Research Article
BibTex RIS Cite

Akım yoğunluğu ve ZrO2 banyo konsantrasyonunun elektrodepolanmış Ni-P/ZrO2 kompozit kaplamalar üzerindeki etkisinin incelenmesi

Year 2025, Volume: 14 Issue: 1, 52 - 59, 15.01.2025
https://doi.org/10.28948/ngumuh.1532510

Abstract

Bu çalışmada, Ni-P/ZrO2 nanokompozit kaplamalar, değişen ZrO2 konsantrasyonları (10 g/L ve 20 g/L) ve akım yoğunlukları (50 mA/cm2 ve 75 mA/cm2) ile elektrokaplama yöntemi kullanılarak St-37 çelik alt tabakalar üzerine biriktirildi. Elektrolit bileşenlerinin ve akım yoğunluğunun kaplama özelliklerine etkilerini incelemek amacıyla mikrosertlik, aşınma performansı ve yüzey morfolojileri açısından analizler yapılmıştır. Yapılan analizler sonucunda farklı banyo konsantrasyonun ve akım yoğunluğunun morfoloji, sertlik ve aşınma performansı gibi özellikleri ciddi miktarda etkilediği görülmektedir. Elde edilen kaplamaların genel olarak yüzey morfolojiler pürüzsüz olduğu görülmektedir ama nanokompozit kaplamaların hepsinde yüzeyinin daha pürüzlü olduğu optik resimlerden anlaşılmaktadır. Ana matrise eklenen ZrO2 nanopartikülü ilavesi mikro sertliği saf nikele göre yaklaşık %40 oranında artırırken, akım yoğunluğunun artmasıyla beraber yakın ama daha yüksek sertlik değeri elde edilmiştir. Aşınma performansı bakımından incelendiğinde, saf nikel nanokompozit kaplamalara göre 3.15 kat daha fazla ortalama sürtünme katsayısı değeri elde edilmiştir.

References

  • S. Tan, B. Song, H. Chen, X. Tan, R. Qiu, T. Liu, N. Guo, and S. Guo, Excellent strengthening of low-carbon steel by severe free-end torsion. Metals and Materials International, 29, 2197–2206, 2023. http://doi.org/10.1007/s12540-022-01369-4.
  • E. G. Astafurova, S. V. Dobatkin, E. V. Naydenkin, S. V. Shagalina, and G. G. Zakharova, Microstructural characterization of low-carbon steel processed by high pressure torsion and annealing. Materials Science Forum, 649–654, 2008. https://doi.org/10.4028/www.scientific.net/MSF.584-586.649
  • J. T. Wang, C. Xu, Z. Z. Du, G. Z. Qu, and T. G. Langdon, Microstructure and properties of a low-carbon steel processed by equal-channel angular pressing. Materials Science and Engineering, 410–411, 312–315, 2005. http://doi.org/10.1016/j.msea.2005.08.111.
  • G. A. El-Awadi, Review of effective techniques for surface engineering material modification for a variety of applications. AIMS Materials Science, 10(4), 652–692, 2023. http://doi.org/10.3934/matersci.2023037.
  • H. Kır and S. Apay, Elektrolitik yöntemle sert krom kaplanan yapı çeliğinde kaplama parametrelerinin taguchi metodu ile optimizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1), 7-14, 2020. http://doi.org/10.17714/gumusfenbil.540183.
  • F. Mindivan, K. Aydın, and H. Mindivan, Elektrolitik kaplanmış nikel/grafen kompozit kaplamaların üretimi ve karakterizasyonu. Nevşehir Bilim ve Teknoloji Dergisi, 8, 29–36, 2019. http://doi.org/10.17100/nevbiltek.633289.
  • X. Fu, F. Wang, X. Chen, J. Lin, and H. Cao, Corrosion resistance of Ni-P/SiC and Ni-P composite coatings prepared by magnetic field-enhanced jet electrodeposition. RSC Advances, 10(56), 34167–34176, 2020. http://doi.org/10.1039/d0ra06735k.
  • J. Zhang, Z. Zhang, Y. Wu, D. Kong, S. Yang, S. Sun and S. Gu, Corrosion resistance improvement of Ni-P coatings: surface cracks with different temperatures repaired by laser remelting. Journal of Materials Engineering Performance, 2024. http://doi.org/ 10.1007/s11665-024-09264-2.
  • A. Lelevic and F. C. Walsh, Electrodeposition of Ni-P composite coatings: A review. Surface and Coating Technology, 378, 124803, 2019. http://doi.org/10.1016/j.surfcoat.2019.07.027.
  • H. Nazari, G. Barati Darband, and R. Arefinia, A review on electroless Ni–P nanocomposite coatings: effect of hard, soft, and synergistic nanoparticles. Journal of Materials Science, 58, 4292-4358, 2023. http://doi.org/10.1007/s10853-023-08281-1.
  • Y. Abdesselam, I. Rezgui, M. Naoun, A. Belloufi, M. Mezoudj, and D. Zerrouki, Experimental investigation and optimization of manufacturing processes of Ni–P–Y2O3 composite coatings by multiple linear regression method based on genetic algorithm. International Journal of Advanced Manufacturing Technology, 126(9–10), 3995–4019, 2023. http://doi.org/10.1007/s00170-023-11342-z.
  • Z. A. Hamid, S. A. El Badry, and A. A. Aal, Electroless deposition, and characterization of Ni-P-WC composite alloys. Surface and Coating Technology, 201(12), 5948–5953, 2007. http://doi.org/10.1016/j.surfcoat.2006.11.001.
  • R. Hu, Y. Su, Y. Liu, H. Liu, Y. Chen, C. Cao and H. Ni, Deposition process and properties of electroless Ni-P-Al2O3 composite coatings on magnesium alloy. Nanoscale Research Letters, 13, 198, 2018. http://doi.org/10.1186/s11671-018-2608-0.
  • H. M. Jin, S. H. Jiang, and L. N. Zhang, Microstructure and corrosion behavior of electroless deposited Ni-P/CeO2 coating. Chinese Chemical Letters, 19(11), 1367–1370, 2008. http://doi.org/10.1016/j.cclet.2008.06.040.
  • D. Dong, X. H. Chen, W. T. Xiao, G. B. Yang, and P. Y. Zhang, Preparation and properties of electroless Ni-P-SiO2 composite coatings. Applied Surface Science, 255(15), 7051–7055, 2009. http://doi.org/10.1016/j.apsusc.2009.03.039.
  • Y. Wang, B. Li, D. Zhang and S. Si, Influence of ZrB2 nanoparticles on microstructure and mechanical properties of Ni-Co coating. Coating, 14(11), 1428, 2024.
  • A. Bahgat Radwan, K. Ali, R.A. Shakoor, H. Mohammed, T. Alsalama, R. Kahraman, M. M. Yusuf, A. M. Abdullah, M. Fatima Montemor and Mohamed Helal, Properties enhancement of Ni-P electrodeposited coatings by the incorporation of nanoscale Y2O3 particles. Applied Surface Science, 457, 956–967, 2018. http://doi.org/10.1016/j.apsusc.2018.06.241.
  • Y. Y. Liu, J. Yu, H. Huang, B.H. Xu, X.L. Liu, Y. Gao and X.L. Dong, Synthesis and tribological behavior of electroless Ni-P-WC nanocomposite coatings. Surface and Coating Technology, 201(16–17), 7246–7251, 2007. http://doi.org/10.1016/j.surfcoat.2007.01.035.
  • S. Alirezaei, S. M. Monirvaghefi, M. Salehi, and A. Saatchi, Wear behavior of Ni-P and Ni-P-Al2O3 electroless coatings. Wear, 262(7–8), 978–985, 2007. http://doi.org/10.1016/j.wear.2006.10.013.
  • X. W. Zhou, Y. F. Shen, H. M. Jin, and Y. Y. Zheng, Microstructure and depositional mechanism of Ni-P coatings with nano-ceria particles by pulse electrodeposition. Transactions of Nonferrous Metals Society of China, 22(8), 1981–1988, 2012. http://doi.org/10.1016/S1003-6326(11)61417-9.
  • G. Şahin and S. Göktaş, Calculations of structural parameters and optical constants of size dependent ZrO2. Gazi Journal of Engineering Sciences, 10(1), 114-124, 2024. http://doi.org/1030855/gmbd.0705N10.
  • E. Beltowska-Lehman, P. Indyka, A. Bigos, M. J. Szczerba, and M. Kot, Ni-W/ZrO2 nanocomposites obtained by ultrasonic DC electrodeposition. Materials & Design, 80, 1–11, 2015. http://doi.org/10.1016/j.matdes.2015.04.049.
  • W. Wang, F. Y. Hou, H. Wang, and H. T. Guo, Fabrication and characterization of Ni-ZrO2 composite nano-coatings by pulse electrodeposition. Scripta Materialia, 53(5), 613–618, 2005. http://doi.org/10.1016/j.scriptamat.2005.04.002.
  • R. A. Shakoor, R. Kahraman, U. S. Waware, Y. Wang, and W. Gao, Properties of electrodeposited Ni-B-ZrO2 composite coatings. International Journal of Electrochemical Science, 10(3), 2110-2119, 2015. https://doi.org/10.1016/S1452-3981(23)04833-2.
  • M. F. Tan, W. C. Sun, L. Zhang, Q. Zhou, and J. Ding, High-temperature oxidation resistance of electroless Ni-P-ZrO2 composite coatings. Materials Science Forum, 686, 569–573, 2011. http://doi.org/10.4028/www.scientific.net/MSF.686.569.
  • P. Makkar, R. C. Agarwala, and V. Agarwala, Morphological and hardness studies of electroless Ni-P-ZrO2 nanocomposite coatings on mild steel. Advanced Materials Research, 585, 478–482, 2012. http://doi.org/10.4028/www.scientific.net/AMR.585.478.
  • Y. Wang, X. Shu, S. Wei, C. Liu, W. Gao, R.A. Shakoor and R. Kahraman, Duplex Ni-P-ZrO2/Ni-P electroless coating on stainless steel. Journal of Alloys and Compounds, 630, 189–194, 2015. http://doi.org/ 10.1016/j.jallcom.2015.01.064.
  • M. G. Hosseini, S. Ahmadiyeh, and A. Rasooli, Pulse plating of Ni–B/WC nanocomposite coating and study of its corrosion and wear resistance. Materials Science and Technology, 35(10), 1248–1256, 2019. http://doi.org/10.1080/02670836.2019.1619292.
  • E. Ünal, A. Yaşar and İ. H. Karahan, Elektrokimyasal depolama yöntemi ile AISI 304 çeliği yüzeyine biriktirilen Ni-B/TiB2 kompozit kaplamaların kristal yapı ve bazı mekanik özelliklerinin incelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(4), 847-860, 2021. https://doi.org/10.21605/cukurovaumfd.104032
  • H. Liu, H. Wang, W. Yu, Y. He, F. Xia, C. Ma, and Azar Shakoor, Effect of TiN concentration on microstructure and properties of Ni/W–TiN composites obtained by pulse current electrodeposition. Ceramics International, 47(17), 24331–24339, 2021. http://doi.org/10.1016/j.ceramint.2021.05.145.
  • E. Ünal, A. Yaşar, and İ. H. Karahan, Elektrodepolanmış nanokompozit kaplamalarda elektrolit bileşenlerinin etkisi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 35(1), 159-171, 2020. https://doi.org/10.21605/cukurovaummfd.764753
  • H. H. Sheu, P. C. Huang, L. C. Tsai, and K. H. Hou, Effects of plating parameters on the Ni-P-Al2O3 composite coatings prepared by pulse and direct current plating. Surface and Coating Technology, 235, 529–535, 2013. http://doi.org/10.1016/j.surfcoat.2013.08.020.
  • O. Fayyaz, A. Khan, R. A. Shakoor, A. Hasan, M. M. Yusuf, M. F. Montemor, S. Rasul, K. Khan, M. R. I. Faruque and P. C. Okonkwo, Enhancement of mechanical and corrosion resistance properties of electrodeposited Ni–P–TiC composite coatings. Scientific Reports, 11(1), 2021. http://doi.org/10.1038/s41598-021-84716-6.
  • S. Sadreddini, S. Rahemi Ardakani, and H. Rassaee, Corrosion Behavior and Microhardness of Ni-P-SiO2-Al2O3 Nano-composite Coatings on Magnesium Alloy. Journal of Materials Engineering and Performance, 26(5), 2032–2039, 2017. http://doi.org/10.1007/s11665-017-2632-8.
  • Y. Zhou, S. Zhang, Lin-lin Nie, Ze-jie Zhu, Jian-qing Zhang, Fa-he Cao and Jun-xi Zhang, Electrodeposition and corrosion resistance of Ni–P–TiN composite coating on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China, 26(11), 2976–2987, 2016. http://doi.org/10.1016/S1003-6326(16)64428-X.
  • F. Doğan, M. Uysal, H. Algül, E. Duru, H. Akbulut, and S. Aslan, Optimization of pulsed electro co-deposition for Ni-B-TiN composites and the variation of tribological and corrosion behaviors. Surface and Coating Technology, 400, 2020. http://doi.org/ 10.1016/j.surfcoat.2020.126209.
  • M. H. Allahyarzadeh, M. Aliofkhazraei, A. R. Rezvanian, V. Torabinejad, and A. R. Sabour Rouhaghdam, Ni-W electrodeposited coatings: Characterization, properties and applications. Surface and Coating Technology, 307, 978-1010, 2016. http://doi.org/10.1016/j.surfcoat.2016.09.052.

Investigation of the effect of current density and ZrO2 bath concentration on electrodeposited Ni-P/ZrO2 composite coatings

Year 2025, Volume: 14 Issue: 1, 52 - 59, 15.01.2025
https://doi.org/10.28948/ngumuh.1532510

Abstract

In this study, Ni-P/ZrO2 nanocomposite coatings were deposited on St-37 steel substrates using the electroplating method with varying ZrO2 concentrations (10 g/L ve 20 g/L) and current densities (50 mA/cm2 ve 75 mA/cm2). To investigate the effects of electrolyte components and current density on coating properties, analyses were performed regarding microhardness, wear performance, and surface morphology. As a result of the analyses, it is observed that different bath concentrations and current densities significantly affect properties such as morphology, hardness, and wear performance. It is seen that the surface morphologies of the obtained coatings are generally smooth, but it is understood from the optical images that the surfaces of all nanocomposite coatings are rougher. While adding ZrO2 nanoparticles to the main matrix increases microhardness by approximately 40% compared to pure nickel, a similar but higher hardness value was obtained with the increase in current density. When examined in terms of wear performance, an average friction coefficient value of 3.15 times higher than that of pure nickel nanocomposite coatings was obtained.

References

  • S. Tan, B. Song, H. Chen, X. Tan, R. Qiu, T. Liu, N. Guo, and S. Guo, Excellent strengthening of low-carbon steel by severe free-end torsion. Metals and Materials International, 29, 2197–2206, 2023. http://doi.org/10.1007/s12540-022-01369-4.
  • E. G. Astafurova, S. V. Dobatkin, E. V. Naydenkin, S. V. Shagalina, and G. G. Zakharova, Microstructural characterization of low-carbon steel processed by high pressure torsion and annealing. Materials Science Forum, 649–654, 2008. https://doi.org/10.4028/www.scientific.net/MSF.584-586.649
  • J. T. Wang, C. Xu, Z. Z. Du, G. Z. Qu, and T. G. Langdon, Microstructure and properties of a low-carbon steel processed by equal-channel angular pressing. Materials Science and Engineering, 410–411, 312–315, 2005. http://doi.org/10.1016/j.msea.2005.08.111.
  • G. A. El-Awadi, Review of effective techniques for surface engineering material modification for a variety of applications. AIMS Materials Science, 10(4), 652–692, 2023. http://doi.org/10.3934/matersci.2023037.
  • H. Kır and S. Apay, Elektrolitik yöntemle sert krom kaplanan yapı çeliğinde kaplama parametrelerinin taguchi metodu ile optimizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1), 7-14, 2020. http://doi.org/10.17714/gumusfenbil.540183.
  • F. Mindivan, K. Aydın, and H. Mindivan, Elektrolitik kaplanmış nikel/grafen kompozit kaplamaların üretimi ve karakterizasyonu. Nevşehir Bilim ve Teknoloji Dergisi, 8, 29–36, 2019. http://doi.org/10.17100/nevbiltek.633289.
  • X. Fu, F. Wang, X. Chen, J. Lin, and H. Cao, Corrosion resistance of Ni-P/SiC and Ni-P composite coatings prepared by magnetic field-enhanced jet electrodeposition. RSC Advances, 10(56), 34167–34176, 2020. http://doi.org/10.1039/d0ra06735k.
  • J. Zhang, Z. Zhang, Y. Wu, D. Kong, S. Yang, S. Sun and S. Gu, Corrosion resistance improvement of Ni-P coatings: surface cracks with different temperatures repaired by laser remelting. Journal of Materials Engineering Performance, 2024. http://doi.org/ 10.1007/s11665-024-09264-2.
  • A. Lelevic and F. C. Walsh, Electrodeposition of Ni-P composite coatings: A review. Surface and Coating Technology, 378, 124803, 2019. http://doi.org/10.1016/j.surfcoat.2019.07.027.
  • H. Nazari, G. Barati Darband, and R. Arefinia, A review on electroless Ni–P nanocomposite coatings: effect of hard, soft, and synergistic nanoparticles. Journal of Materials Science, 58, 4292-4358, 2023. http://doi.org/10.1007/s10853-023-08281-1.
  • Y. Abdesselam, I. Rezgui, M. Naoun, A. Belloufi, M. Mezoudj, and D. Zerrouki, Experimental investigation and optimization of manufacturing processes of Ni–P–Y2O3 composite coatings by multiple linear regression method based on genetic algorithm. International Journal of Advanced Manufacturing Technology, 126(9–10), 3995–4019, 2023. http://doi.org/10.1007/s00170-023-11342-z.
  • Z. A. Hamid, S. A. El Badry, and A. A. Aal, Electroless deposition, and characterization of Ni-P-WC composite alloys. Surface and Coating Technology, 201(12), 5948–5953, 2007. http://doi.org/10.1016/j.surfcoat.2006.11.001.
  • R. Hu, Y. Su, Y. Liu, H. Liu, Y. Chen, C. Cao and H. Ni, Deposition process and properties of electroless Ni-P-Al2O3 composite coatings on magnesium alloy. Nanoscale Research Letters, 13, 198, 2018. http://doi.org/10.1186/s11671-018-2608-0.
  • H. M. Jin, S. H. Jiang, and L. N. Zhang, Microstructure and corrosion behavior of electroless deposited Ni-P/CeO2 coating. Chinese Chemical Letters, 19(11), 1367–1370, 2008. http://doi.org/10.1016/j.cclet.2008.06.040.
  • D. Dong, X. H. Chen, W. T. Xiao, G. B. Yang, and P. Y. Zhang, Preparation and properties of electroless Ni-P-SiO2 composite coatings. Applied Surface Science, 255(15), 7051–7055, 2009. http://doi.org/10.1016/j.apsusc.2009.03.039.
  • Y. Wang, B. Li, D. Zhang and S. Si, Influence of ZrB2 nanoparticles on microstructure and mechanical properties of Ni-Co coating. Coating, 14(11), 1428, 2024.
  • A. Bahgat Radwan, K. Ali, R.A. Shakoor, H. Mohammed, T. Alsalama, R. Kahraman, M. M. Yusuf, A. M. Abdullah, M. Fatima Montemor and Mohamed Helal, Properties enhancement of Ni-P electrodeposited coatings by the incorporation of nanoscale Y2O3 particles. Applied Surface Science, 457, 956–967, 2018. http://doi.org/10.1016/j.apsusc.2018.06.241.
  • Y. Y. Liu, J. Yu, H. Huang, B.H. Xu, X.L. Liu, Y. Gao and X.L. Dong, Synthesis and tribological behavior of electroless Ni-P-WC nanocomposite coatings. Surface and Coating Technology, 201(16–17), 7246–7251, 2007. http://doi.org/10.1016/j.surfcoat.2007.01.035.
  • S. Alirezaei, S. M. Monirvaghefi, M. Salehi, and A. Saatchi, Wear behavior of Ni-P and Ni-P-Al2O3 electroless coatings. Wear, 262(7–8), 978–985, 2007. http://doi.org/10.1016/j.wear.2006.10.013.
  • X. W. Zhou, Y. F. Shen, H. M. Jin, and Y. Y. Zheng, Microstructure and depositional mechanism of Ni-P coatings with nano-ceria particles by pulse electrodeposition. Transactions of Nonferrous Metals Society of China, 22(8), 1981–1988, 2012. http://doi.org/10.1016/S1003-6326(11)61417-9.
  • G. Şahin and S. Göktaş, Calculations of structural parameters and optical constants of size dependent ZrO2. Gazi Journal of Engineering Sciences, 10(1), 114-124, 2024. http://doi.org/1030855/gmbd.0705N10.
  • E. Beltowska-Lehman, P. Indyka, A. Bigos, M. J. Szczerba, and M. Kot, Ni-W/ZrO2 nanocomposites obtained by ultrasonic DC electrodeposition. Materials & Design, 80, 1–11, 2015. http://doi.org/10.1016/j.matdes.2015.04.049.
  • W. Wang, F. Y. Hou, H. Wang, and H. T. Guo, Fabrication and characterization of Ni-ZrO2 composite nano-coatings by pulse electrodeposition. Scripta Materialia, 53(5), 613–618, 2005. http://doi.org/10.1016/j.scriptamat.2005.04.002.
  • R. A. Shakoor, R. Kahraman, U. S. Waware, Y. Wang, and W. Gao, Properties of electrodeposited Ni-B-ZrO2 composite coatings. International Journal of Electrochemical Science, 10(3), 2110-2119, 2015. https://doi.org/10.1016/S1452-3981(23)04833-2.
  • M. F. Tan, W. C. Sun, L. Zhang, Q. Zhou, and J. Ding, High-temperature oxidation resistance of electroless Ni-P-ZrO2 composite coatings. Materials Science Forum, 686, 569–573, 2011. http://doi.org/10.4028/www.scientific.net/MSF.686.569.
  • P. Makkar, R. C. Agarwala, and V. Agarwala, Morphological and hardness studies of electroless Ni-P-ZrO2 nanocomposite coatings on mild steel. Advanced Materials Research, 585, 478–482, 2012. http://doi.org/10.4028/www.scientific.net/AMR.585.478.
  • Y. Wang, X. Shu, S. Wei, C. Liu, W. Gao, R.A. Shakoor and R. Kahraman, Duplex Ni-P-ZrO2/Ni-P electroless coating on stainless steel. Journal of Alloys and Compounds, 630, 189–194, 2015. http://doi.org/ 10.1016/j.jallcom.2015.01.064.
  • M. G. Hosseini, S. Ahmadiyeh, and A. Rasooli, Pulse plating of Ni–B/WC nanocomposite coating and study of its corrosion and wear resistance. Materials Science and Technology, 35(10), 1248–1256, 2019. http://doi.org/10.1080/02670836.2019.1619292.
  • E. Ünal, A. Yaşar and İ. H. Karahan, Elektrokimyasal depolama yöntemi ile AISI 304 çeliği yüzeyine biriktirilen Ni-B/TiB2 kompozit kaplamaların kristal yapı ve bazı mekanik özelliklerinin incelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(4), 847-860, 2021. https://doi.org/10.21605/cukurovaumfd.104032
  • H. Liu, H. Wang, W. Yu, Y. He, F. Xia, C. Ma, and Azar Shakoor, Effect of TiN concentration on microstructure and properties of Ni/W–TiN composites obtained by pulse current electrodeposition. Ceramics International, 47(17), 24331–24339, 2021. http://doi.org/10.1016/j.ceramint.2021.05.145.
  • E. Ünal, A. Yaşar, and İ. H. Karahan, Elektrodepolanmış nanokompozit kaplamalarda elektrolit bileşenlerinin etkisi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 35(1), 159-171, 2020. https://doi.org/10.21605/cukurovaummfd.764753
  • H. H. Sheu, P. C. Huang, L. C. Tsai, and K. H. Hou, Effects of plating parameters on the Ni-P-Al2O3 composite coatings prepared by pulse and direct current plating. Surface and Coating Technology, 235, 529–535, 2013. http://doi.org/10.1016/j.surfcoat.2013.08.020.
  • O. Fayyaz, A. Khan, R. A. Shakoor, A. Hasan, M. M. Yusuf, M. F. Montemor, S. Rasul, K. Khan, M. R. I. Faruque and P. C. Okonkwo, Enhancement of mechanical and corrosion resistance properties of electrodeposited Ni–P–TiC composite coatings. Scientific Reports, 11(1), 2021. http://doi.org/10.1038/s41598-021-84716-6.
  • S. Sadreddini, S. Rahemi Ardakani, and H. Rassaee, Corrosion Behavior and Microhardness of Ni-P-SiO2-Al2O3 Nano-composite Coatings on Magnesium Alloy. Journal of Materials Engineering and Performance, 26(5), 2032–2039, 2017. http://doi.org/10.1007/s11665-017-2632-8.
  • Y. Zhou, S. Zhang, Lin-lin Nie, Ze-jie Zhu, Jian-qing Zhang, Fa-he Cao and Jun-xi Zhang, Electrodeposition and corrosion resistance of Ni–P–TiN composite coating on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China, 26(11), 2976–2987, 2016. http://doi.org/10.1016/S1003-6326(16)64428-X.
  • F. Doğan, M. Uysal, H. Algül, E. Duru, H. Akbulut, and S. Aslan, Optimization of pulsed electro co-deposition for Ni-B-TiN composites and the variation of tribological and corrosion behaviors. Surface and Coating Technology, 400, 2020. http://doi.org/ 10.1016/j.surfcoat.2020.126209.
  • M. H. Allahyarzadeh, M. Aliofkhazraei, A. R. Rezvanian, V. Torabinejad, and A. R. Sabour Rouhaghdam, Ni-W electrodeposited coatings: Characterization, properties and applications. Surface and Coating Technology, 307, 978-1010, 2016. http://doi.org/10.1016/j.surfcoat.2016.09.052.
There are 37 citations in total.

Details

Primary Language English
Subjects Plating Technology, Automotive Engineering Materials
Journal Section Research Articles
Authors

Ömer Hükümdar 0000-0002-0806-3562

Umut Kumlu 0000-0001-7624-6240

Ali Keskin 0000-0002-1089-3952

M. Atakan Akar 0000-0002-0192-0605

Muhammed Fatih Geçkin 0009-0004-1018-3995

Eda Nur Çamcı 0009-0009-2143-3730

Alperen Yilmaz 0009-0007-7497-9476

Early Pub Date December 10, 2024
Publication Date January 15, 2025
Submission Date August 13, 2024
Acceptance Date October 14, 2024
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Hükümdar, Ö., Kumlu, U., Keskin, A., Akar, M. A., et al. (2025). Investigation of the effect of current density and ZrO2 bath concentration on electrodeposited Ni-P/ZrO2 composite coatings. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 52-59. https://doi.org/10.28948/ngumuh.1532510
AMA Hükümdar Ö, Kumlu U, Keskin A, Akar MA, Geçkin MF, Çamcı EN, Yilmaz A. Investigation of the effect of current density and ZrO2 bath concentration on electrodeposited Ni-P/ZrO2 composite coatings. NOHU J. Eng. Sci. January 2025;14(1):52-59. doi:10.28948/ngumuh.1532510
Chicago Hükümdar, Ömer, Umut Kumlu, Ali Keskin, M. Atakan Akar, Muhammed Fatih Geçkin, Eda Nur Çamcı, and Alperen Yilmaz. “Investigation of the Effect of Current Density and ZrO2 Bath Concentration on Electrodeposited Ni-P/ZrO2 Composite Coatings”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 1 (January 2025): 52-59. https://doi.org/10.28948/ngumuh.1532510.
EndNote Hükümdar Ö, Kumlu U, Keskin A, Akar MA, Geçkin MF, Çamcı EN, Yilmaz A (January 1, 2025) Investigation of the effect of current density and ZrO2 bath concentration on electrodeposited Ni-P/ZrO2 composite coatings. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 52–59.
IEEE Ö. Hükümdar, U. Kumlu, A. Keskin, M. A. Akar, M. F. Geçkin, E. N. Çamcı, and A. Yilmaz, “Investigation of the effect of current density and ZrO2 bath concentration on electrodeposited Ni-P/ZrO2 composite coatings”, NOHU J. Eng. Sci., vol. 14, no. 1, pp. 52–59, 2025, doi: 10.28948/ngumuh.1532510.
ISNAD Hükümdar, Ömer et al. “Investigation of the Effect of Current Density and ZrO2 Bath Concentration on Electrodeposited Ni-P/ZrO2 Composite Coatings”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (January 2025), 52-59. https://doi.org/10.28948/ngumuh.1532510.
JAMA Hükümdar Ö, Kumlu U, Keskin A, Akar MA, Geçkin MF, Çamcı EN, Yilmaz A. Investigation of the effect of current density and ZrO2 bath concentration on electrodeposited Ni-P/ZrO2 composite coatings. NOHU J. Eng. Sci. 2025;14:52–59.
MLA Hükümdar, Ömer et al. “Investigation of the Effect of Current Density and ZrO2 Bath Concentration on Electrodeposited Ni-P/ZrO2 Composite Coatings”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 1, 2025, pp. 52-59, doi:10.28948/ngumuh.1532510.
Vancouver Hükümdar Ö, Kumlu U, Keskin A, Akar MA, Geçkin MF, Çamcı EN, Yilmaz A. Investigation of the effect of current density and ZrO2 bath concentration on electrodeposited Ni-P/ZrO2 composite coatings. NOHU J. Eng. Sci. 2025;14(1):52-9.

download