Bu çalışmada, Türkçe sosyal medya paylaşımlarındaki tehdit ve hakaret içeriklerinin tespiti amaçlanmıştır. Doğal Dil İşleme teknikleri kullanılarak sosyal medya verileri üzerinde derin öğrenme algoritmalarıyla modeller geliştirilmiş ve bu modeller makine öğrenmesi algoritmaları ile karşılaştırılmıştır. Türkçe sosyal medya verilerinden toplanan veri kümesi etiketlenerek Uzun Kısa Süreli Bellek ve BERT derin öğrenme modelleri ile suç tespiti amacıyla kullanılmıştır. Derin öğrenme modelleri, makine öğrenmesi modellerinden Destek Vektör Makineleri, Rastgele Orman ve Gradyan Artırma modelleri ile karşılaştırılmıştır. Önerilen derin öğrenme modelleri, %90 doğruluk oranıyla tehdit ve hakaret içeriklerini başarılı bir şekilde tespit ederek makine öğrenmesi modellerine kıyasla daha üstün performans sergilemiştir.
This study aims to detect threats and insults in Turkish social media posts. Models have been developed using Natural Language Processing techniques and deep learning algorithms, and the proposed models have been compared with machine learning algorithms. The dataset, collected from Turkish social media posts, has been labelled and used for crime detection in social media using Long Short-Term Memory and BERT deep learning models. The deep learning models have been compared with machine learning models such as Support Vector Machines, Random Forest, and Gradient Boosting. The proposed deep learning models have outperformed the machine learning models, successfully detecting threatening content with an accuracy of 90%.
Primary Language | Turkish |
---|---|
Subjects | Deep Learning, Neural Networks, Natural Language Processing |
Journal Section | Research Articles |
Authors | |
Early Pub Date | December 10, 2024 |
Publication Date | January 15, 2025 |
Submission Date | September 18, 2024 |
Acceptance Date | November 14, 2024 |
Published in Issue | Year 2025 Volume: 14 Issue: 1 |