & Özkan, P. (2025). Raspberry Pi 3 based cloud supported temperature-controlled spectrophotometer design. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 1-9. https://doi.org/10.28948/ngumuh.1456578
AMA Değirmenci OÇ, Böcekçi V, Özkan P. Raspberry Pi 3 based cloud supported temperature-controlled spectrophotometer design. NOHU J. Eng. Sci. January 2025;14(1):1-9. doi:10.28948/ngumuh.1456578
Chicago Değirmenci, Osman Çağatay, Veysel Böcekçi, and Pınar Özkan. “Raspberry Pi 3 Based Cloud Supported Temperature-Controlled Spectrophotometer Design”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 1 (January 2025): 1-9. https://doi.org/10.28948/ngumuh.1456578.
EndNote Değirmenci OÇ, Böcekçi V, Özkan P (January 1, 2025) Raspberry Pi 3 based cloud supported temperature-controlled spectrophotometer design. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 1–9.
IEEE O. Ç. Değirmenci, V. Böcekçi, and P. Özkan, “Raspberry Pi 3 based cloud supported temperature-controlled spectrophotometer design”, NOHU J. Eng. Sci., vol. 14, no. 1, pp. 1–9, 2025, doi: 10.28948/ngumuh.1456578.
ISNAD Değirmenci, Osman Çağatay et al. “Raspberry Pi 3 Based Cloud Supported Temperature-Controlled Spectrophotometer Design”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (January 2025), 1-9. https://doi.org/10.28948/ngumuh.1456578.
JAMA Değirmenci OÇ, Böcekçi V, Özkan P. Raspberry Pi 3 based cloud supported temperature-controlled spectrophotometer design. NOHU J. Eng. Sci. 2025;14:1–9.
MLA Değirmenci, Osman Çağatay et al. “Raspberry Pi 3 Based Cloud Supported Temperature-Controlled Spectrophotometer Design”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 1, 2025, pp. 1-9, doi:10.28948/ngumuh.1456578.
Vancouver Değirmenci OÇ, Böcekçi V, Özkan P. Raspberry Pi 3 based cloud supported temperature-controlled spectrophotometer design. NOHU J. Eng. Sci. 2025;14(1):1-9.

download